JPH0812462A - Electroconductive ceramic, its production and use - Google Patents

Electroconductive ceramic, its production and use

Info

Publication number
JPH0812462A
JPH0812462A JP6140285A JP14028594A JPH0812462A JP H0812462 A JPH0812462 A JP H0812462A JP 6140285 A JP6140285 A JP 6140285A JP 14028594 A JP14028594 A JP 14028594A JP H0812462 A JPH0812462 A JP H0812462A
Authority
JP
Japan
Prior art keywords
ceramic
silicon carbide
nitrogen
porosity
electroconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140285A
Other languages
Japanese (ja)
Inventor
Mitsushige Ogawa
充茂 小川
Koji Nishimura
浩二 西村
Toshikatsu Mitsunaga
敏勝 光永
Hiroshi Isozaki
啓 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP6140285A priority Critical patent/JPH0812462A/en
Publication of JPH0812462A publication Critical patent/JPH0812462A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide electroconductive ceramic suitable as a ceramic filter material having improved heat resistance and oxidation resistance. CONSTITUTION:This electroconductlve ceramic comprises a porous beta type silicon carbide containing 1-5wt.% of nitrogen and/or calculated as nitrogen of total of nitrides and having <=10OMEGA specific resistance. The electroconductive ceramic is produced by blending silicon carbide powder with water, a deflocculant, an organic binder and an organic blowing agent to prepare a blowing slurry, casting into a mold having water absorption properties, molding, drying/de- fatting and baking under >=5kg/cm<2> nitrogen gas pressure at >=2,000 deg.C. A ceramic filter comprises the electroconductive ceramic having 5-300mum pore diameter and 30-90 % porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性セラミック特に
ディーゼルエンジン等から排出される可燃性微粒子(パ
ティキュレート)を捕集し焼却を行うフィルタとして好
適な導電性セラミックとその製造方法及び用途に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive ceramic, particularly a conductive ceramic suitable as a filter for collecting and incinerating combustible fine particles (particulates) discharged from a diesel engine or the like, a method for producing the same and a use thereof. .

【0002】[0002]

【従来の技術】従来、パティキュレートを補集するフィ
ルタとしては、一般にコーディエライト等の低熱膨張性
セラミックが使用されている。このようなフィルタは、
一定量の濾過を行うと圧力損失が増大し捕集効率が低下
するので補集したパティキュレートを定期的に焼却しフ
ィルタを再生している。
2. Description of the Related Art Conventionally, a low thermal expansion ceramic such as cordierite is generally used as a filter for collecting particulates. Such filters are
Since a certain amount of filtration increases the pressure loss and reduces the collection efficiency, the collected particulates are incinerated periodically to regenerate the filter.

【0003】フィルタの再生方法としては、バーナの燃
焼ガスをフィルタに噴射しその燃焼熱でパティキュレー
トを焼却する方法、フィルタにニクロム線ヒータあるい
は発熱金属層を組み合わせて通電加熱しパティキュレー
トを焼却する方法がある。しかしながら、これらの方法
はいずれも外部からフィルタを直接加熱するものである
ため、捕集されたパティキュレートの燃焼に伴って局所
的な発熱と大きな温度勾配を生じ、フィルタが熱応力割
れや溶損割れを起こした。また、外部加熱装置等の特殊
な装置を取り付ける必要があったのでコンパクト化が困
難であった。
As a method of regenerating the filter, a combustion gas of a burner is injected into the filter and the particulate heat is incinerated, or a nichrome wire heater or a heat-generating metal layer is combined with the filter to electrically heat the particulate to incinerate the particulate. There is a way. However, since all of these methods directly heat the filter from the outside, local heat generation and a large temperature gradient are generated due to the combustion of the collected particulates, and the filter is subject to thermal stress cracking and melting loss. It caused a crack. Further, it is difficult to make the device compact because it is necessary to attach a special device such as an external heating device.

