JPH0812329A - Production of ceramic powder and production of ceramic electronic parts - Google Patents
Production of ceramic powder and production of ceramic electronic partsInfo
- Publication number
- JPH0812329A JPH0812329A JP6147252A JP14725294A JPH0812329A JP H0812329 A JPH0812329 A JP H0812329A JP 6147252 A JP6147252 A JP 6147252A JP 14725294 A JP14725294 A JP 14725294A JP H0812329 A JPH0812329 A JP H0812329A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ceramic
- site
- ceramic powder
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はセラミック粉体の製造方
法及びこれを利用したセラミック電子部品の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic powder and a method for producing a ceramic electronic component using the same.
【0002】[0002]
【従来の技術】以前より、誘電体セラミックを電極間に
介在させたセラミックコンデンサ等のセラミック電子部
品は広く知られており、このようなセラミック電子部品
に好適に用いることのできる誘電体セラミックが数多く
開発されている。ここで積層タイプの素子を考えた場
合、電極層とセラミック層とは一体的に焼成されるた
め、電極材料としてセラミック材料の焼成温度でも安定
なものを用いる必要がある。従ってセラミック材料の焼
成温度が高いと、Pt,Pd等の高価な材料を用いなけ
ればならず、Ag等の安価な材料を使用できるように、
例えば1150℃以下程度の低温での焼成が可能であること
が要求される。2. Description of the Related Art Ceramic electronic parts such as ceramic capacitors in which a dielectric ceramic is interposed between electrodes have been widely known, and many dielectric ceramics can be suitably used for such ceramic electronic parts. Being developed. When considering a laminated type element here, since the electrode layer and the ceramic layer are integrally fired, it is necessary to use an electrode material that is stable even at the firing temperature of the ceramic material. Therefore, if the firing temperature of the ceramic material is high, an expensive material such as Pt or Pd must be used, so that an inexpensive material such as Ag can be used.
For example, it is required that firing at a low temperature of about 1150 ° C. or less is possible.
【0003】具体的に上述したような誘電体セラミック
としては、BaTiO3 (チタン酸バリウム)をベース
として、これに錫酸塩,ジルコン酸塩,チタン酸塩等を
固溶したペロブスカイト組成物が従来から用いられてい
る。しかしながら、BaTiO3 系の材料の焼成温度は
1300〜1400℃程度と高温であり、電極材料として必然的
にPt,Pd等の高温で耐える高価な材料を用いなけれ
ばならず、コスト高の原因となる。As a concrete example of the dielectric ceramic as described above, a perovskite composition based on BaTiO 3 (barium titanate) and containing stannate, zirconate, titanate or the like as a solid solution is conventionally used. Used from. However, the firing temperature for BaTiO 3 -based materials is
Since the temperature is as high as 1300 to 1400 ° C., it is necessary to use an expensive material such as Pt and Pd that can endure at high temperature as an electrode material, which causes a high cost.
【0004】このBaTiO3 系の問題点を解決すべ
く、各種組成物の研究がなされている。例えば、鉄・ニ
オブ酸鉛を主体としたもの(特開昭57-57204号)、マグ
ネシウム・ニオブ酸鉛を主体としたもの(特開昭55-517
59号)、マグネシウム・タングステン酸鉛を主体とした
もの(特開昭55-144609 号)、マグネシウム・鉄・タン
グステン酸鉛を主体としたもの(特開昭58-217462 号)
等の鉛含有ペロブスカイト組成物があるが、誘電率が高
く、その温度変化が例えば−55℃〜 125℃のような広い
温度範囲にわたって小さく、かつ絶縁耐圧等の各種電気
的特性に優れた誘電体セラミックは得られていないのが
現状である。また、誘電率の温度特性の異なる組成物を
混合して良好な温度特性を得ようとする研究もなされて
おり、例えば特開昭59-203759 号には鉛複合ペロブスカ
イト組成物(リラクサー)の混合について開示がある
が、容量の温度係数(T.C.C.)が大きく温度特性は充分
ではない。Various compositions have been studied in order to solve the problems of the BaTiO 3 system. For example, those mainly containing iron and lead niobate (JP-A-57-57204) and those mainly containing magnesium and lead niobate (JP-A-55-517).
