JPH0812483A - Horizontal apparatus for manufacturing crystal of oxide superconducting material - Google Patents

Horizontal apparatus for manufacturing crystal of oxide superconducting material

Info

Publication number
JPH0812483A
JPH0812483A JP17184594A JP17184594A JPH0812483A JP H0812483 A JPH0812483 A JP H0812483A JP 17184594 A JP17184594 A JP 17184594A JP 17184594 A JP17184594 A JP 17184594A JP H0812483 A JPH0812483 A JP H0812483A
Authority
JP
Japan
Prior art keywords
heating
temperature
heating zone
oxide superconductor
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17184594A
Other languages
Japanese (ja)
Inventor
Hirohito Goto
博仁 後藤
Hiroshi Yoshioka
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATERUZU KK
Original Assignee
MATERUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATERUZU KK filed Critical MATERUZU KK
Priority to JP17184594A priority Critical patent/JPH0812483A/en
Publication of JPH0812483A publication Critical patent/JPH0812483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a superconducting material having a high quality crystal only in a required direction by dividing one end of a high temperature heating zone into an upper and lower heating zone, inserting a pair of cantilever heating members into each of the upper and lower heating zone from left and right hand side, making the space between each of heating members variable and realizing three-dimensional temperature gradients. CONSTITUTION:A low temperature heating zone A has an upper heating zone 2 and a lower heating zone 2a where same strengths of electrical power are each applied. A high temperature heating zone B is located on its right hand side. A high load density zone is divided in the longitudinal direction and each of the sections is provided with a bar-shaped heating member. The 3rd and the 5th heating member 6, 8 are each placed in each section of the upper heating zone and the 4th and 6th heating member 15, 17 are each placed in each section of the lower heating zone. The spaces between each heating section are made variable and each of the heating sections is independently controlled in terms of temperature. This heating system enables the homogeneous temperature distribution in the electrical furnace in X direction and the lowering of the temperature in the middle part than those of the edge parts, and realizes an ideal temperature distribution. Further, the 1st and the 2nd bar-shaped heating member generating heat of high load density 4, 12 are placed at the left end of the high temperature heating zone B and temperatures of these heating members are controlled independently from each other. The temperature gradients in Y and Z directions are produced by the move of the low temperature heating zone A on a rail 20 and the independent heating in vertical direction in the high temperature heating zone B, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の結晶
を製造する酸化物超電導体結晶製造装置の改良に関する
発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an oxide superconductor crystal production apparatus for producing oxide superconductor crystals.

【0002】[0002]

【従来の技術】従来の酸化物超電導体を製造する装置の
1つとして、図5に示すように、断熱材35aにより形
成されている箱型電気炉装置35があり、この箱型電気
炉装置35により酸化物超電導体を製造する場合には箱
型電気炉装置内部35bに設置されている試料台38に
試料36を置き、その2面直角方向に特殊発熱体37を
配置し、更に、ガス入口40とガス出口41が形成され
ていて、ガスを流すことができるようなうな構造の装置
で製造していた。符号39は熱電対である。このような
箱型電気炉装置35では、試料36の上下方向及び左右
方向での最大温度勾配が、ガスを流した時に、5〜20
℃/cmが限界であり、この装置を用いて酸化物超電導
体を製造する場合、内部温度を1100℃まで上昇し2
0分間保持し、次に1000℃に下げて、870℃まで
1℃/hの速度で冷却することにより製造していた。
2. Description of the Related Art As one of conventional devices for producing an oxide superconductor, there is a box-type electric furnace device 35 formed of a heat insulating material 35a as shown in FIG. When an oxide superconductor is manufactured by 35, the sample 36 is placed on the sample table 38 installed inside the box-type electric furnace device 35b, and the special heating element 37 is arranged in the direction perpendicular to the two surfaces of the sample 36. The inlet 40 and the gas outlet 41 are formed, and the apparatus is manufactured by a device having a structure that allows gas to flow. Reference numeral 39 is a thermocouple. In such a box-type electric furnace device 35, the maximum temperature gradient in the vertical direction and the horizontal direction of the sample 36 is 5 to 20 when the gas is flowed.
C./cm is the limit, and when manufacturing oxide superconductors using this equipment, the internal temperature is raised to 1100.degree.
It was manufactured by holding it for 0 minutes, then lowering it to 1000 ° C., and cooling it to 870 ° C. at a rate of 1 ° C./h.

