JPH08125216A - Manufacture of photocoupler - Google Patents

Manufacture of photocoupler

Info

Publication number
JPH08125216A
JPH08125216A JP25791494A JP25791494A JPH08125216A JP H08125216 A JPH08125216 A JP H08125216A JP 25791494 A JP25791494 A JP 25791494A JP 25791494 A JP25791494 A JP 25791494A JP H08125216 A JPH08125216 A JP H08125216A
Authority
JP
Japan
Prior art keywords
light
insulating resin
resin
coupling device
optical coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25791494A
Other languages
Japanese (ja)
Inventor
Yoichi Tsuda
陽一 津田
Masahiko Kimoto
匡彦 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25791494A priority Critical patent/JPH08125216A/en
Publication of JPH08125216A publication Critical patent/JPH08125216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE: To obtain an efficient, ultra-compact, and inexpensive photocoupler by joining transparent insulation resin and opaque insulation resin without any interface. CONSTITUTION: A method of manufacturing a photocoupler comprises a process for die-bonding a light emitting element 3 and a photodetector 4 to individual metal lead frames 1 and 2 and laying out the light-emitting element 3 and the photodetector 4 opposingly so that they can be optically coupled and a process for forming a light path between the light-emitting element 3 and the photodetector 4 by performing transfer formation with transparent epoxy resin 5 while the elements 3 and 4 are laid out opposingly. It also is provided with a process for laid out them in a plasma container 11, generating plasma, and performing plasma ashing treatment to the surface of the transparent epoxy resin 5 and a process for performing transfer formation of the outer-periphery part of the transparent epoxy resin 5 with an opaque epoxy resin 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光素子と受光素子と
の間に透光性絶縁樹脂を介して光パスを形成し、これら
を遮光性絶縁樹脂にて被覆する光結合装置(フォトカプ
ラ)の製造方法に関するものであり、特に超小型光結合
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupling device (photocoupler) in which an optical path is formed between a light emitting element and a light receiving element via a translucent insulating resin, and these are covered with a light shielding insulating resin. ), Particularly to a method for manufacturing a microminiature optical coupling device.

【0002】[0002]

【従来の技術】図8は一般的な光結合装置の構成図であ
り、図9は図8の縦断面図である。また、図10は図8
及び図9に示す光結合装置の製造工程を示す図である。
2. Description of the Related Art FIG. 8 is a block diagram of a general optical coupling device, and FIG. 9 is a vertical sectional view of FIG. In addition, FIG.
FIG. 10 is a diagram showing a manufacturing process of the optical coupling device shown in FIG. 9;

【0003】該光結合装置は、図8及び図9に示すよう
に、個別の金属製リードフレーム1,2の先端部に、G
aAs赤外発光ダイオード等の発光素子3と、フォトト
ランジスタ等の受光素子4とが別々に搭載され、前記発
光素子3と受光素子4とは互いが光学的に結合するよう
対向配置されており、前記両素子3,4は、素子保護及
び光外部量子効率の向上のため、エポキシ樹脂,シリコ
ン樹脂,ポリイミド樹脂等の透光性絶縁樹脂5にて樹脂
封止され、さらに該透光性絶縁樹脂5の外周部は、前記
金属製リードフレーム1,2の保護と外乱光の侵入を遮
蔽するため、エポキシ樹脂,ポリイミド樹脂等の遮光性
絶縁樹脂6にて樹脂封止されてなる構造からなる。
As shown in FIGS. 8 and 9, the optical coupling device is provided with a G
The light emitting element 3 such as an aAs infrared light emitting diode and the light receiving element 4 such as a phototransistor are separately mounted, and the light emitting element 3 and the light receiving element 4 are arranged to face each other so as to be optically coupled to each other. Both the elements 3 and 4 are resin-sealed with a translucent insulating resin 5 such as an epoxy resin, a silicone resin, or a polyimide resin in order to protect the elements and improve the optical external quantum efficiency. The outer peripheral portion of 5 has a structure which is resin-sealed with a light-shielding insulating resin 6 such as an epoxy resin or a polyimide resin in order to protect the metal lead frames 1 and 2 and to shield the entry of ambient light.

【0004】以下、上述した光結合装置の製造方法を図
10に従って説明する。
A method of manufacturing the above-mentioned optical coupling device will be described below with reference to FIG.

【0005】まず、図10(a)の如く、発光素子3及
び受光素子4をそれぞれ個別の金属製リードフレーム
1,2に銀ペースト等を介してダイボンドし、前記発光
素子3と受光素子4とを光学的に結合するよう対向配置
する。
First, as shown in FIG. 10A, the light emitting element 3 and the light receiving element 4 are die-bonded to individual metal lead frames 1 and 2 via a silver paste or the like to form the light emitting element 3 and the light receiving element 4. Are arranged to face each other optically.

【0006】次に、図10(b)の如く、前記両素子
3,4を対向配置した状態で例えば透光性エポキシ樹脂
5にてトランスファー成形して受発光素子3,4間の光
パスを形成する。
Next, as shown in FIG. 10 (b), the optical paths between the light receiving and emitting elements 3 and 4 are formed by transfer molding with a translucent epoxy resin 5 in a state where both the elements 3 and 4 are arranged to face each other. Form.

【0007】次に、図10(c)の如く、さらに前記透
光性エポキシ樹脂5の外周部を例えば遮光性エポキシ樹
脂6にてトランスファー成形し、完成品となる。
Next, as shown in FIG. 10 (c), the outer peripheral portion of the translucent epoxy resin 5 is transfer-molded with, for example, a light-shielding epoxy resin 6 to obtain a finished product.

【0008】図11は他の一般的な光結合装置の構成を
示す縦断面図である。該光結合装置の構造及びその製造
方法について、上述した光結合装置の構造及びその製造
方法と相違する点のみ説明する。
FIG. 11 is a longitudinal sectional view showing the structure of another general optical coupling device. Regarding the structure of the optical coupling device and the manufacturing method thereof, only the points different from the structure of the optical coupling device and the manufacturing method thereof will be described.

【0009】図11に示す光結合装置の構造及びその製
造方法は、受発光素子3,4間の光パスの形成をトラン
スファー成形に代わって透光性絶縁樹脂5をポッティン
グすることによって形成してなるものである。
In the structure and manufacturing method of the optical coupling device shown in FIG. 11, the optical path between the light emitting and receiving elements 3 and 4 is formed by potting the translucent insulating resin 5 instead of transfer molding. It will be.

【0010】[0010]

【発明が解決しようとする課題】また、近年において
は、図12及び図13に示すように、発光素子3aと受
光素子4との間に透光性絶縁樹脂体7を介し、受光素子
4、透光性絶縁樹脂体7、発光素子3aを順に積層して
なる光結合装置が考えられつつある。
In recent years, as shown in FIGS. 12 and 13, the light receiving element 4 is provided between the light emitting element 3a and the light receiving element 4 via the translucent insulating resin body 7. An optical coupling device in which a translucent insulating resin body 7 and a light emitting element 3a are sequentially laminated is being considered.