【0004】そこで、近年、コンパクトで現存の装置を
大きく変更することなく捕集されたパティキュレートを
効率的に焼却する方法として、フィルタそのものを発熱
体とする方法が検討されている。この方法で使用される
フィルタ材質は、炭化珪素、珪化モリブデン、炭化チタ
ニウムあるいはランタンクロマイトを主成分とした導電
性セラミックである(特開昭58−119317号公
報、特開平2−42112号公報等)。
Therefore, in recent years, as a method for efficiently incinerating the collected particulates without largely changing the existing equipment, a method using a filter itself as a heating element has been studied. The filter material used in this method is a conductive ceramic containing silicon carbide, molybdenum silicide, titanium carbide or lanthanum chromite as a main component (Japanese Patent Laid-Open No. 58-119317, Japanese Patent Laid-Open No. 42112/1990, etc.). .

【0005】しかしながら、これらの導電性セラミック
であってもその耐熱性が小さいので熱応力割れが発生す
る。しかも、非酸化物系のセラミックでは気孔率を高く
してパティキュレートの補集効率を高めようとすると耐
酸化性が低下し容易に導電性が失われる問題があった。
However, even these conductive ceramics have low heat resistance, so that thermal stress cracking occurs. Moreover, in non-oxide ceramics, there is a problem that if the porosity is increased to increase the particulate collection efficiency, the oxidation resistance is lowered and the conductivity is easily lost.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、以上
の問題を解消し、耐熱性と耐酸化性を向上させ、セラミ
ックフィルタ材質として好適な導電性セラミックとその
製造方法及びその導電性セラミックで構成されたセラミ
ックフィルタを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, improve heat resistance and oxidation resistance, and use a conductive ceramic suitable as a ceramic filter material, a method for producing the same, and the conductive ceramic. It is to provide a ceramic filter composed of.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、窒
素及び/又は窒化物の合計を窒素分として1〜5重量%
含み、室温比抵抗10Ωcm以下である多孔質β型炭化
珪素焼結体からなることを特徴とする導電性セラミッ
ク、炭化珪素粉末、水、解膠剤、有機バインダー及び有
機系発泡剤を混合して発泡スラリーを調製し、それを吸
水性のある型で流し込み成形してから乾燥・脱脂し、窒
素ガス圧5kg/cm2 以上、温度2000℃以上で焼
成することを特徴とする導電性セラミックの製造方法、
及び気孔径5〜300μm、気孔率30〜90%である
上記導電性セラミックで構成されてなることを特徴とす
るセラミックフィルタである。
That is, according to the present invention, the total of nitrogen and / or nitride is 1 to 5% by weight as a nitrogen content.
A conductive ceramic comprising a porous β-type silicon carbide sintered body having a room temperature specific resistance of 10 Ωcm or less, silicon carbide powder, water, a deflocculant, an organic binder and an organic foaming agent. Production of a conductive ceramic characterized in that a foamed slurry is prepared, poured into a water absorbing mold, molded, dried and degreased, and fired at a nitrogen gas pressure of 5 kg / cm 2 or more and a temperature of 2000 ° C. or more. Method,
And a ceramic filter composed of the conductive ceramic having a pore diameter of 5 to 300 μm and a porosity of 30 to 90%.

【0008】以下、更に詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0009】炭化珪素焼結体は、一般にα型又はβ型の
炭化珪素粉末をB−C系焼結助剤を用い常圧焼結又はホ
ットプレス焼結によって製造されている。この場合、β
型炭化珪素粉末を2000℃以上の高温で焼成して炭化
珪素焼結体を製造すると高温安定型のα型炭化珪素とな
るので、従来より研削材、耐火材、セラミックフイルタ
等の用途に供されているのは主としてα型炭化珪素焼結
体であり、β型炭化珪素焼結体については殆どこれらの
用途に供されることはなかった。
The silicon carbide sintered body is generally produced by pressureless sintering or hot press sintering of α-type or β-type silicon carbide powder using a BC sintering aid. In this case β
When a silicon carbide powder is fired at a high temperature of 2000 ° C or higher to produce a silicon carbide sintered body, it becomes a high-temperature stable α-type silicon carbide. Therefore, it has been conventionally used for abrasives, refractory materials, ceramic filters, etc. This is mainly the α-type silicon carbide sintered body, and the β-type silicon carbide sintered body has hardly been used for these applications.