【0003】この箱型電気炉装置35の欠点は、試料3
6の大きさを変えると、得られる温度勾配が変わり、高
品質でJcの安定した酸化物超電導体結晶を再現性良く
製造することは難しいことであるために装置を大型化す
ることは困難であった。また、他の酸化物超電導体結晶
製造装置も存在しているが、その装置は高温部と低温部
が分離され、高温加熱部も上下に独立し、高温加熱部の
片端部上下に棒状の高負荷密度型発熱体を配置した電気
炉で、この横側には試料駆動機構が設けられている装置
であり、ある温度に設定した中を試料をゆっくり移動す
ることにより、酸化物超電導体結晶を合成るす装置であ
る。このような上述の電気炉の装置では、Y及びZ方向
しか温度勾配が付けられなく、X方向の温度分布は炉芯
管の中心部の温度が高くなり、端部が低くなってしま
い、本来試料の中心部から結晶化させたいが、試料の端
部からも結晶化が起こり、必要な方位の結晶以外に他の
方位の結晶が混入すると言う欠点があった。
The disadvantage of this box-type electric furnace device 35 is that the sample 3
When the size of 6 is changed, the obtained temperature gradient changes, and it is difficult to manufacture a high-quality, stable Jc stable oxide superconductor crystal with good reproducibility. Therefore, it is difficult to upsize the device. there were. Although there are other oxide superconductor crystal production equipment, the equipment separates the high-temperature part and the low-temperature part, and the high-temperature heating part is independent from the top and bottom. An electric furnace in which a load density type heating element is arranged, and a device for driving a sample is provided on the side of the electric furnace.By slowly moving the sample while setting it at a certain temperature, the oxide superconductor crystal can be removed. It is a synthesizer device. In such an electric furnace device as described above, a temperature gradient is provided only in the Y and Z directions, and the temperature distribution in the X direction is such that the temperature of the central portion of the furnace core tube becomes high and the end portions become low, which is originally Although it is desired to crystallize from the central part of the sample, crystallization also occurs from the end part of the sample, and there is a drawback that crystals of other orientations are mixed in addition to the crystal of the required orientation.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上に記述
した各電気炉装置が有する欠点を解決する為に発明され
たものである。本発明は、特に、被加熱物が物性的理由
により、X(左右方向),Y(水平方向),Z(垂直方
向)の三方向に特殊な温度勾配中で処理する必要がある
分野に利用できる装置であり、また、複数個の加熱部の
設定温度を急激な温度勾配から、ある程度任意の温度勾
配までX,Y,Z方向まで作成できる3次元自由温度分
布の装置であるとともに、酸化物超電導体の製造以外に
は、異方性のある酸化物材料や金属間化合物等そして材
料内部で成分の濃度分布を必要とする複合成分を持つ材
料等を製造することができる酸化物超電導体結晶製造装
置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been invented to solve the drawbacks of each electric furnace device described above. INDUSTRIAL APPLICABILITY The present invention is particularly used in a field in which an object to be heated needs to be processed in a special temperature gradient in three directions of X (horizontal direction), Y (horizontal direction) and Z (vertical direction) due to physical properties. In addition to being a device capable of producing a set temperature of a plurality of heating sections from a sudden temperature gradient to a certain arbitrary temperature gradient in the X, Y, and Z directions, it is a device with a three-dimensional free temperature distribution, and an oxide. Other than the production of superconductors, oxide superconductor crystals that can produce anisotropic oxide materials, intermetallic compounds, etc. and materials with complex components that require concentration distribution of the components inside the materials It is intended to provide a manufacturing apparatus.

【0005】[0005]

【課題を解決するための手段】本発明は、課題を解決す
るために、水平方向に酸化物超電導体結晶を製造する酸
化物超電導体結晶製造装置において、加熱部がそれぞれ
長手方向及び上下方向に分割された加熱部をもち、それ
ぞれの加熱部を独立に温度制御することができ、高温加
熱部の片端部上下に片持ち型の高負荷密度型発熱体を左
右方向から一対以上挿入でき、水平方向、垂直方向及び
左右方向の三方向に温度勾配を取ることができる横型酸
化物超電導体結晶製造装置の構成とした。
In order to solve the problems, the present invention is directed to an oxide superconductor crystal manufacturing apparatus for manufacturing oxide superconductor crystals in a horizontal direction, wherein heating parts are respectively provided in the longitudinal direction and in the vertical direction. It has divided heating parts, each heating part can be temperature controlled independently, and one or more cantilever type high load density type heating elements can be inserted from the left and right sides above and below one end of the high temperature heating part, and horizontal The horizontal oxide superconductor crystal manufacturing apparatus has a structure capable of forming temperature gradients in three directions, ie, the vertical direction, the vertical direction, and the horizontal direction.