【0011】図12に示す光結合装置(提案例1)の構
造及びその製造方法は、一方の金属製リードフレーム2
上に受光素子4、透光性絶縁樹脂体7、発光素子3aを
順次積層し、これらを遮光性絶縁樹脂6によるトランス
ファー成形にて樹脂封止されてなるものからなる。
The structure and manufacturing method of the optical coupling device (proposed example 1) shown in FIG.
A light-receiving element 4, a translucent insulating resin body 7, and a light-emitting element 3a are laminated in this order, and these are resin-sealed by transfer molding with a light-shielding insulating resin 6.

【0012】また、図13に示す光結合装置(提案例
2)の構造及びその製造方法は、ガラスエポキシ基板等
の基板8表面にメタル電極等の導体パターン9を有する
プリント基板上、具体的には導体パターン9上に、受光
素子4、透光性絶縁樹脂体7、発光素子3aを順次積層
し、且つ前記プリント基板の外周端部に樹脂流れ止め枠
10を搭載し、前記樹脂流れ止め枠10内に遮光性絶縁
樹脂6を充填することによって、前記発光素子3a、透
光性絶縁樹脂体7及び受光素子4を樹脂封止してなるも
のからなる。
Further, the structure of the optical coupling device (proposed example 2) shown in FIG. 13 and the method of manufacturing the same are specifically described on a printed circuit board having a conductor pattern 9 such as a metal electrode on the surface of a substrate 8 such as a glass epoxy substrate. The light receiving element 4, the translucent insulating resin body 7, and the light emitting element 3a are sequentially laminated on the conductor pattern 9, and the resin flow stop frame 10 is mounted on the outer peripheral end of the printed circuit board. The light emitting element 3a, the translucent insulating resin body 7 and the light receiving element 4 are resin-sealed by filling the light shielding insulating resin 6 in the inside 10.

【0013】しかしながら、上述した図9、図11、図
12及び図13に示す光結合装置は、透光性絶縁樹脂5
または透光性絶縁樹脂体7と遮光性絶縁樹脂6とが化学
結合をしておらず、両者間に界面が生じている。このた
め、該界面の長さが発光素子3,3aと受光素子4との
沿面距離となり、非常に短くなる。そして、これら沿面
の界面には、外部からの汚れや水分が侵入し易く、その
汚れや水分によりイオン伝導が発生する。この現象は、
沿面距離が短いほど長時間動作時に電気的絶縁不良が起
こる原因となる。また、前記透光性絶縁樹脂5または透
光性絶縁樹脂体7と遮光性絶縁樹脂6との界面が、温度
変化等によって剥離することがある。図14はその状態
を示す図であり、(a)は図8及び図9に示す光結合装
置の剥離状態を示す縦断面図であり、(b)は図11に
示す光結合装置の剥離状態を示す縦断面図であり、
(c)図12に示す光結合装置の剥離状態を示す縦断面
図であり、(d)は図13に示す光結合装置の剥離状態
を示す縦断面図である。このとき、発光素子3,3aと
受光素子4との距離が短いために、剥離した界面で放電
が起こり易い状態となり、絶縁耐圧が極端に低下する。
However, the above-described optical coupling device shown in FIGS. 9, 11, 12 and 13 has the transparent insulating resin 5
Alternatively, the light-transmissive insulating resin body 7 and the light-shielding insulating resin 6 are not chemically bonded to each other, and an interface is formed between them. Therefore, the length of the interface becomes the creeping distance between the light emitting elements 3 and 3a and the light receiving element 4, which is extremely short. Then, contaminants and moisture from the outside easily invade the interfaces on these creeping surfaces, and ion conduction occurs due to the contaminants and moisture. This phenomenon is
The shorter the creepage distance, the more likely it is that electrical insulation will fail during long-term operation. Further, the interface between the light-transmissive insulating resin 5 or the light-transmissive insulating resin body 7 and the light-shielding insulating resin 6 may be separated due to temperature change or the like. 14 is a view showing the state, (a) is a vertical cross-sectional view showing a peeled state of the optical coupling device shown in FIGS. 8 and 9, and (b) is a peeled state of the optical coupling device shown in FIG. 11. Is a vertical sectional view showing
FIG. 13C is a vertical cross-sectional view showing the peeled state of the optical coupling device shown in FIG. 12, and FIG. 13D is a vertical cross-sectional view showing the peeled state of the optical coupling device shown in FIG. At this time, since the distance between the light emitting elements 3 and 3a and the light receiving element 4 is short, discharge is likely to occur at the separated interface, and the withstand voltage is extremely reduced.

【0014】なお、絶縁耐圧は光結合装置(フォトカプ
ラ)において、不可欠なものである。このため、透光性
絶縁樹脂5または透光性絶縁樹脂体7のサイズを小さく
することはできなかった。
The withstand voltage is indispensable in an optical coupling device (photocoupler). Therefore, the size of the translucent insulating resin 5 or the translucent insulating resin body 7 cannot be reduced.

【0015】さらに、上述した図8および図9に示す光
結合装置においては、その製造方法として発光素子3お
よび受光素子4の透光性絶縁樹脂5による樹脂封止をト
ランスファー成形にて行うために、成形金型表面に塗布
した離型剤が透光性絶縁樹脂5表面に付着し、続いて樹
脂封止する遮光性絶縁樹脂6との結合がさらに弱くなる
場合があった。
Further, in the above-described optical coupling device shown in FIGS. 8 and 9, the light emitting element 3 and the light receiving element 4 are resin-molded by the translucent insulating resin 5 by transfer molding as a manufacturing method thereof. In some cases, the release agent applied to the surface of the molding die adheres to the surface of the light-transmitting insulating resin 5, and the bond with the light-shielding insulating resin 6 that subsequently seals the resin becomes weaker.

【0016】本発明は、上記課題に鑑み、透光性絶縁樹
脂と遮光性絶縁樹脂との接合を無界面化とし、高効率
で、超小型、低価格の光結合装置が得られる光結合装置
の製造方法の提供を目的とするものである。
In view of the above-mentioned problems, the present invention provides an optical coupling device in which a translucent insulating resin and a light-shielding insulating resin are joined to each other with no interface, and a highly efficient, ultra-compact, low-priced optical coupling device can be obtained. The purpose of the present invention is to provide a manufacturing method of.