【0010】しかしながら、β型炭化珪素焼結体にはα
型炭化珪素焼結体にはみられない導電性に優れるという
特性がある。この特性は、特にセラミックフイルタにと
って好都合なものであるが、添加された焼結助剤の影響
を強く受けてその導電性が打ち消されてしまい室温比抵
抗10Ωcm以下の導電性を示さなくなる。
However, the β-type silicon carbide sintered body has α
It has a characteristic that it is excellent in conductivity, which is not found in the type silicon carbide sintered body. This characteristic is particularly advantageous for a ceramic filter, but its conductivity is canceled by being strongly influenced by the added sintering aid, and the room temperature resistivity does not exhibit conductivity of 10 Ωcm or less.

【0011】このような現象をなくするには、B−C系
焼結助剤等の導電性を低下させる物質を添加しないで炭
化珪素粉末を焼成すればよいが、炭化珪素粉末は非常に
難焼結物質であるので得られた焼結体は著しく多孔質と
なる。この多孔質もセラミックフイルタにとって好都合
な条件であるが耐酸化性が著しく低下し、セラミックフ
イルタ等の用途には不適当となる。
In order to eliminate such a phenomenon, the silicon carbide powder may be fired without adding a substance that lowers the conductivity such as a B—C type sintering aid, but the silicon carbide powder is very difficult. Since it is a sintered substance, the obtained sintered body becomes remarkably porous. This porosity is also a favorable condition for a ceramic filter, but its oxidation resistance is markedly reduced, making it unsuitable for applications such as a ceramic filter.

【0012】本発明の導電性セラミックは、多孔質β型
炭化珪素焼結体が有する導電性を著しく損なわせること
なく室温比抵抗10Ωcm以下を維持し、窒素及び/又
は窒化物の合計を窒素分として1〜5重量%含ませるこ
とによって耐酸化性を改善させたものである。
The conductive ceramic of the present invention maintains a room temperature specific resistance of 10 Ωcm or less without significantly impairing the conductivity of the porous β-type silicon carbide sintered body, and makes the total nitrogen content and / or nitride content be nitrogen content. The content of 1 to 5% by weight improves the oxidation resistance.

【0013】本発明において、β型炭化珪素焼結体のβ
型結晶相の割合は100%である必要はなく60%もあ
れば十分である。残りはα型結晶相の多形2H、4H、
6H等である。
In the present invention, the β of the β-type silicon carbide sintered body is
The proportion of the type crystal phase does not have to be 100%, and 60% is sufficient. The rest are polymorphs of α type crystal phase 2H, 4H,
6H or the like.

【0014】本発明において、窒素及び/又は窒化物の
合計を窒素分として1〜5重量%の範囲に限定したの
は、1重量%未満では耐酸化性の改善効果が十分でなく
なり、また5重量%をこえると窒化珪素等の絶縁相とな
る化合物が多くなって導電性が低下することによる。こ
のような窒素及び/又は窒化物は、粒界相又は粒内に固
溶あるいは単独、更には窒化珪素、炭窒化珪素化物等の
化合物として存在する。
In the present invention, the total amount of nitrogen and / or nitride is limited to the range of 1 to 5% by weight as the nitrogen content. If the amount is less than 1% by weight, the effect of improving the oxidation resistance is not sufficient, and 5 This is because if the content exceeds 50% by weight, the amount of the compound that becomes an insulating phase such as silicon nitride increases and the conductivity decreases. Such nitrogen and / or nitride exists as a solid solution or alone in the grain boundary phase or in the grains, or as a compound such as silicon nitride or silicon carbonitride.

【0015】本発明の導電性セラミックの導電性の程度
としては、室温比抵抗10Ωcm以下であり、これをこ
えると例えばセラミックフイルタ等の発熱体としての機
能が低下する。また、多孔質の程度については、気孔率
30〜90%程度であることが望ましい。
The conductive ceramic of the present invention has a room temperature specific resistance of 10 Ωcm or less, and beyond this, the function as a heating element such as a ceramic filter deteriorates. The degree of porosity is preferably about 30 to 90%.

【0016】本発明の導電性セラミックの用途として
は、セラミックフィルタ、ダクトヒータ、大型ドライヤ
ーの熱源に使用される熱風発生機用ヒータ等種々ある。
これらの用途の中で、多孔質の程度をセラミックフィル
タ機能として最適な気孔径5〜300μm、気孔率30
〜90%にしたのが請求項3の発明である。
The conductive ceramic of the present invention has various uses such as a ceramic filter, a duct heater, and a heater for a hot air generator used as a heat source for a large dryer.
Among these applications, the degree of porosity is optimal as a ceramic filter function, with a pore size of 5 to 300 μm and a porosity of 30.
According to the invention of claim 3, the content is set to 90%.