【0006】[0006]

【実施例】図1は、本発明である横型酸化物超電導体結
晶製造装置の電気炉部の横断面図であり、本装置は、左
側に低温加熱部A(発熱体はカンタルA−1)が配置さ
れており、この低温加熱部Aには上加熱部2と下加熱部
2aがあり、それぞれ別々の加熱部であるが上加熱部2
及び下加熱部2aとも同じ電力が供給される。符号1は
ファイバ−成型型断熱材を示し、符号3は低温電気炉用
制御熱電対を示す。
EXAMPLE FIG. 1 is a cross-sectional view of an electric furnace section of a horizontal oxide superconductor crystal manufacturing apparatus according to the present invention. This apparatus has a low temperature heating section A (heating element is Kanthal A-1) on the left side. The low temperature heating unit A has an upper heating unit 2 and a lower heating unit 2a, which are separate heating units.
Also, the same electric power is supplied to the lower heating unit 2a. Reference numeral 1 indicates a fiber-molding type heat insulating material, and reference numeral 3 indicates a control thermocouple for a low temperature electric furnace.

【0007】一方、右側には、高温加熱部Bが配置され
ており、高負荷密部分には上下2本ずつ4本の片持ちの
加熱体(発熱体はSiC)で、それぞれ一対を温度制御
し、更にその右側には、上下に棒状の加熱体(発熱体
は、SiC)を配置し、温度制御している。即ち、上側
高温加熱部は、第3加熱体6(発熱体はカンタルA−
1)と第5加熱体8(発熱体はカンタルA−1)で構成
され、下側高温加熱部は第4加熱体15(発熱体はカン
タルA−1)と第6加熱体17(発熱体はカンタルA−
1)で構成されている。符号7は第3加熱体用制御用熱
電対、符号9は第5加熱体用制御用熱電対、符号14は
第4加熱体用制御用熱電対、符号16は第6加熱体用制
御用熱電対を示している。
On the other hand, a high temperature heating section B is arranged on the right side, and four cantilevered heating elements (two heating elements in upper and lower portions) (SiC is a heating element) are provided in the high-load dense portion, and each pair is temperature controlled. Further, on the right side thereof, a rod-shaped heating element (heating element is SiC) is arranged vertically to control the temperature. That is, the upper high temperature heating part is the third heating element 6 (the heating element is Kanthal A-
1) and the fifth heating element 8 (heating element is Kanthal A-1), and the lower high-temperature heating section is the fourth heating element 15 (heating element is Kanthal A-1) and the sixth heating element 17 (heating element). Is Kanthal A-
It is composed of 1). Reference numeral 7 is a third heating body control thermocouple, reference numeral 9 is a fifth heating body control thermocouple, reference numeral 14 is a fourth heating body control thermocouple, and reference numeral 16 is a sixth heating body control thermocouple. Shows a pair.

【0008】更に、高温加熱部Bの左側端には、上下に
棒状の第1加熱体高負荷密度発熱体4及び第2加熱体高
負荷密度発熱体12(発熱体はそれぞれSiC)を配置
し、上下の第1加熱体制御用熱電対5及び第2加熱体制
御用熱電対13のフィ−ドバックにより独立に温度制御
できるようになっている。上側の第1加熱体高負荷密度
発熱体4は第1加熱体(高負荷密度発熱体SiC)、下
側の高負荷密度発熱体12は第2加熱体(高負荷密度発
熱体SiC)である。
Further, at the left end of the high temperature heating section B, a rod-shaped first heating element high load density heating element 4 and a second heating element high load density heating element 12 (each heating element is SiC) are arranged vertically. By the feedback of the first heating body controlling thermocouple 5 and the second heating body controlling thermocouple 13, the temperature can be controlled independently. The upper first heating element high-load density heating element 4 is a first heating element (high-load density heating element SiC), and the lower high-load density heating element 12 is a second heating element (high-load density heating element SiC).

【0009】低温加熱部Aは、移動用車18によって移
動用レ−ル20上を移動可能となっている。符号19は
高さを調節するための高さ調整用柱である。高温加熱部
Bは支柱により支えられている。そして、左右の加熱部
間、即ち、低温加熱部Aと高温加熱部B間の間隔は、低
温加熱部Aの下部に取り付けられた移動用車18により
その間隔距離を変えることができる。
The low temperature heating section A is movable on a moving rail 20 by a moving vehicle 18. Reference numeral 19 is a height adjusting column for adjusting the height. The high temperature heating part B is supported by a column. The distance between the left and right heating units, that is, the distance between the low-temperature heating unit A and the high-temperature heating unit B can be changed by the moving vehicle 18 attached to the lower portion of the low-temperature heating unit A.