【0017】[0017]

【課題を解決するための手段】本発明の光結合装置の製
造方法は、電気信号を光信号に変換する発光素子と、該
光信号を電気信号に変換する受光素子と、前記発光素子
と受光素子との間に設けられ、該発光素子と受光素子と
の電気的絶縁及び光パス用の透光性絶縁樹脂と、前記発
光素子、受光素子及び透光性絶縁樹脂を被覆する遮光性
絶縁樹脂とを備えてなる光結合装置の製造方法におい
て、前記発光素子と受光素子とが光学的に結合するよう
間に前記透光性絶縁樹脂を介して対向配置する工程と、
前記透光性絶縁樹脂の表面に、前記遮光性絶縁樹脂との
反応性を高める改質処理を行う工程と、前記発光素子、
受光素子及び透光性絶縁樹脂を前記遮光性絶縁樹脂にて
被覆する工程とを備えてなることを特徴とするものであ
る。
A method of manufacturing an optical coupling device according to the present invention comprises a light emitting element for converting an electric signal into an optical signal, a light receiving element for converting the optical signal into an electric signal, the light emitting element and a light receiving element. A light-transmitting insulating resin which is provided between the light-emitting element and the light-receiving element and which covers the light-emitting element, the light-receiving element and the light-transmitting insulating resin. In the method of manufacturing an optical coupling device comprising: a step of disposing the light emitting element and the light receiving element so as to be optically coupled to each other through the translucent insulating resin.
A step of performing a modification treatment on the surface of the translucent insulating resin to enhance the reactivity with the light-shielding insulating resin, the light emitting element,
And a step of coating the light receiving element and the translucent insulating resin with the light shielding insulating resin.

【0018】上記改質処理は、酸素を有する雰囲気中で
透光性絶縁樹脂表面にプラズマアッシングまたは紫外線
照射を行ってなることを特徴とするものである。
The above modification treatment is characterized in that the surface of the translucent insulating resin is subjected to plasma ashing or ultraviolet irradiation in an atmosphere containing oxygen.

【0019】上記透光性絶縁樹脂および遮光性絶縁樹脂
は、共にエポキシ樹脂からなることを特徴とするもので
ある。
The light-transmitting insulating resin and the light-shielding insulating resin are both made of epoxy resin.

【0020】[0020]

【作用】上記構成によれば、本発明の光結合装置の製造
方法は、透光性絶縁樹脂の表面に、遮光性絶縁樹脂との
反応性を高める改質処理を行う工程を備えてなる構成な
ので、透光性絶縁樹脂と遮光性絶縁樹脂とが化学反応し
て一体化され、透光性絶縁樹脂と遮光性絶縁樹脂との間
を無界面化とすることができる。
According to the above structure, the method for manufacturing an optical coupling device of the present invention comprises a step of performing a modification treatment on the surface of the light-transmissive insulating resin to enhance the reactivity with the light-shielding insulating resin. Therefore, the light-transmissive insulating resin and the light-shielding insulating resin are chemically reacted with each other to be integrated, and the interface between the light-transmissive insulating resin and the light-shielding insulating resin can be eliminated.

【0021】例えば、透光性エポキシ樹脂の表面を酸素
を有する雰囲気中にてプラズマアッシングまたは紫外線
照射を行うと、エポキシ樹脂分子中のエステル結合や、
アルキル基のC−C、C−H結合が切断され、新しくカ
ルボキシル基や水酸基などが生成される。このカルボキ
シル基や水酸基は、樹脂封止される遮光性絶縁樹脂との
硬化反応の開始剤として働くために、透光性エポキシ樹
脂と遮光性絶縁樹脂とが一つの分子として結合して一体
化され、無界面化されることになる。
For example, when the surface of the translucent epoxy resin is subjected to plasma ashing or ultraviolet irradiation in an atmosphere containing oxygen, ester bonds in the epoxy resin molecules,
C—C and C—H bonds of the alkyl group are cleaved, and a new carboxyl group or hydroxyl group is generated. The carboxyl group and the hydroxyl group act as an initiator of the curing reaction with the light-shielding insulating resin to be resin-sealed, and therefore the light-transmitting epoxy resin and the light-shielding insulating resin are combined and integrated as one molecule. , Will be made interfaceless.

【0022】したがって、プラズマアッシングまたは紫
外線照射の効果により、透光性エポキシ樹脂と遮光性絶
縁樹脂とは結合状態が形成された状態となり、温度変化
等で前記透光性エポキシ樹脂と遮光性絶縁樹脂との界面
が剥離することがなくなり、隙間の発生が抑制でき、絶
縁耐圧の低下をなくすことができる。
Therefore, due to the effect of plasma ashing or ultraviolet irradiation, the light-transmissive epoxy resin and the light-shielding insulating resin are in a combined state, and the light-transmissive epoxy resin and the light-shielding insulating resin are changed due to temperature change or the like. The interface with and is not peeled off, the generation of a gap can be suppressed, and the decrease in withstand voltage can be eliminated.

【0023】さらに、前記透光性絶縁樹脂と遮光性絶縁
樹脂とを共にエポキシ樹脂材料とすることにより、両者
の結合は同種の結合となり、両樹脂間の化学的な結合が
よりスムーズに行われ、完全に一体化できる。
Further, by using both the light-transmitting insulating resin and the light-shielding insulating resin as an epoxy resin material, the bonding between the two becomes the same kind of bonding, and the chemical bonding between the two resins becomes smoother. , Can be completely integrated.

【0024】[0024]

【実施例】図1は、本発明の一実施例からなる光結合装
置の製造方法を説明するための製造工程図である。
1 is a manufacturing process diagram for explaining a method of manufacturing an optical coupling device according to an embodiment of the present invention.

【0025】本実施例にて製造される光結合装置は、図
1(d)に示すように、メタル等からなる個別の金属製
リードフレーム1,2の先端部に、GaAs赤外発光ダ
イオード等の発光素子3と、フォトトランジスタ等の受
光素子4とが別々に搭載され、前記発光素子3と受光素
子4とは互いが光学的に結合するよう対向配置されてお
り、前記両素子3,4は、素子保護及び光外部量子効率
の向上のため、エポキシ樹脂等の透光性絶縁樹脂5にて
樹脂封止され、さらに該透光性絶縁樹脂5の外周部は、
前記金属製リードフレーム1,2の保護と外乱光の侵入
を遮蔽するため、エポキシ樹脂等の遮光性絶縁樹脂6に
て樹脂封止されてなる構造からなるものである。
As shown in FIG. 1D, the optical coupling device manufactured in this embodiment has a GaAs infrared light emitting diode or the like at the tip of individual metal lead frames 1 and 2 made of metal or the like. The light emitting element 3 and the light receiving element 4 such as a phototransistor are separately mounted, and the light emitting element 3 and the light receiving element 4 are arranged so as to be optically coupled to each other. Is sealed with a translucent insulating resin 5 such as an epoxy resin in order to protect the element and improve the optical external quantum efficiency. Further, the outer peripheral portion of the translucent insulating resin 5 is
In order to protect the lead frames 1 and 2 made of metal and to prevent invasion of ambient light, the structure is resin-sealed with a light-shielding insulating resin 6 such as an epoxy resin.

【0026】以下、該構造の光結合装置の製造方法を図
1に従って説明する。
A method of manufacturing the optical coupling device having the structure will be described below with reference to FIG.