【0017】すなわち、セラミックフィルタの気孔径が
5μm未満では目詰まりが顕著になり短時間で圧力損失
が大きくなる。一方、気孔径が300μmをこえるとパ
ティキュレートの捕集効率が低下しフィルター機能を果
たさなくなる。また、気孔率が30%よりも小さいと圧
力損失が大きくなり、90%をこえると機械的強度が低
下する。
That is, when the pore diameter of the ceramic filter is less than 5 μm, clogging becomes remarkable and pressure loss increases in a short time. On the other hand, if the pore diameter exceeds 300 μm, the particulate collection efficiency decreases and the filter function is not fulfilled. If the porosity is less than 30%, the pressure loss increases, and if it exceeds 90%, the mechanical strength decreases.

【0018】次に、本発明の導電性セラミックの製造方
法について説明すると、炭化珪素粉末原料としては、α
型、β型のいずれをも使用することができ、純度90%
以上、比表面積5m2 /g以上であることが好ましい。
Next, the method for producing the conductive ceramic of the present invention will be described. As the silicon carbide powder raw material, α
Both type and β type can be used with a purity of 90%
As described above, the specific surface area is preferably 5 m 2 / g or more.

【0019】スラリー調合の一例を示せば、炭化珪素粉
末100部(部は重量部。以下同じ)に対し、水15〜
30部、解膠剤0.1〜5部、有機バインダー1〜5部
及び有機系発泡剤0.1〜3部である。
As an example of the slurry preparation, 15 parts of water to 100 parts of silicon carbide powder (parts are parts by weight; the same applies hereinafter).
30 parts, peptizer 0.1 to 5 parts, organic binder 1 to 5 parts, and organic foaming agent 0.1 to 3 parts.

【0020】解膠剤としては、ポリカルボン酸アンモニ
ウム、ポリアクリル酸アンモニウム、アクリル酸エステ
ル共重合体、トリメチルアミン等、有機バインダーとし
ては、アクリル系ポリマー、メチルセルロース、ポリビ
ニルアルコール、ポリオレフィン等のポリマー又はオリ
ゴマー等、また有機系発泡剤としては、ラウリル酸塩、
ステアリン酸塩、カプリン酸塩、パルミチン酸塩等のア
ルキル酸塩系発泡剤が使用される。
As the deflocculant, ammonium polycarboxylate, ammonium polyacrylate, acrylic acid ester copolymer, trimethylamine, etc., and as the organic binder, acrylic polymer, methyl cellulose, polyvinyl alcohol, polyolefin or other polymer or oligomer, etc. As the organic foaming agent, lauryl acid salt,
Alkylate-based foaming agents such as stearate, caprate and palmitate are used.

【0021】得られたスラリーは石膏型等の吸水性のあ
る型材に流し込み成形した後それを乾燥・脱脂し焼成す
ることによって本発明の導電性セラミックを製造するこ
とができる。
The obtained slurry can be cast into a water-absorptive mold material such as a gypsum mold, and then molded, dried, degreased and fired to produce the conductive ceramic of the present invention.

【0022】乾燥は、温度100℃以下の温風乾燥、遠
赤外線乾燥等で行われ、また脱脂は空気等の雰囲気下、
温度400〜500℃程度で30分以上で行われる。
Drying is performed by warm air drying at a temperature of 100 ° C. or lower, far infrared ray drying, etc. Degreasing is performed in an atmosphere such as air.
It is carried out at a temperature of about 400 to 500 ° C. for 30 minutes or more.