59), those mainly containing magnesium and lead tungstate (JP-A-55-144609), those mainly containing magnesium, iron and lead tungstate (JP-A-58-217462)
There is a lead-containing perovskite composition such as, but the dielectric constant is high, its temperature change is small over a wide temperature range such as -55 ° C to 125 ° C, and it is a dielectric excellent in various electrical characteristics such as withstand voltage. At present, ceramics have not been obtained. Further, studies have been conducted to obtain good temperature characteristics by mixing compositions having different temperature characteristics of permittivity. For example, JP-A-59-203759 discloses mixing of lead composite perovskite compositions (relaxers). However, the temperature coefficient of capacity (TCC) is large and the temperature characteristics are not sufficient.
【0005】さらに、上述したような電気的特性が良好
で、しかも極めて優れた温度特性を有する誘電体セラミ
ックとして、ジルコン・チタン酸鉛を主体とした鉛含有
ペロブスカイト組成物が特開平5-152158号に開示されて
いる。然るにこのような組成物においても、BaTiO
3 系よりは低温での焼成が可能であるが、焼成温度が12
00〜1250℃といまだ高いため、積層セラミックコンデン
サに応用した場合電極材料として安価なAg/Pd合金
を用いることができず、焼成温度のさらなる低温化が望
まれていた。Further, a lead-containing perovskite composition mainly composed of zircon / lead titanate is disclosed in Japanese Patent Laid-Open No. 5-152158 as a dielectric ceramic having excellent electric characteristics as described above and having extremely excellent temperature characteristics. Is disclosed in. Therefore, even in such a composition, BaTiO 3
It can be fired at a lower temperature than the 3 series, but the firing temperature is 12
Since the temperature is still as high as 00 to 1250 ° C., when applied to a laminated ceramic capacitor, an inexpensive Ag / Pd alloy cannot be used as an electrode material, and further lowering of the firing temperature has been desired.
【0006】これに対し特開平3-122021号には、水熱合
成法により合成したセラミック粉体を用いることで、鉛
含有ペロブスカイト組成物の焼成温度を低温化できるこ
とが報告されている。しかしながら、構成元素数が多い
鉛含有ペロブスカイト組成物のセラミック粉体を水熱合
成法により合成すると、一般式ABO3 で表されるペロ
ブスカイト組成のAサイト構成元素とBサイト構成元素
とのモル比A/Bがばらつきやすく、ひいては誘電率が
高く信頼性の良好な焼結体を常に得ることが難しい。ま
た山本らは、第7回強誘電体応用会議予稿集(1989)p.
41〜42等で、ジルコン・チタン酸鉛のBサイト構成元素
であるZr,Tiを含有する粉体を水熱合成法により合
成した後、残るAサイト構成元素であるPbの化合物を
混合してセラミック粉体を調製する技術を提案している
が、この場合も高い誘電率を有する誘電体セラミックを
低温での焼成で得ることは、極めて困難であった。On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 3-120221 reports that the firing temperature of the lead-containing perovskite composition can be lowered by using the ceramic powder synthesized by the hydrothermal synthesis method. However, when a ceramic powder of a lead-containing perovskite composition having a large number of constituent elements is synthesized by a hydrothermal synthesis method, the molar ratio A between the A-site constituent element and the B-site constituent element of the perovskite composition represented by the general formula ABO 3 / B tends to vary, and it is difficult to always obtain a highly reliable sintered body having a high dielectric constant. Yamamoto et al., Proceedings of 7th Ferroelectric Application Conference (1989) p.
41-42 etc., the powder containing Zr, Ti which is the B site constituent element of zircon / lead titanate was synthesized by the hydrothermal synthesis method, and then the compound of Pb which is the remaining A site constituent element was mixed. Although a technique for preparing a ceramic powder has been proposed, it is extremely difficult to obtain a dielectric ceramic having a high dielectric constant by firing at a low temperature also in this case.
【0007】[0007]
【発明が解決しようとする課題】上述した通り、セラミ
ック材料の焼成温度の低温化の観点から、水熱合成法に
より合成したセラミック粉体を用いることがこれまで試
みられているが、従来の水熱合成粉は組成のばらつきが
大きい等の問題点があり、結果として電気的特性に優れ
かつ信頼性の良好な焼結体を安定して得ることはできな
かった。As described above, it has been attempted to use the ceramic powder synthesized by the hydrothermal synthesis method from the viewpoint of lowering the firing temperature of the ceramic material. The thermosynthetic powder has problems such as large variation in composition, and as a result, it has not been possible to stably obtain a sintered body having excellent electrical characteristics and good reliability.