【0010】図2は、図1中のA−B線に沿った縦断面
図である。即ち、本発明である酸化物超電導体結晶製造
装置の高温加熱部Bの縦断面図を示したものである。図
2に示すように、透明石英製の角型炉芯管10が炉内部
に配置されており、この透明石英角型炉芯管10の内部
には、下側左右に2本の石英製レ−ル11・11aがあ
り、試料台23に乗った試料22が駆動棒21により透
明石英レ−ル11・11aの上を移動できるようになっ
ている。透明石英角型炉芯管10内部には、試料台23
の右端には2か所に穴があり、その穴に石英製駆動軸の
先端にある突起部21aを入れて固定され、駆動軸を保
持している駆動台を駆動する構造である。
FIG. 2 is a vertical sectional view taken along the line AB in FIG. That is, it is a vertical cross-sectional view of the high temperature heating part B of the oxide superconductor crystal manufacturing apparatus of the present invention. As shown in FIG. 2, a transparent quartz square furnace core tube 10 is arranged inside the furnace. Inside the transparent quartz square furnace core tube 10, two quartz trays are provided on the lower left and right sides. There is a rail 11.11a, and the sample 22 placed on the sample table 23 can be moved by the drive rod 21 on the transparent quartz rail 11.11a. Inside the transparent quartz square furnace core tube 10, a sample table 23
Has a hole at two places at the right end thereof, and the protrusion 21a at the tip of the quartz drive shaft is inserted into the hole and fixed, and the drive base holding the drive shaft is driven.

【0011】図3は、本発明である酸化物超電導体結晶
製造装置の試料移動機構を示した図であり、この試料移
動機Cは低温加熱部A及び高温加熱部Bからなる加熱部
本体の右側に設置されるものである。試料台23に差し
込む突起21aが、先端に形成されている透明石英製試
料駆動棒21を高さ調整ネジ26、駆動棒固定ネジ27
を介して駆動機構用レ−ル24に固定されており、レ−
ル用台30の内部に配置されたモ−タ、ギヤ−等の駆動
機構部28の駆動により石英製試料駆動棒21が駆動さ
れ、試料台23を押したり引っ張ることにより、試料2
2を左右に高速又は低速で移動することができる。試料
台23の上に置かれた試料(酸化物超電導体)22は本
装置の温度勾配中2mm/hの速度で移動することによ
り結晶化される。符号25は移動台、符号26は高さ調
整ネジ、符号29はボ−ルネジ部、符号30はレ−ル用
台、符号31は駆動機構台、符号32は架台、符号33
はタイミングベルト、符号34はタイミングプ−リ−で
ある。
FIG. 3 is a view showing a sample moving mechanism of the oxide superconductor crystal manufacturing apparatus according to the present invention. This sample moving machine C is a heating unit main body composed of a low temperature heating unit A and a high temperature heating unit B. It will be installed on the right side. The projection 21a to be inserted into the sample table 23 has the transparent quartz sample drive rod 21 formed at the tip thereof with the height adjusting screw 26 and the drive rod fixing screw 27.
It is fixed to the drive mechanism rail 24 via the
The sample driving rod 21 made of quartz is driven by the driving of the drive mechanism 28 such as a motor and a gear arranged inside the table 30 for the sample, and the sample table 23 is pushed or pulled to thereby obtain the sample 2
2 can be moved left and right at high speed or low speed. The sample (oxide superconductor) 22 placed on the sample table 23 is crystallized by moving at a speed of 2 mm / h in the temperature gradient of this device. Reference numeral 25 is a moving base, reference numeral 26 is a height adjusting screw, reference numeral 29 is a ball screw portion, reference numeral 30 is a rail stand, reference numeral 31 is a drive mechanism base, reference numeral 32 is a mount, and reference numeral 33.
Is a timing belt, and reference numeral 34 is a timing pulley.

【0012】図4は、本発明である酸化物超電導体結晶
製造装置の急温度勾配部の横断面図と温度分布図であ
る。即ち、本発明である酸化物超電導体結晶製造装置を
使用して、低温加熱部Aの温度を600℃に設定し、高
温加熱部Bの第1加熱体4を1200℃、第2加熱体1
2を1090℃、第3加熱体6を1200℃、第4加熱
体15を1128℃、第5加熱体8を1200℃、第6
加熱体17を1150℃に設定したときの長手方向の温
度分布を示したものである。この温度分布図により明ら
かなように、従来の装置では縦断面の中心位置の温度が
高くなってしまう。このために、試料の両端部の温度が
低い部分でサブグレ−ン結晶が生成する。本発明である
酸化物超電導体結晶製造装置では、上記の如く従来の装
置が有する欠点を解消し、中心位置の温度を低くするこ
とができるようになり、その為に両端部からのサブグレ
−ン結晶の生成を抑制することができるようになった。
FIG. 4 is a cross-sectional view and a temperature distribution diagram of a steep temperature gradient portion of the oxide superconductor crystal manufacturing apparatus according to the present invention. That is, using the oxide superconductor crystal manufacturing apparatus of the present invention, the temperature of the low temperature heating part A is set to 600 ° C., the first heating body 4 of the high temperature heating part B is 1200 ° C., and the second heating body 1 is
2 is 1090 ° C., the third heating body 6 is 1200 ° C., the fourth heating body 15 is 1128 ° C., the fifth heating body 8 is 1200 ° C., the sixth
It shows the temperature distribution in the longitudinal direction when the heating element 17 is set to 1150 ° C. As is clear from this temperature distribution diagram, in the conventional device, the temperature at the center position of the vertical section becomes high. For this reason, subgrain crystals are generated at the low temperature portions at both ends of the sample. In the oxide superconductor crystal manufacturing apparatus of the present invention, the drawbacks of the conventional apparatus as described above can be solved, and the temperature at the center position can be lowered. Therefore, the sub-grains from both ends can be reduced. It became possible to suppress the formation of crystals.