【0027】まず、図1(a)に示すように、発光素子
3及び受光素子4をそれぞれ個別の金属製リードフレー
ム1,2に銀ペースト等を介して通常のダイボンド方法
でダイボンドし、前記発光素子3と受光素子4とを光学
的に結合するよう対向配置する。
First, as shown in FIG. 1A, the light emitting element 3 and the light receiving element 4 are die-bonded to individual metal lead frames 1 and 2 via a silver paste or the like by a normal die-bonding method to emit the light. The element 3 and the light receiving element 4 are arranged so as to face each other so as to be optically coupled.

【0028】次に、図1(b)に示すように、前記両素
子3,4を対向配置した状態で透光性エポキシ樹脂5に
てトランスファー成形して受発光素子3,4間の光パス
を形成する。このとき、前記透光性エポキシ樹脂5の表
面には、成型金型の表面に塗布しておいた離型剤が残っ
ている。
Next, as shown in FIG. 1 (b), transfer molding is performed with a translucent epoxy resin 5 in a state where both the elements 3 and 4 are arranged facing each other, and an optical path between the light receiving and emitting elements 3 and 4 is obtained. To form. At this time, the release agent applied to the surface of the molding die remains on the surface of the translucent epoxy resin 5.

【0029】そこで次に、図1(c)に示すように、透
光性エポキシ樹脂5の表面をクリーニング及び活性化さ
せる。その方法の一つとして、プラズマアッシングを用
いる方法があり、透光性エポキシ樹脂5にて樹脂封止し
た状態の製品をプラズマ容器11内に配置し、乾燥空気
0.8Torrの雰囲気中に投入電力250Wでプラズ
マを発生させ、最長1時間のプラズマアッシング処理を
行う。
Then, next, as shown in FIG. 1C, the surface of the transparent epoxy resin 5 is cleaned and activated. As one of the methods, there is a method using plasma ashing, in which a product sealed with a translucent epoxy resin 5 is placed in a plasma container 11 and an electric power is applied in an atmosphere of dry air 0.8 Torr. Plasma is generated at 250 W and plasma ashing treatment is performed for up to 1 hour.

【0030】その後、図1(d)に示すように、前記透
光性エポキシ樹脂5の外周部を遮光性エポキシ樹脂6に
てトランスファー成形し、完成品となる。
Thereafter, as shown in FIG. 1D, the outer peripheral portion of the translucent epoxy resin 5 is transfer-molded with the light-shielding epoxy resin 6 to obtain a finished product.

【0031】このように、透光性エポキシ樹脂5の表面
を酸素有する雰囲気中にてプラズマアッシングを行う
と、エポキシ樹脂分子中のエステル結合や、アルキル基
のC−C、C−H結合が切断され、新しくカルボキシル
基や水酸基などが生成される。このカルボキシル基や水
酸基は、遮光性エポキシ樹脂6の硬化反応の開始剤とし
て働くために、透光性エポキシ樹脂5と遮光性エポキシ
樹脂6とが一つの分子として結合して一体化され、無界
面化されることになる。
As described above, when plasma ashing is performed on the surface of the translucent epoxy resin 5 in an atmosphere containing oxygen, the ester bond in the epoxy resin molecule and the C—C and C—H bonds of the alkyl group are broken. Then, a new carboxyl group or hydroxyl group is generated. Since the carboxyl group and the hydroxyl group act as an initiator of the curing reaction of the light-shielding epoxy resin 6, the light-transmitting epoxy resin 5 and the light-shielding epoxy resin 6 are combined and integrated as one molecule, and there is no interface. Will be realized.

【0032】したがって、プラズマアッシング処理の効
果により、透光性エポキシ樹脂5と遮光性エポキシ樹脂
6とは結合状態が形成された状態となり、温度変化等で
前記透光性エポキシ樹脂5と遮光性エポキシ樹脂6との
界面が剥離することがなくなり、隙間の発生が抑制で
き、絶縁耐圧の低下をなくすことができる。本実施例に
よれば、−40℃〜125℃の温度サイクル試験を行っ
ても絶縁耐圧の低下が発生することはなかった。
Therefore, due to the effect of the plasma ashing treatment, the translucent epoxy resin 5 and the light-shielding epoxy resin 6 are in a combined state, and the light-transmissive epoxy resin 5 and the light-shielding epoxy resin are changed due to temperature change or the like. The interface with the resin 6 will not be peeled off, the generation of gaps can be suppressed, and the decrease in withstand voltage can be eliminated. According to this example, even if the temperature cycle test of −40 ° C. to 125 ° C. was performed, the breakdown voltage did not decrease.

【0033】これにより、沿面距離の短縮が可能とな
り、二重トランスファー成形された光結合装置の透光性
エポキシ樹脂5の外形を小さくすることが可能であり、
図7(a)に示す同等の構成からなる従来の光結合装置
に比べて、図7(a′)に示す本実施例の光結合装置
は、完成品としての小型化、薄型化が図れる。
As a result, the creepage distance can be shortened, and the outer shape of the transparent epoxy resin 5 of the double transfer molded optical coupling device can be reduced.
Compared with the conventional optical coupling device having the same configuration shown in FIG. 7A, the optical coupling device of this embodiment shown in FIG. 7A 'can be made smaller and thinner as a finished product.

【0034】また、本実施例においては、透光性絶縁樹
脂5及び遮光性絶縁樹脂6ともエポキシ樹脂を用いてお
り、同種の結合であるために両樹脂5,6間の化学的な
結合がよりスムーズに行われ、完全に一体化される。
Further, in the present embodiment, the translucent insulating resin 5 and the light-shielding insulating resin 6 are both made of epoxy resin, and since they are the same kind of bond, the chemical bond between the two resins 5, 6 is not used. It is done more smoothly and is fully integrated.

【0035】図2は、本発明の他の実施例を説明するた
めの製造工程図である。本実施例の製造方法について、
上述した実施例と相違する点のみ説明する。
FIG. 2 is a manufacturing process diagram for explaining another embodiment of the present invention. Regarding the manufacturing method of this embodiment,
Only points different from the above-described embodiment will be described.

【0036】本実施例にて製造される光結合装置は、受
発光素子3,4間の光パスの形成をトランスファー成形
に代わって透光性絶縁樹脂5をポッティングすることに
よって形成してなる構造からなるものである。
The optical coupling device manufactured in this embodiment has a structure in which an optical path between the light emitting / receiving elements 3 and 4 is formed by potting a transparent insulating resin 5 instead of transfer molding. It consists of

【0037】本実施例においては、まず、図2(a)に
示すように発光素子3と受光素子4とを対向配置した
後、図2(b)に示すように前記受発光素子3,4間に
透光性絶縁樹脂5をポッティングし、続いてこれらを図
2(c)に示すようにプラズマ容器11に配置し、プラ
ズマアッシング処理を行う。その後、図2(d)に示す
ように遮光性絶縁樹脂6にてトランスファー成形されて
完成品となる。
In this embodiment, first, the light emitting element 3 and the light receiving element 4 are arranged to face each other as shown in FIG. 2A, and then the light receiving and emitting elements 3 and 4 are placed as shown in FIG. 2B. The translucent insulating resin 5 is potted between them, and then these are placed in the plasma container 11 as shown in FIG. 2C, and plasma ashing treatment is performed. Then, as shown in FIG. 2D, transfer molding is performed using the light-shielding insulating resin 6 to obtain a finished product.