【0008】本発明はこのような問題を解決して、電気
的特性が優れるとともに信頼性の良好な組成のばらつき
が少ない焼結体を、低温での焼成で安定的に得ることが
できるセラミック粉体の製造方法、及びこのセラミック
粉体を用いたセラミック電子部品の製造方法を提供する
ことを目的としている。The present invention solves such a problem, and a ceramic powder capable of stably obtaining a sintered body having excellent electrical characteristics, good reliability, and less variation in composition by firing at low temperature. It is an object of the present invention to provide a body manufacturing method and a ceramic electronic component manufacturing method using the ceramic powder.
【0009】[0009]
【課題を解決するための手段及び作用】上記目的を達成
するため本発明は、一般式ABO3 で表したとき、Aサ
イト構成元素及びBサイト構成元素の少なくとも一方が
2種以上の成分からなるペロブスカイト組成を有するセ
ラミック粉体の調製に当り、前記Aサイト構成元素及び
Bサイト構成元素のうちの1種の金属元素の化合物を、
この金属元素以外のAサイト構成元素及びBサイト構成
元素をすべて含有する水溶液を用いて合成した比表面積
が5〜50m2 /gの粉体に混合するセラミック粉体の
製造方法であって、前記金属元素は2種以上の成分から
なるサイトの構成元素のうち、前記サイト中の含有量が
最大の成分であるセラミック粉体の製造方法を提供す
る。このように本発明のセラミック粉体の製造方法は、
一般式ABO3 で表したとき、Aサイト構成元素及びB
サイト構成元素の少なくとも一方が2種以上の成分から
なるペロブスカイト組成を有するセラミック材料につい
て、2種以上の成分からなるサイトの主構成元素1種を
除く構成元素をすべて含有する粉体を水溶液を用いて合
成し、前記主構成元素の化合物をこの粉体に混合してセ
ラミック粉体を調製することを特徴としている。なお本
発明において、上述したような構成元素の含有量とはす
べてモル換算での値を意味するものとする。Means and Actions for Solving the Problems In order to achieve the above object, the present invention is such that, when represented by the general formula ABO 3 , at least one of the A site constituent element and the B site constituent element is composed of two or more kinds of components. In preparing a ceramic powder having a perovskite composition, a compound of a metal element of one of the A-site constituent element and the B-site constituent element,
A method for producing a ceramic powder, comprising: mixing a powder having a specific surface area of 5 to 50 m 2 / g, which is synthesized by using an aqueous solution containing all the A site constituent elements and B site constituent elements other than the metal element, Provided is a method for producing a ceramic powder in which the metal element is a component having the maximum content in the site among the constituent elements of the site composed of two or more kinds of components. Thus, the method for producing the ceramic powder of the present invention is
When represented by the general formula ABO 3 , A site constituent element and B
Regarding a ceramic material having a perovskite composition in which at least one of site constituent elements is composed of two or more components, an aqueous solution is used as a powder containing all constituent elements except one main constituent element of the site composed of two or more constituents. And a compound of the main constituent element is mixed with this powder to prepare a ceramic powder. In the present invention, the contents of the constituent elements as described above all mean values in terms of mol.