【0023】焼成は、成形体を5kg/cm2 以上の窒
素加圧下、温度2000℃以上で行われる。窒素加圧が
5kg/cm2 未満ではβ型炭化珪素の安定化と窒素分
を1%以上含ませることが困難となる。窒素加圧の上限
については特に制限はないが耐圧容器等の設備の面から
30kg/cm2 が望ましい。また、焼成温度が200
0℃未満では炭化珪素粉末原料がα型炭化珪素である場
合、β型炭化珪素に転移させることが難しくなり室温比
抵抗10Ωcm以下の焼結体を製造することが困難とな
る。焼成温度の上限については特に制限はないが耐熱容
器等の設備の面から2300℃が望ましい。
The firing is carried out at a temperature of 2000 ° C. or higher under a nitrogen pressure of 5 kg / cm 2 or higher for the molded body. If the nitrogen pressure is less than 5 kg / cm 2 , it becomes difficult to stabilize the β-type silicon carbide and to contain a nitrogen content of 1% or more. The upper limit of nitrogen pressurization is not particularly limited, but is preferably 30 kg / cm 2 from the viewpoint of equipment such as a pressure vessel. Also, the firing temperature is 200
When the temperature is lower than 0 ° C., when the silicon carbide powder raw material is α-type silicon carbide, it is difficult to transfer to β-type silicon carbide, and it becomes difficult to manufacture a sintered body having a room temperature specific resistance of 10 Ωcm or less. Although the upper limit of the firing temperature is not particularly limited, it is preferably 2300 ° C. from the viewpoint of equipment such as a heat resistant container.

【0024】[0024]

【実施例】次に実施例と比較例を挙げてさらに具体的に
本発明を説明する。
EXAMPLES Next, the present invention will be described more specifically by way of Examples and Comparative Examples.

【0025】実施例1〜5 比較例1〜4 出発原料として平均粒径0.8μm、純度96%のα型
又はβ型炭化珪素粉末100部、水20部、解膠剤とし
てトリメチルアミン2部、有機バインダーとしてメチル
セルロースを2部を配合し、ボールミルで3時間の湿式
混合を行った。得られたスラリーに有機系発泡剤として
ラウリル硫酸アンモニウム1部を添加し、発泡機で撹拌
して泥漿の体積を3倍に泡立てた。この発泡スラリーを
吸水性石膏型に流し込み、温度100℃の温風乾燥機で
乾燥後、大気中、温度450℃×3時間の脱脂を行って
連通気孔を有する多孔質成形体を成形し、表1に示す窒
素加圧下と温度条件で焼成した。
Examples 1 to 5 Comparative Examples 1 to 4 100 parts of α-type or β-type silicon carbide powder having an average particle size of 0.8 μm and a purity of 96% as a starting material, 20 parts of water, 2 parts of trimethylamine as a deflocculant, 2 parts of methyl cellulose was blended as an organic binder, and wet mixing was performed for 3 hours with a ball mill. To the obtained slurry, 1 part of ammonium lauryl sulfate as an organic foaming agent was added, and the mixture was stirred by a foaming machine to foam the volume of the slurry 3 times. The foamed slurry was poured into a water-absorbent gypsum mold, dried with a warm air dryer at a temperature of 100 ° C., and then degreased in the air at a temperature of 450 ° C. for 3 hours to form a porous molded body having continuous ventilation holes. Firing was performed under nitrogen pressure and temperature conditions shown in 1.

【0026】得られたセラミックについて、以下の特性
を測定し表1〜2に示した。 (1)気孔率:アルキメデス法。 (2)連通気孔径:走査型電子顕微鏡観察により計測し
た。 (3)β型炭化珪素の割合(β化率):X線回折を行い
以下により算出した。 β化率(%)=100/(1+a+b) 但し、a=4.57Ia/(100−2.72Ia−
0.665Ib) b=2.53Ib/(100−2.72Ia−0.66
5Ib) ここで、IaはCuKα2θが34.3°におけるピー
ク強度、Ibは34.9°におけるピーク強度であり、
CuKα2θ=36.5°におけるピーク強度を100
とした場合の相対値である。
The following characteristics of the obtained ceramic were measured and shown in Tables 1-2. (1) Porosity: Archimedes method. (2) Continuous vent hole diameter: Measured by scanning electron microscope observation. (3) Ratio of β-type silicon carbide (β conversion ratio): X-ray diffraction was performed and calculated as follows. β conversion rate (%) = 100 / (1 + a + b) where a = 4.57 Ia / (100-2.72 Ia−
0.665Ib) b = 2.53Ib / (100-2.72Ia-0.66
5Ib) Here, Ia is the peak intensity at 34.3 ° for CuKα2θ, and Ib is the peak intensity at 34.9 °,
The peak intensity at CuKα2θ = 36.5 ° is 100.
Is the relative value when.