【0038】本実施例によれば、両樹脂5,6間が無界
面化されることから発光素子3と受光素子4との間隔を
縮めることが可能となり沿面距離を短縮でき、図7
(b)に示す従来の同等の構造からなる光結合装置と比
べ、図7(b′)に示す本実施例の光結合装置は、完成
品としての小型化、薄型化が図れる。
According to the present embodiment, since the interface between the two resins 5 and 6 is eliminated, the distance between the light emitting element 3 and the light receiving element 4 can be shortened, and the creepage distance can be shortened.
Compared with the conventional optical coupling device having the same structure shown in (b), the optical coupling device of this embodiment shown in FIG. 7 (b ') can be made smaller and thinner as a finished product.

【0039】図3は、本発明のさらに他の実施例を説明
するための製造工程図である。本実施例について、図1
に示す実施例と相違する点のみ説明する。
FIG. 3 is a manufacturing process diagram for explaining still another embodiment of the present invention. This embodiment is shown in FIG.
Only points different from the embodiment shown in will be described.

【0040】本実施例にて製造される光結合装置は、一
方の金属リードフレーム2上に受光素子4、透光性絶縁
樹脂体7、発光素子3aを順次積層し、これらを遮光性
絶縁樹脂6によるトランスファー成形にて樹脂封止され
てなる構造からなるものである。
In the optical coupling device manufactured in this embodiment, the light receiving element 4, the translucent insulating resin body 7, and the light emitting element 3a are sequentially laminated on one metal lead frame 2, and these are shielded from the light shielding insulating resin. The structure is resin-sealed by transfer molding of No. 6.

【0041】以下、該構造の光結合装置の製造方法を図
3に従って説明する。
A method of manufacturing the optical coupling device having the above structure will be described below with reference to FIG.

【0042】まず、図3(a)に示すように、一方の金
属製リードフレーム2に受光素子4を銀ペースト等を介
して通常のダイボンド方法でダイボンドする。
First, as shown in FIG. 3 (a), the light receiving element 4 is die-bonded to one of the metal lead frames 2 through a silver paste or the like by a normal die-bonding method.

【0043】次に、図3(b)に示すように、エポキシ
系樹脂材料からなる透光性絶縁樹脂体7を受光素子4の
受光面上に搭載し、透光性のエポキシ系接着剤にて固着
する。
Next, as shown in FIG. 3B, a translucent insulating resin body 7 made of an epoxy resin material is mounted on the light receiving surface of the light receiving element 4, and a translucent epoxy adhesive is used. And sticks.

【0044】次に、図3(c)に示すように、裏面発光
ダイオード等からなる発光素子3aを前記透光性絶縁樹
脂体7上に搭載し、透光性のエポキシ系接着剤にて固着
する。ここで、前記裏面発光ダイオード3aは、図4に
示すように、カソード電極12が活性層13の真下にな
く、素子3aの裏面側から効率良く光を取り出せるよう
に構成されてなるものである。図中、14はn型半導体
層であり、15はp型半導体層であり、16はアノード
電極である。なお、アノードとカソードとは逆の構成を
取っても差し支えない。
Next, as shown in FIG. 3C, a light emitting element 3a including a backside light emitting diode or the like is mounted on the translucent insulating resin body 7 and fixed by a translucent epoxy adhesive. To do. Here, as shown in FIG. 4, the back surface light emitting diode 3a is configured such that the cathode electrode 12 is not directly under the active layer 13 and light can be efficiently extracted from the back surface side of the element 3a. In the figure, 14 is an n-type semiconductor layer, 15 is a p-type semiconductor layer, and 16 is an anode electrode. It should be noted that the anode and the cathode may have opposite configurations.

【0045】この状態では、透光性絶縁樹脂体7の表面
は活性化されていない状態にあり、遮光性絶縁樹脂7に
てトランスファー成形しても前記透光性絶縁樹脂体7と
遮光性絶縁樹脂6とは結合状態にならない。
In this state, the surface of the light-transmissive insulating resin body 7 is not activated, and even if the light-shielding insulating resin 7 is transfer molded, the light-transmissive insulating resin body 7 and the light-shielding insulating resin 7 are insulated from each other. It will not be in a bonded state with the resin 6.

【0046】そこで、図3(d)に示すように、図3
(c)の状態でプラズマ容器11内に配置し、プラズマ
アッシング処理を施すことで透光性絶縁樹脂体7の表面
が活性化される。ここで、プラズマアッシング処理の条
件としては図1に示す実施例と同様とする。
Therefore, as shown in FIG.
It is placed in the plasma container 11 in the state of (c) and subjected to plasma ashing treatment to activate the surface of the translucent insulating resin body 7. Here, the conditions of the plasma ashing process are the same as those in the embodiment shown in FIG.

【0047】その後、図3(e)に示すように、金属製
リードフレーム1,2の外部接続用リードとなる部分以
外の部分を遮光性絶縁樹脂6にてトランスファー成形
し、完成品となる。
After that, as shown in FIG. 3 (e), the portions of the metal lead frames 1 and 2 other than the portions to be the leads for external connection are transfer-molded with the light-shielding insulating resin 6 to complete the products.

【0048】本実施例によれば、透光性絶縁樹脂体7と
遮光性絶縁樹脂6とが化学反応し、これらの間が無界面
化されることから、透光性絶縁樹脂体7の厚みを薄くす
ることが可能となり、図7(c)に示す同等の構造から
なる提案例1と比べ、図7(c′)に示す本実施例の光
結合装置は、完成品としての小型化、薄型化が図れる。
According to the present embodiment, the translucent insulating resin body 7 and the light-shielding insulating resin 6 chemically react with each other so that there is no interface between them, so that the translucent insulating resin body 7 has a thickness. 7C, the optical coupling device of the present embodiment shown in FIG. 7C 'can be made smaller as a finished product, as compared with Proposed Example 1 having an equivalent structure shown in FIG. 7C. Can be made thinner.

【0049】図5は、本発明のさらに他の実施例を説明
するための製造工程図である。
FIG. 5 is a manufacturing process diagram for explaining still another embodiment of the present invention.

【0050】本実施例にて製造される光結合装置は、ガ
ラスエポキシ基材等の基材8表面にメタル電極等の導体
パターン9を有するプリント基板上、具体的には導体パ
ターン9上に、受光素子4、透光性絶縁樹脂体7、発光
素子3aを順次積層し、且つ前記プリント基板の外周端
部に樹脂流れ止め枠10を搭載し、前記樹脂流れ止め枠
10内に遮光性絶縁樹脂6を充填することによって、前
記発光素子3a、透光性絶縁樹脂体7及び受光素子4を
樹脂封止してなる構造からなるものである。
The optical coupling device manufactured in this embodiment is provided on a printed circuit board having a conductor pattern 9 such as a metal electrode on the surface of a substrate 8 such as a glass epoxy substrate, specifically, on the conductor pattern 9. The light receiving element 4, the translucent insulating resin body 7, and the light emitting element 3a are sequentially laminated, and the resin flow stop frame 10 is mounted on the outer peripheral end of the printed circuit board. 6 is filled, so that the light emitting element 3a, the translucent insulating resin body 7, and the light receiving element 4 are resin-sealed.