【0013】この実施例では、高温加熱部Bと低温加熱
部Aの間は空冷している構造であるが、この間に強制的
にガス冷却及び水冷用の下降部品を挿入すれば冷却効果
を上げることができ、更に大きな温度勾配を得ることが
できる。また、高温加熱部の発熱体4・6・8・12・
15・17をSiCからLaCrO系やMoSi系に変
えることもできる。
In this embodiment, the high temperature heating section B and the low temperature heating section A are air-cooled, but if the descending parts for gas cooling and water cooling are forcibly inserted between them, the cooling effect is improved. It is possible to obtain a larger temperature gradient. In addition, the heating element of the high temperature heating unit 4, 6, 8, 12,
It is also possible to change 15 and 17 from SiC to LaCrO type or MoSi type.

【0014】本発明では、高温加熱部Bの片端の上下部
を分離し、それぞれに片持ちの加熱体を1対2本を左右
から差し込み、この間隔を変えられる構造にし、電気炉
内部のX方向の温度分布を均一にし、更に、中央部の温
度を下げる理想的な分布にすることができるようになっ
た。
In the present invention, the upper and lower portions of one end of the high temperature heating section B are separated, and one to two cantilevered heating bodies are inserted into each of the left and right sides so that the distance can be changed. The temperature distribution in the direction can be made uniform, and the temperature distribution in the central portion can be lowered to an ideal distribution.

【0015】これでX,Y,Z方向に理想的な温度分布
が得られる横型酸化物超電導体結晶製造装置とすること
ができる。この様子は、図1に本装置の横断面図を、図
2に高温加熱部Bの片端の上下部を分離した部分の縦断
面図を示している構造から伺うことができる。
This makes it possible to provide a lateral oxide superconductor crystal manufacturing apparatus which can obtain an ideal temperature distribution in the X, Y and Z directions. This state can be seen from the structure in which a horizontal sectional view of the present apparatus is shown in FIG. 1 and a vertical sectional view of a portion where the upper and lower parts of one end of the high temperature heating portion B are separated from each other is shown in FIG.

【0016】本発明に関わる横型酸化物超電導体結晶製
造装置の構造は、Y方向の温度勾配は、低温加熱部Aと
高温加熱Bに分離し、その間隔を変えることにより得ら
れ、Z方向の温度勾配は高温加熱部Bの上下方向を独立
にすることにより得られ、X方向の温度勾配は高温加熱
部Bの加熱体を左右から別々の片持ち加熱体を配置し、
その間隔を変えられる構造で、それぞれ独立化された加
熱体を独立に一定の関係で温度設定制御することによ
り、Y,Z方向のみならず結晶化部分でのX方向に中心
部分の温度が低い理想的な温度分布を得ることができる
のである。
In the structure of the lateral oxide superconductor crystal manufacturing apparatus according to the present invention, the temperature gradient in the Y direction is obtained by separating the low temperature heating section A and the high temperature heating B and changing the distance between them. The temperature gradient is obtained by making the upper and lower directions of the high temperature heating section B independent, and the temperature gradient in the X direction is such that the heating elements of the high temperature heating section B are arranged in separate cantilevered heating elements from the left and right,
The temperature of the central portion is low not only in the Y and Z directions but also in the X direction in the crystallized portion by controlling the temperature setting of the independent heating bodies independently with a constant relationship with the structure that can change the interval. It is possible to obtain an ideal temperature distribution.

【0017】本横型酸化物超電導体結晶製造装置で得ら
れた最高温度勾配で、Y方向で最大温度勾配が80℃/
cm、Z方向で50℃/cm、X方向で外から中心に向
かって±3℃/cmを得ることができた。高品質な酸化
物超電導体を製造するにあたり、この3方向の温度勾配
が威力を発揮する。
The maximum temperature gradient obtained by the present horizontal oxide superconductor crystal manufacturing apparatus is 80 ° C./maximum temperature gradient in the Y direction.
cm, 50 ° C./cm in the Z direction, and ± 3 ° C./cm from the outside to the center in the X direction. When manufacturing a high-quality oxide superconductor, the temperature gradients in these three directions are effective.