【0027】(4)窒素含有量:LECO社製O/N同
時分析計で測定した。 (5)室温比抵抗:4端子法。 (6)耐酸化性:大気中、温度1000℃×100時間
処理後の比抵抗を測定した。 (7)発熱特性:50mm×50mm×厚み30mmの
試験片の両端に銀ペーストで電極を形成し、試料中央部
の温度が室温から600℃までに昇温するのに必要な印
加電圧とその時の昇温時間を測定した。
(4) Nitrogen content: Measured with an O / N simultaneous analyzer manufactured by LECO. (5) Room temperature resistivity: 4-terminal method. (6) Oxidation resistance: The specific resistance after the treatment at a temperature of 1000 ° C. for 100 hours in the atmosphere was measured. (7) Heat generation characteristics: An applied voltage required to form electrodes with silver paste on both ends of a test piece of 50 mm × 50 mm × thickness of 30 mm and raise the temperature in the center of the sample from room temperature to 600 ° C. The temperature rising time was measured.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1〜2から明らかなように、本発明の範
囲内にある導電性セラミックは、室温比抵抗10Ωcm
以下でしかも気孔率の高い状態で優れた耐酸化性を示
し、短時間、低電圧で昇温することが可能であり、セラ
ミックフィルタとして優れた特性を有する。
As is apparent from Tables 1 and 2, the conductive ceramics within the scope of the present invention have a room temperature resistivity of 10 Ωcm.
It exhibits excellent oxidation resistance in the state below and has a high porosity, can raise the temperature at a low voltage for a short time, and has excellent characteristics as a ceramic filter.

【0031】[0031]

【発明の効果】本発明の導電性セラミックとその製造方
法によれば、室温比抵抗10Ωcm以下でしかも耐酸化
性に優れた多孔質β型炭化珪素焼結体が提供される。本
発明の導電性セラミックは、暖房機器、乾燥機、焼成炉
等のセラミックヒータとして使用することができる。
According to the conductive ceramic and the method for producing the same of the present invention, a porous β-type silicon carbide sintered body having a room temperature specific resistance of 10 Ωcm or less and excellent in oxidation resistance is provided. The conductive ceramic of the present invention can be used as a ceramic heater for heating equipment, dryers, firing furnaces, and the like.

【0032】また、本発明のセラミックフイルタによれ
ば、捕集されたパティキュレートの燃焼に伴う破損が少
なくなり、外部加熱装置等の特殊な装置を取り付ける必
要もないのでコンパクト化が可能となる。
Further, according to the ceramic filter of the present invention, the damage caused by the burning of the collected particulates is reduced, and it is not necessary to attach a special device such as an external heating device, so that it can be made compact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯崎 啓 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kei Isozaki 1 Shinkai-cho, Omuta-shi, Fukuoka Electric Chemical Industry Co., Ltd. Omuta Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素及び/又は窒化物の合計を窒素分と
して1〜5重量%含み、室温比抵抗10Ωcm以下であ
る多孔質β型炭化珪素焼結体からなることを特徴とする
導電性セラミック。
1. A conductive ceramic comprising a porous β-type silicon carbide sintered body containing a total of nitrogen and / or nitride as a nitrogen content of 1 to 5% by weight and having a room temperature specific resistance of 10 Ωcm or less. .
【請求項2】 炭化珪素粉末、水、解膠剤、有機バイン
ダー及び有機系発泡剤を混合して発泡スラリーを調製
し、それを吸水性のある型で流し込み成形してから乾燥
・脱脂し、窒素ガス圧5kg/cm2 以上、温度200
0℃以上で焼成することを特徴とする導電性セラミック
の製造方法。
2. A silicon carbide powder, water, a peptizer, an organic binder and an organic foaming agent are mixed to prepare a foaming slurry, which is cast in a water-absorptive mold, dried and degreased, Nitrogen gas pressure 5kg / cm 2 or more, temperature 200
A method for producing a conductive ceramic, which comprises firing at 0 ° C. or higher.
【請求項3】 気孔径5〜300μm、気孔率30〜9
0%である請求項1記載の導電性セラミックで構成され
てなることを特徴とするセラミックフィルタ。
3. Porosity 5 to 300 μm, porosity 30 to 9
It is 0% and it is comprised with the electroconductive ceramic of Claim 1, The ceramic filter characterized by the above-mentioned.
JP6140285A 1994-06-22 1994-06-22 Electroconductive ceramic, its production and use Pending JPH0812462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140285A JPH0812462A (en) 1994-06-22 1994-06-22 Electroconductive ceramic, its production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140285A JPH0812462A (en) 1994-06-22 1994-06-22 Electroconductive ceramic, its production and use