【0051】以下、該構造の光結合装置の製造方法を図
5に従って説明する。
A method of manufacturing the optical coupling device having the structure will be described below with reference to FIG.

【0052】まず、図5(a)に示すように、ガラスエ
ポキシ基材8からなり両面配線でメタル電極9が形成さ
れ、表面の最外周端部にガラスエポキシ材料等からなる
樹脂流れ止め枠10が接着されたプリント基板に、受光
素子4を銀ペースト等を介して通常のダイボンド方法で
ダイボンドする。
First, as shown in FIG. 5A, a metal electrode 9 made of a glass epoxy base material 8 is formed by double-sided wiring, and a resin flow stop frame 10 made of a glass epoxy material or the like is formed at the outermost peripheral edge of the surface. The light-receiving element 4 is die-bonded to the printed circuit board to which is adhered by a normal die-bonding method via a silver paste or the like.

【0053】次に、図5(b)に示すように、エポキシ
系樹脂材料からなる透光性絶縁樹脂体7を受光素子4の
受光面上に搭載し、透光性のエポキシ系接着剤にて固着
する。
Next, as shown in FIG. 5B, the translucent insulating resin body 7 made of an epoxy resin material is mounted on the light receiving surface of the light receiving element 4, and the translucent epoxy adhesive is used. And sticks.

【0054】次に、図5(c)に示すように、裏面発光
ダイオード等からなる発光素子3aを前記透光性絶縁樹
脂体7上に搭載し、透光性のエポキシ系接着剤にて固着
する。ここで、前記裏面発光ダイオード3aとしては、
図4に示す構造のものを用いることとする。
Next, as shown in FIG. 5C, a light emitting element 3a including a backside light emitting diode or the like is mounted on the transparent insulating resin body 7 and fixed by a transparent epoxy adhesive. To do. Here, as the backside light emitting diode 3a,
The structure shown in FIG. 4 is used.

【0055】この状態では、透光性絶縁樹脂体7の表面
は活性化されていない状態にあり、遮光性絶縁樹脂7に
てトランスファー成形しても前記透光性絶縁樹脂体7と
遮光性絶縁樹脂6とは結合状態にならない。
In this state, the surface of the light-transmissive insulating resin body 7 is not activated, and even if the light-shielding insulating resin 7 is transfer molded, the light-transmissive insulating resin body 7 and the light-shielding insulating resin 7 are insulated from each other. It will not be in a bonded state with the resin 6.

【0056】そこで、図5(d)に示すように、図5
(c)の状態でプラズマ容器11内に配置し、プラズマ
アッシング処理を施すことで透光性絶縁樹脂体7の表面
が活性化される。ここで、プラズマアッシング処理の条
件としては図1に示す実施例と同様とする。
Therefore, as shown in FIG.
It is placed in the plasma container 11 in the state of (c) and subjected to plasma ashing treatment to activate the surface of the translucent insulating resin body 7. Here, the conditions of the plasma ashing process are the same as those in the embodiment shown in FIG.

【0057】その後、図5(e)に示すように、樹脂流
れ止め枠10内に液状エポキシ系樹脂材料からなる遮光
性絶縁樹脂6をディスペンサ等で注型して前記発光素子
3a、受光素子4、透光性絶縁樹脂体7を樹脂封止し、
前記遮光性絶縁樹脂6を硬化させることによって完成品
となる。
Thereafter, as shown in FIG. 5 (e), the light-shielding insulating resin 6 made of a liquid epoxy resin material is cast in the resin flow stop frame 10 by a dispenser or the like so that the light emitting element 3a and the light receiving element 4 are formed. , Resin sealing the translucent insulating resin body 7,
A completed product is obtained by curing the light-shielding insulating resin 6.

【0058】図6に、本実施例のプラズマアッシング有
り無しに対する光結合装置の温度サイクル試験による絶
縁耐圧不良の発生数の対比図を示す。
FIG. 6 shows a comparison diagram of the number of occurrences of insulation breakdown voltage failure in the temperature cycle test of the optical coupling device with and without plasma ashing of this embodiment.

【0059】図6より明らかなように、絶縁耐圧不良が
大幅に減少しており、プラズマアッシングの表面活性化
効果が有効に付与していることが分かる。
As is clear from FIG. 6, the breakdown voltage failure is significantly reduced, and the surface activation effect of plasma ashing is effectively imparted.

【0060】本実施例によれば、透光性絶縁樹脂体7と
遮光性絶縁樹脂6とが化学反応し、これらの間が無界面
化されることから、透光性絶縁樹脂体7の厚みを薄くす
ることが可能となり、図7(d)に示す同等の構造から
なる提案例2と比べ、図7(d′)に示す本実施例の光
結合装置は、完成品としての小型化、薄型化が図れる。
具体的には、図7(d′)の光結合装置は、図7(d)
に示す提案例2のサイズに比較して、透光性絶縁樹脂体
7の厚みを500μmから250μmに薄くでき、外形
が従来の2.15mmに対して1.9mmと薄型化がな
された光結合装置が実現できた。また、透光性絶縁樹脂
体7の厚みが半減したことで、光の利用効率が2倍にな
り、高性能な光結合装置の実現にもつながった。
According to the present embodiment, the translucent insulating resin body 7 and the light-shielding insulating resin 6 chemically react with each other so that no interface is formed between them, so that the thickness of the translucent insulating resin body 7 is increased. 7D, the optical coupling device of the present embodiment shown in FIG. 7D 'can be made smaller as a finished product, as compared with Proposed Example 2 having an equivalent structure shown in FIG. 7D. Can be made thinner.
Specifically, the optical coupling device of FIG. 7 (d ') is shown in FIG.
The thickness of the translucent insulating resin body 7 can be thinned from 500 μm to 250 μm as compared with the size of Proposed Example 2 shown in FIG. 2, and the outer shape is thinned to 1.9 mm as compared with the conventional 2.15 mm. The device was realized. Further, since the thickness of the translucent insulating resin body 7 is reduced by half, the light utilization efficiency is doubled, which leads to the realization of a high performance optical coupling device.

【0061】なお、前記プリント基板の材質および樹脂
流れ止め枠10をガラスエポキシ材料より構成すること
により、透光性絶縁樹脂体7と遮光性絶縁樹脂6との間
のみならず、プリント基板および樹脂流れ止め枠10と
遮光性絶縁樹脂6との間においても結合状態が得られ、
無界面化とすることが可能となる。
Since the printed circuit board material and the resin flow stop frame 10 are made of a glass epoxy material, not only the space between the translucent insulating resin body 7 and the light shielding insulating resin 6, but also the printed circuit board and the resin. A coupled state can be obtained between the anti-flow frame 10 and the light-shielding insulating resin 6,
It is possible to eliminate the interface.