【0018】本横型酸化物超電導体結晶製造装置の温度
勾配中の試料台23の上に試料22を置き、各加熱部A
・Bの温度をそれぞれ決められた温度に設定し、温度を
上昇し、一定温度に保持した後にゆっくりとした速度で
降温することにより、酸化物超電導体結晶を合成でき
る。
The sample 22 is placed on the sample table 23 in the temperature gradient of the present horizontal oxide superconductor crystal manufacturing apparatus, and each heating unit A
The oxide superconductor crystal can be synthesized by setting the temperature of B to a predetermined temperature, increasing the temperature, maintaining the temperature at a constant temperature, and then decreasing the temperature at a slow rate.

【0019】次に、この本横型酸化物超電導体結晶製造
装置の横側に試料駆動機構Cを配置し(図4を参照)、
本製造装置内で得られた温度勾配中で試料台23を2m
m/h等の低速度で移動すれば、高品質で大型で長尺な
超電導相と非超電導相の2相を有する酸化物超電導体結
晶を製造することができる。
Next, a sample driving mechanism C is arranged on the lateral side of the present horizontal oxide superconductor crystal manufacturing apparatus (see FIG. 4),
In the temperature gradient obtained in this manufacturing apparatus, the sample table 23 is moved to 2 m.
By moving at a low speed such as m / h, it is possible to manufacture a high-quality, large-sized and long oxide superconductor crystal having two phases of a superconducting phase and a non-superconducting phase.

【0020】又、高性能な酸化物超電導体結晶を製造す
る方法に置いて、育成する時の雰囲気を合成する材料に
適合する酸素濃度に制御できるように、透明石英角型炉
芯管10の両端部をシ−ル構造にし、真空引き、窒素ガ
ス及び酸素ガス等を流せる構造にしている。即ち、図1
に示すように、シ−ルフランジ10a・10cを両端部
に設けOリング10b・10dによりシ−ル構造にされ
ているのである。
In addition, in the method for producing a high-performance oxide superconductor crystal, the transparent quartz square furnace core tube 10 is controlled so that the atmosphere during growth can be controlled to an oxygen concentration suitable for the material to be synthesized. Both ends have a seal structure so that a vacuum can be drawn and nitrogen gas and oxygen gas can flow. That is, FIG.
As shown in FIG. 2, seal flanges 10a and 10c are provided at both ends to form a seal structure by O-rings 10b and 10d.

【0021】[0021]

【発明の効果】本発明は以上に記述した構成であるから
以下の効果が得られる。第1に、高密度温度部に左右別
々に片持ちの発熱体を挿入し、その間隔を変えることに
より、長手方向、上下方向及びX方向に温度分布を有す
る電気炉を製作でき、最大温度勾配がY方向で80℃/
cm,Z方向で40℃/cm、X方向で3℃/cmを得
ることができた。第2に、各加熱部の設定温度を任意に
変えることにより、0〜80℃/cmの三方向の温度分
布を得る事ができる万能型電気炉であり、各種酸化物超
電導体の組成に応じて、本装置より得られた適当な温度
及び温度勾配を選択することにより、高品質な酸化物超
電導体結晶を製造することができるとの効果が得られ
る。第3に、本発明を使用して、超電導酸化物YBaC
uOを製造すると、2相結晶を安定して製造することが
でき、直方体の形状で40W×20H×40Lmmの大
きさの結晶が得られ、更に装置を大型化にすれば、更に
大きな結晶を連続的に得ることができるとの効果が得ら
れる。第4に、超電導現象を利用し応用する製品を製作
するに当たり、迅速にかつ廉価で高特性の安定した多量
の超電導酸化物を得ることができるとの効果がある。第
5に、ある程度自由な形状、例えば角型、円形上、リン
グ状等の酸化物超電導体を製造することができるととも
に、長尺な酸化物超電導体結晶を製造することができる
との効果が得られる。第6に、種子付けをすることがで
きるるとともに、酸化物超電導体以外の異相及び異方性
等を含む結晶体を製造する場合に応用することができる
との効果が得られる。
Since the present invention has the configuration described above, the following effects can be obtained. First, by inserting cantilevered heating elements into the high-density temperature section separately on the right and left sides, and changing the intervals, an electric furnace having temperature distribution in the longitudinal direction, the vertical direction, and the X direction can be manufactured, and the maximum temperature gradient is obtained. Is 80 ° C in the Y direction
It was possible to obtain 40 ° C./cm in the cm and Z directions and 3 ° C./cm in the X direction. Secondly, it is a universal electric furnace that can obtain a temperature distribution in three directions of 0 to 80 ° C./cm by arbitrarily changing the set temperature of each heating section, depending on the composition of various oxide superconductors. By selecting an appropriate temperature and temperature gradient obtained from this apparatus, it is possible to obtain the effect that a high-quality oxide superconductor crystal can be manufactured. Third, using the present invention, the superconducting oxide YBaC
When uO is manufactured, a two-phase crystal can be stably manufactured, and a rectangular parallelepiped crystal having a size of 40 W × 20 H × 40 L mm can be obtained. If the apparatus is further enlarged, a larger crystal can be continuously formed. The effect of being able to obtain it is obtained. Fourthly, in manufacturing a product to which the superconducting phenomenon is applied, there is an effect that a large amount of a stable superconducting oxide having high characteristics can be obtained quickly, inexpensively and with high characteristics. Fifth, it is possible to produce an oxide superconductor having a free shape to some extent, for example, a rectangular shape, a circular shape, a ring shape, and the like, and to produce a long oxide superconductor crystal. can get. Sixthly, an effect is obtained that seeding can be carried out and the present invention can be applied to the case of producing a crystal body containing a different phase and anisotropy other than the oxide superconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明である酸化物超電導体結晶製造装置の電
気炉部の横断面図。
FIG. 1 is a cross-sectional view of an electric furnace portion of an oxide superconductor crystal manufacturing apparatus according to the present invention.