Publications (1)

Publication Number Publication Date
JPH0812462A true JPH0812462A (en) 1996-01-16

Family

ID=15265232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140285A Pending JPH0812462A (en) 1994-06-22 1994-06-22 Electroconductive ceramic, its production and use

Country Status (1)

Country Link
JP (1) JPH0812462A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364930A1 (en) 2001-02-02 2003-11-26 Ngk Insulators, Ltd. Honeycomb structure and method for preparation thereof
WO2005063652A1 (en) * 2003-12-26 2005-07-14 Bridgestone Corporation Method for producing silicon carbide sintered body for heater
US7347966B2 (en) 2002-02-27 2008-03-25 Ngk Spark Plug Co., Ltd. Method for manufacturing ceramic heater
JP2010105862A (en) * 2008-10-30 2010-05-13 Ngk Insulators Ltd Silicon carbide-based porous article and method for producing the same
JP2016183081A (en) * 2015-03-26 2016-10-20 東京窯業株式会社 Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP2019172495A (en) * 2018-03-28 2019-10-10 東京窯業株式会社 Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364930A1 (en) 2001-02-02 2003-11-26 Ngk Insulators, Ltd. Honeycomb structure and method for preparation thereof
US7347966B2 (en) 2002-02-27 2008-03-25 Ngk Spark Plug Co., Ltd. Method for manufacturing ceramic heater
WO2005063652A1 (en) * 2003-12-26 2005-07-14 Bridgestone Corporation Method for producing silicon carbide sintered body for heater
JP2005206449A (en) * 2003-12-26 2005-08-04 Bridgestone Corp Method for producing silicon carbide sintered compact for heater
JP2010105862A (en) * 2008-10-30 2010-05-13 Ngk Insulators Ltd Silicon carbide-based porous article and method for producing the same
JP2016183081A (en) * 2015-03-26 2016-10-20 東京窯業株式会社 Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP2019172495A (en) * 2018-03-28 2019-10-10 東京窯業株式会社 Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body

Similar Documents

Publication Publication Date Title
US5733352A (en) Honeycomb structure, process for its production, its use and heating apparatus
US6815038B2 (en) Honeycomb structure
JP3548914B2 (en) Method for producing catalyst carrier
JP4246802B2 (en) Honeycomb structure, manufacturing method and use thereof, and heating device
JP4215936B2 (en) Manufacturing method of honeycomb structure
CN101323524A (en) Preparation of oriented hole silicon carbide porous ceramic
US6770111B2 (en) Pollucite-based ceramic with low CTE
JP3681780B2 (en) Porous conductive silicon carbide sintered body, its production method and use
JP3185960B2 (en) Method for producing porous aluminum titanate sintered body
JP3642836B2 (en) Silicon carbide honeycomb structure and manufacturing method thereof
JPH0812462A (en) Electroconductive ceramic, its production and use
JP3983838B2 (en) Method for producing high-strength porous α-SiC sintered body
JP2000016872A (en) Porous silicon carbide sintered body and its production
JP3691536B2 (en) Method for producing porous conductive silicon carbide sintered body
JP3611345B2 (en) Ceramic and its use
JP2634612B2 (en) Silicon carbide honeycomb filter and method for producing the same
JPH09202671A (en) Production of silicon carbide-based honeycomb filter
KR100369210B1 (en) Porous Ceramic Heating Element, Its Preparation and Exhaust Gas Filter Using Same
KR101157044B1 (en) Fabrication Method dof Porous Silicon Carbide Ceramics
JP4468541B2 (en) Method for producing recrystallized SiC
KR100356736B1 (en) Silicon carbide (SiC) quality urinary ware and its manufacturing method
JPH11217270A (en) Honeycomb structure
JP2636978B2 (en) Conductive ceramic sintered body and method of manufacturing the same
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP3277295B2 (en) Method for producing high-temperature silicon carbide heating element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727