【0062】以上説明した実施例においては、透光性絶
縁樹脂5または透光性絶縁樹脂体7表面のクリーニング
及び活性化方法として、プラズマアッシングを用いて説
明したが、紫外線照射によってもプラズマアッシングと
同等の効果が得られ、前記プラズマアッシングに変わっ
て紫外線照射を行うことで、プラズマアッシングによる
ものと同様の理由により小型の光結合装置が実現され
る。
In the embodiments described above, plasma ashing is used as a method for cleaning and activating the surface of the translucent insulating resin 5 or the translucent insulating resin body 7. Equivalent effects are obtained, and ultraviolet irradiation is performed instead of the plasma ashing, whereby a small-sized optical coupling device is realized for the same reason as that of the plasma ashing.

【0063】また、前記プラズマアッシング及び紫外線
照射は、副次的作用として、透光性絶縁樹脂表面に化学
的汚染があっても、分子的不安定性が得られやすく、安
定した無界面化を実現させることが可能である。
Further, the plasma ashing and the irradiation with ultraviolet rays have a secondary effect that molecular instability is easily obtained even if there is chemical contamination on the surface of the translucent insulating resin, and stable interface-free is realized. It is possible to

【0064】さらに、前記透光性絶縁樹脂5、透光性絶
縁樹脂体7及び遮光性絶縁樹脂6の樹脂材料としてエポ
キシ系樹脂を用いて説明したが、これに限らず、透光性
絶縁樹脂5及び透光性絶縁樹脂体7としてはシリコン系
樹脂又はポリイミド系樹脂を用いても良く、遮光性絶縁
樹脂6としてはポリイミド系樹脂を用いても良い。しか
しながら、透光性絶縁樹脂5又は透光性絶縁樹脂体7と
遮光性絶縁樹脂6とは同種の結合とすることが望まし
く、エポキシ系樹脂−エポキシ系樹脂,ポリイミド系樹
脂−ポリイミド系樹脂とすることが良い。なお、樹脂材
料にポリイミド系樹脂を用いた場合には、エポキシ系樹
脂と比較してコストが割高になる。
Furthermore, although the epoxy resin is used as the resin material for the transparent insulating resin 5, the transparent insulating resin body 7 and the light blocking insulating resin 6, the present invention is not limited to this, and the transparent insulating resin is not limited thereto. Silicon resin or polyimide resin may be used as 5 and the translucent insulating resin body 7, and polyimide resin may be used as the light shielding insulating resin 6. However, it is desirable that the light-transmissive insulating resin 5 or the light-transmissive insulating resin body 7 and the light-shielding insulating resin 6 are of the same kind of bond, and are epoxy resin-epoxy resin, polyimide resin-polyimide resin. Is good. When a polyimide resin is used as the resin material, the cost is higher than that of an epoxy resin.

【0065】[0065]

【発明の効果】以上説明したように、本発明の光結合装
置の製造方法によれば、透光性絶縁樹脂の表面に、遮光
性絶縁樹脂との反応性を高める改質処理を行う工程を備
えてなる構成なので、前記透光性絶縁樹脂と遮光性絶縁
樹脂とが結合状態を形成し無界面化されて一体化され
る。これによって、絶縁耐圧の低下の原因となっていた
温度サイクル試験で発生する両樹脂間の隙間が発生しな
くなり、透光性絶縁樹脂の外形サイズを小さくできるば
かりでなく、発光素子と受光素子との距離を短くするこ
とができ、高効率で、超小型、低価格の光結合装置の提
供が可能となった。また、改質処理工程は、受発光素子
間の透光性絶縁樹脂による光パスの形成工程と、遮光性
絶縁樹脂による樹脂封止工程との間に、プラズマアッシ
ングあるいは紫外線照射の工程を追加するだけで良く、
その装置についても大掛かりでなく、容易に実現でき
る。
As described above, according to the method of manufacturing an optical coupling device of the present invention, a step of performing a modification treatment on the surface of the translucent insulating resin to enhance the reactivity with the light shielding insulating resin is performed. Since the structure is provided, the light-transmissive insulating resin and the light-shielding insulating resin form a combined state and are integrated with each other with no interface. As a result, the gap between the two resins that occurs in the temperature cycle test, which was the cause of the decrease in withstand voltage, is eliminated, and not only the outer size of the translucent insulating resin can be reduced, but also the light emitting element and the light receiving element It has become possible to provide a highly efficient, ultra-compact, low-priced optical coupling device that can reduce the distance. In the modification treatment step, a plasma ashing or ultraviolet irradiation step is added between the step of forming an optical path made of a translucent insulating resin between the light emitting and receiving elements and the resin sealing step of a light shielding insulating resin. Just good,
The device is not large and can be easily realized.

【0066】さらに、前記透光性絶縁樹脂と遮光性絶縁
樹脂とを共にエポキシ樹脂材料とすることにより、両者
の結合は同種の結合となり、両樹脂間の化学的な結合が
よりスムーズに行われ、完全に一体化される。
Furthermore, by using both the light-transmitting insulating resin and the light-shielding insulating resin as an epoxy resin material, the bonding between the two becomes the same kind of bonding, and the chemical bonding between the two resins becomes smoother. , Fully integrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例からなる光結合装置の製造方
法を説明するための製造工程図である。
FIG. 1 is a manufacturing process diagram for explaining a manufacturing method of an optical coupling device according to an embodiment of the present invention.

【図2】本発明の他の一実施例からなる光結合装置の製
造方法を説明するための製造工程図である。
FIG. 2 is a manufacturing process diagram for explaining a manufacturing method of an optical coupling device according to another embodiment of the present invention.

【図3】本発明のさらに他の一実施例からなる光結合装
置の製造方法を説明するための製造工程図である。
FIG. 3 is a manufacturing process diagram for explaining a manufacturing method of an optical coupling device according to still another embodiment of the present invention.

【図4】図3に示す発光素子の具体的構造を示す斜視図
である。
4 is a perspective view showing a specific structure of the light emitting device shown in FIG.

【図5】本発明のさらに他の一実施例からなる光結合装
置の製造方法を説明するための製造工程図である。
FIG. 5 is a manufacturing process diagram for explaining the manufacturing method of the optical coupling device according to still another embodiment of the present invention.

【図6】プラズマアッシング有り無しに対する光結合装
置の温度サイクル試験による絶縁耐圧不良の発生数の対
比図である。
FIG. 6 is a comparison diagram of the number of occurrences of insulation breakdown voltage defects in a temperature cycle test of an optical coupling device with and without plasma ashing.

【図7】本発明よりなる光結合装置と従来の光結合装置
または提案例との外形サイズの対比図である。
FIG. 7 is a diagram showing the comparison of the external sizes of the optical coupling device according to the present invention and the conventional optical coupling device or the proposed example.

【図8】一般的な光結合装置の外観図である。FIG. 8 is an external view of a general optical coupling device.