【図2】本発明である酸化物超電導体結晶製造装置の高
温加熱部の縦断面図。
FIG. 2 is a vertical cross-sectional view of a high temperature heating unit of the oxide superconductor crystal manufacturing apparatus according to the present invention.

【図3】本発明である酸化物超電導体結晶製造装置の移
動機構図。
FIG. 3 is a movement mechanism diagram of an oxide superconductor crystal manufacturing apparatus according to the present invention.

【図4】本発明である酸化物超電導体結晶製造装置の急
温度勾配部の横断面図と温度分布図。
FIG. 4 is a cross-sectional view and a temperature distribution diagram of a steep temperature gradient portion of the oxide superconductor crystal manufacturing apparatus according to the present invention.

【図5】公知の酸化物超電導体結晶製造装置の炉部の縦
断面図。
FIG. 5 is a vertical sectional view of a furnace portion of a known oxide superconductor crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 ファイバ−成型型断熱材 2 低温電気炉部 3 低温電気炉用制御熱電対 4 第1加熱体(高負荷密度発熱体 SiC) 5 第1加熱体制御用熱電対 6 第3加熱体(カンタルA−1) 7 第3加熱体制御用熱電対 8 第5加熱体(カンタルA−1) 9 第5加熱体制御用熱電対 10 透明石英角型炉芯管 10a シ−ルフランジ 10b Oリング 10c シ−ルフランジ 10d Oリング 11 石英製レ−ル 12 第2加熱体(高負荷密度発熱体 SiC) 13 第2加熱体制御用熱電対 14 第4加熱体用制御用熱電対 15 第4加熱体(カンタルA−1) 16 第6加熱体制用御用熱電対 17 第6加熱体(カンタルA−1) 18 移動用車 19 高さ調整用支柱 20 移動用レ−ル 21 石英製試料駆動棒 22 試料(酸化物超電導体) 23 試料台 24 駆動機構用レ−ル 25 移動台 26 高さ調整ネジ 27 駆動棒固定ネジ 28 モ−タ−・ギヤ−等駆動機構部 29 ボ−ルネジ部 30 レ−ル用台 31 駆動機構台 32 架台 33 タイミングベルト 34 タイミングプ−リ− 35 箱型電気炉装置 35a 断熱材 35b 箱型電気炉装置内 36 試料 37 発熱体 38 試料台 39 熱電対 40 ガス入口 41 ガス出口 DESCRIPTION OF SYMBOLS 1 Fiber-molding type heat insulating material 2 Low temperature electric furnace part 3 Low temperature electric furnace control thermocouple 4 1st heating body (high load density heating element SiC) 5 1st heating body control thermocouple 6 3rd heating body (Kantal A- 1) 7 3rd heating body control thermocouple 8 5th heating body control (kanthal A-1) 9 5th heating body control thermocouple 10 Transparent quartz square furnace core tube 10a Seal flange 10b O-ring 10c Seal flange 10d O Ring 11 Quartz rail 12 Second heating element (high load density heating element SiC) 13 Second heating element control thermocouple 14 Fourth heating element control thermocouple 15 Fourth heating element (Kanthal A-1) 16 6th heating system control thermocouple 17 6th heating element (kanthal A-1) 18 Moving car 19 Height adjusting support column 20 Moving rail 21 Quartz sample drive rod 22 Sample (oxide superconductor) 23 Sample table 2 Drive mechanism rail 25 Moving base 26 Height adjusting screw 27 Drive rod fixing screw 28 Motor / gear etc. drive mechanism part 29 Ball screw part 30 Rail base 31 Drive mechanism base 32 Frame 33 Timing Belt 34 Timing pulley 35 Box-type electric furnace device 35a Heat insulating material 35b Box-type electric furnace device 36 Sample 37 Heating element 38 Sample stage 39 Thermocouple 40 Gas inlet 41 Gas outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水平方向に酸化物超電導体結晶を製造す
る酸化物超電導体結晶製造装置において、加熱部がそれ
ぞれ長手方向及び上下方向に分割された加熱部をもち、
それぞれの加熱部を独立に温度制御することができ、高
温加熱部の片端部上下に片持ち型の高負荷密度型発熱体
を左右方向から一対以上挿入でき、水平方向、垂直方向
及び左右方向の三方向に温度勾配を取ることができる横
型酸化物超電導体結晶製造装置。
1. An oxide superconductor crystal production apparatus for producing an oxide superconductor crystal in a horizontal direction, wherein the heating section has heating sections divided in a longitudinal direction and a vertical direction, respectively.
The temperature of each heating part can be controlled independently, and one or more cantilever type high load density type heating elements can be inserted from the left and right above and below one end of the high temperature heating part. Horizontal oxide superconductor crystal manufacturing equipment that can take temperature gradients in three directions.
【請求項2】 透明石英製炉芯管の出入口に試料を移動
することができる移動機構も設けた請求項1記載の横型
酸化物超電導体結晶製造装置。
2. The apparatus for producing a horizontal oxide superconductor crystal according to claim 1, further comprising a moving mechanism capable of moving the sample at the entrance and exit of the transparent quartz furnace core tube.
【請求項3】 透明石英製炉芯管の出入口をシ−ル構造
にするとともに、真空引き及びガスを置換できる構造と
したことを特徴とする請求項1又は2記載の横型酸化物
超電導体結晶製造装置。
3. The horizontal oxide superconductor crystal according to claim 1, wherein the inlet and outlet of the transparent quartz furnace core tube have a seal structure and a structure capable of evacuating and replacing gas. Manufacturing equipment.
JP17184594A 1994-06-30 1994-06-30 Horizontal apparatus for manufacturing crystal of oxide superconducting material Pending JPH0812483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17184594A JPH0812483A (en) 1994-06-30 1994-06-30 Horizontal apparatus for manufacturing crystal of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17184594A JPH0812483A (en) 1994-06-30 1994-06-30 Horizontal apparatus for manufacturing crystal of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH0812483A true JPH0812483A (en) 1996-01-16