【図9】図8の縦断面図である。9 is a vertical cross-sectional view of FIG.

【図10】図8及び図9に示す光結合装置の製造工程図
である。
10 is a manufacturing process diagram of the optical coupling device shown in FIGS. 8 and 9. FIG.

【図11】他の一般的な光結合装置を示す縦断面図であ
る。
FIG. 11 is a vertical cross-sectional view showing another general optical coupling device.

【図12】提案例を示す縦断面図である。FIG. 12 is a vertical sectional view showing a proposed example.

【図13】他の提案例を示す縦断面図である。FIG. 13 is a vertical cross-sectional view showing another proposal example.

【図14】一般例及び提案例の光結合装置の樹脂界面に
おける剥離状態を示す縦断面図である。
FIG. 14 is a vertical cross-sectional view showing a peeled state at the resin interface of the optical coupling device of the general example and the proposed example.

【符号の説明】[Explanation of symbols]

1,2 金属製リードフレーム 3 発光素子 3a 裏面発光ダイオード(発光素子) 4 受光素子 5 透光性絶縁樹脂 6 遮光性絶縁樹脂 7 透光性絶縁樹脂体 8 ガラスエポキシ基材 9 導体パターン 10 樹脂流れ止め枠 11 プラズマ容器 1, 2 Metal lead frame 3 Light emitting element 3a Backside light emitting diode (light emitting element) 4 Light receiving element 5 Light-transmissive insulating resin 6 Light-shielding insulating resin 7 Light-transmissive insulating resin body 8 Glass epoxy base material 9 Conductor pattern 10 Resin flow Stop frame 11 Plasma container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気信号を光信号に変換する発光素子
と、 該光信号を電気信号に変換する受光素子と、 前記発光素子と受光素子との間に設けられ、該発光素子
と受光素子との電気的絶縁及び光パス用の透光性絶縁樹
脂と、 前記発光素子、受光素子及び透光性絶縁樹脂を被覆する
遮光性絶縁樹脂とを備えてなる光結合装置の製造方法に
おいて、 前記発光素子と受光素子とが光学的に結合するよう間に
前記透光性絶縁樹脂を介して対向配置する工程と、 前記透光性絶縁樹脂の表面に、前記遮光性絶縁樹脂との
反応性を高める改質処理を行う工程と、 前記発光素子、受光素子及び透光性絶縁樹脂を前記遮光
性絶縁樹脂にて被覆する工程とを備えてなることを特徴
とする光結合装置の製造方法。
1. A light emitting element for converting an electric signal into an optical signal, a light receiving element for converting the optical signal into an electric signal, and a light emitting element and a light receiving element provided between the light emitting element and the light receiving element. And a light-transmitting insulating resin for electrical insulation and an optical path, and a light-shielding insulating resin that covers the light-emitting element, the light-receiving element, and the light-transmitting insulating resin. A step of arranging the element and the light receiving element so as to be optically coupled to each other with the translucent insulating resin interposed therebetween, and increasing the reactivity with the light shielding insulating resin on the surface of the translucent insulating resin. A method of manufacturing an optical coupling device, comprising: a step of performing a modification treatment; and a step of coating the light emitting element, the light receiving element, and the translucent insulating resin with the light shielding insulating resin.
【請求項2】 前記改質処理は、酸素を有する雰囲気中
で透光性絶縁樹脂表面にプラズマアッシングまたは紫外
線照射を行ってなることを特徴とする請求項1記載の光
結合装置の製造方法。
2. The method for manufacturing an optical coupling device according to claim 1, wherein the modification treatment is performed by plasma ashing or ultraviolet irradiation on the surface of the translucent insulating resin in an atmosphere containing oxygen.
【請求項3】 前記透光性絶縁樹脂および遮光性絶縁樹
脂は共にエポキシ樹脂からなることを特徴とする請求項
2記載の光結合装置の製造方法。
3. The method of manufacturing an optical coupling device according to claim 2, wherein both the light-transmitting insulating resin and the light-shielding insulating resin are made of epoxy resin.
JP25791494A 1994-10-24 1994-10-24 Manufacture of photocoupler Pending JPH08125216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25791494A JPH08125216A (en) 1994-10-24 1994-10-24 Manufacture of photocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25791494A JPH08125216A (en) 1994-10-24 1994-10-24 Manufacture of photocoupler

Publications (1)

Publication Number Publication Date
JPH08125216A true JPH08125216A (en) 1996-05-17

Family

ID=17312952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25791494A Pending JPH08125216A (en) 1994-10-24 1994-10-24 Manufacture of photocoupler

Country Status (1)

Country Link
JP (1) JPH08125216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358535B2 (en) 2003-01-17 2008-04-15 Sharp Kabushiki Kaisha Photo-coupler semiconductor device and production method therefor
CN104916628A (en) * 2014-03-14 2015-09-16 株式会社东芝 Photocoupler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358535B2 (en) 2003-01-17 2008-04-15 Sharp Kabushiki Kaisha Photo-coupler semiconductor device and production method therefor
CN100459172C (en) * 2003-01-17 2009-02-04 夏普株式会社 Photoelectrical coupling semiconductor device and its manufacturing method
CN104916628A (en) * 2014-03-14 2015-09-16 株式会社东芝 Photocoupler
JP2015177044A (en) * 2014-03-14 2015-10-05 株式会社東芝 Optical coupling device

Similar Documents

Publication Publication Date Title
TWI245429B (en) Photosensitive semiconductor device, method for fabricating the same and lead frame thereof
JP5806994B2 (en) Optical coupling device
KR20050071637A (en) Optical sensor package
JPS63102379A (en) Photocoupler or reflected light barrier and manufacture of the same
WO2008093880A1 (en) Semiconductor device and method for manufacturing the same
JPH10144965A (en) Optical semiconductor device and its manufacture
KR101012936B1 (en) Light emitting diode package encapsulated by light transmitting substrate and method for fabricating the same
JP2000232235A (en) Semiconductor device
KR101291092B1 (en) Method of manufacutruing semiconductor device structure
JP2002222992A (en) Led light emitting element and device thereof
JPH08125216A (en) Manufacture of photocoupler
JPH08107167A (en) Semiconductor device
JP2006179718A (en) Blue optical-element package and manufacturing method for optical-element package
JPH06268246A (en) Optically coupled apparatus
JP3523047B2 (en) Optical coupling device and method of manufacturing the same
US20080296520A1 (en) Optical coupling device
JP2015195401A (en) Optical coupling device
KR100725319B1 (en) Method for manufacturing semiconductor device
JP4677653B2 (en) Optical semiconductor device
JP2008124160A (en) Semiconductor device, its manufacturing method and camera module with the same
JPH10284755A (en) Photocoupler
JP2004214498A (en) Optically coupled device
KR20140048178A (en) Method of manufacutruing semiconductor device structure
JP2981355B2 (en) Manufacturing method of optical coupling device
KR940008328B1 (en) Film type package and manufacturing method thereof