Family

ID=15930840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17184594A Pending JPH0812483A (en) 1994-06-30 1994-06-30 Horizontal apparatus for manufacturing crystal of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH0812483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706249B1 (en) * 2005-06-23 2007-04-12 삼성전자주식회사 Non-volatile memory device having fin shaped active region and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706249B1 (en) * 2005-06-23 2007-04-12 삼성전자주식회사 Non-volatile memory device having fin shaped active region and method of fabricating the same

Similar Documents

Publication Publication Date Title
US3234012A (en) Method for remelting a rod of crystallizable material by crucible-free zonemelting
US5116456A (en) Apparatus and method for growth of large single crystals in plate/slab form
Chani et al. Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique
EP1259663B1 (en) Method and device for growing large-volume oriented monocrystals
US3206286A (en) Apparatus for growing crystals
US2753280A (en) Method and apparatus for growing crystalline material
DE102020111456B4 (en) Device and method for heating several crucibles
JPH0812483A (en) Horizontal apparatus for manufacturing crystal of oxide superconducting material
JP3592467B2 (en) Superconducting magnet for single crystal pulling device
JP3526319B2 (en) Oxide superconductor manufacturing equipment
Borodin et al. Local shaping technique and new growth apparatus for complex sapphire products
Al-Alamy et al. Applications of the temperature oscillation method to the growth of layer compounds by iodine vapour transport
DE3532142A1 (en) METHOD FOR MELTING AND DIRECTLY FIXING METALS
JP2933517B2 (en) Single crystal growth equipment
JPS6111914B2 (en)
JPH06294585A (en) Vertical steep temperature-gradient type electric furnace
US4324610A (en) Method for the controlled melting of semiconductor bodies
JPS6033297A (en) Pulling device for single crystal semiconductor
RU1798394C (en) Method of crystalline calcium fluoride preparation
JP3673826B2 (en) Method for producing bismuth 2212 superconductor single crystal
Tien et al. A floating zone single crystal growing apparatus
SU1733515A1 (en) Method for making monocrystals of high-temperature superconductors
US5369090A (en) Process for producing bi-based oxide superconductor single crystals
King et al. The combination of electrotransport and zone refining techniques for the growth and purification of metallic crystals
JPH05294775A (en) Device for solidifying doped electrically conducting material and continuously checking dopant content of the same