【0010】すなわち本発明者らは、従来の鉛含有ペロ
ブスカイト組成物の水熱合成粉において組成のばらつき
が大きい理由について研究を進めた結果、多種の構成元
素からなるペロブスカイト組成物で特に含有量の多い成
分があると、水熱合成粉の合成中にこの成分の析出量を
常に一定に制御することが困難だからであるという知見
を得た。本発明はこのような知見に基づきなされたもの
で、AサイトあるいはBサイト中含有量が最大の構成元
素についてはその化合物を単独に、水溶液を用いて合成
した粉体と別途混合することで、組成のばらつきの極め
て少ないセラミック粉体を調製するというものである。
しかも、主構成元素1種についてその化合物を単独に水
溶液を用いて合成した粉体と別途混合し、所望のペロブ
スカイト組成を有するセラミック粉体を調製する場合、
Aサイト構成元素及びBサイト構成元素をすべて含有す
る粉体を水溶液を用いて合成する場合よりも製造コスト
が低下する。ただし本発明において、水溶液を用いて合
成した粉体と別途混合される上述したような化合物が2
種以上になると、これら2種以上の化合物と水溶液を用
いて合成した粉体とを均一に混合することが困難とな
り、やはり組成のばらつきの少ないセラミック粉体を調
製することはできない。That is, the inventors of the present invention have conducted research on the reason why there is a large variation in composition in the conventional hydrous synthetic powder of a lead-containing perovskite composition, and as a result, the content of the perovskite composition composed of various constituent elements is particularly high. It was found that it is difficult to always control the amount of precipitation of this component to be constant during the synthesis of the hydrothermal synthetic powder when there are many components. The present invention has been made on the basis of such knowledge, and for the constituent element having the maximum content in the A site or the B site, by separately mixing the compound with a powder synthesized using an aqueous solution, It is to prepare a ceramic powder with a very small variation in composition.
In addition, when the compound of one main constituent element is separately mixed with the powder synthesized by using the aqueous solution to prepare the ceramic powder having the desired perovskite composition,
The manufacturing cost is lower than when a powder containing all the A site constituent elements and the B site constituent elements is synthesized using an aqueous solution. However, in the present invention, when the compound as described above, which is separately mixed with the powder synthesized by using the aqueous solution,
If it is more than one kind, it will be difficult to uniformly mix these two or more kinds of compounds and the powder synthesized using the aqueous solution, and again it is impossible to prepare a ceramic powder having a small variation in composition.
【0011】また、ペロブスカイト組成を有するセラミ
ック粉体の調製に当って、AサイトあるいはBサイトを
単独で構成する金属元素の化合物と水溶液を用いて合成
したその他の構成元素を含む粉体とを混合した場合、水
溶液を用いて合成した粉体中には、Aサイト構成元素ま
たはBサイト構成元素が全く含有されないことになる。
而してこのようにして調製されたセラミック粉体におい
ては、低温の焼成ではAサイト構成元素とBサイト構成
元素との均一拡散が充分には進行せず、ペロブスカイト
率が高く電気的特性に優れた焼結体を得ることができな
い。従って本発明では、2種以上の成分からなるサイト
の構成元素であり、かつそのサイトにおける含有量が最
大の金属元素を単独に、水溶液を用いて合成した粉体と
別途混合する必要がある。Further, in the preparation of the ceramic powder having the perovskite composition, the compound of the metal element which constitutes the A site or the B site alone and the powder containing the other constituent elements synthesized by using the aqueous solution are mixed. In this case, the powder synthesized by using the aqueous solution does not contain the A site constituent element or the B site constituent element at all.
Thus, in the ceramic powder prepared in this way, uniform diffusion of the A site constituent element and the B site constituent element does not proceed sufficiently by low temperature firing, and the perovskite ratio is high and the electrical characteristics are excellent. It is impossible to obtain a sintered body. Therefore, in the present invention, it is necessary to separately mix the metal element, which is a constituent element of the site composed of two or more kinds of components and has the largest content in the site, with the powder synthesized by using the aqueous solution.
【0012】ただし本発明において、前記金属元素がA
サイトあるいはBサイトを単独で構成しない場合でも、
同じサイトを構成する他の成分の含有量があまりに少な
すぎると、やはりペロブスカイト率が高い焼結体が得ら
れなくなるおそれがあるので、前記金属元素のそのサイ
トにおけるモル比は99%以下、さらには95%以下で
あることが好ましい。またここで、Aサイト及びBサイ
トがともに2種以上の成分からなるときは、Aサイト構
成元素中含有量が最大の金属元素及びBサイト構成元素
中含有量が最大の金属元素のうち、いずれを水溶液を用
いて合成した粉体と別途混合してもよい。なお本発明に
おいて、上述したように水溶液を用いて合成した粉体と
別途混合される金属元素は、その全部を水溶液を用いて
合成した粉体と別途混合してもよいし、その一部及び他
の構成元素を含有する粉体を水溶液を用いて合成し残り
を別途混合してもよいが、全部を水溶液を用いて合成し
た粉体と別途混合する方が製造上簡略であり、好まし
い。However, in the present invention, the metal element is A
Even if you don't configure a site or B site alone,
If the content of other components constituting the same site is too small, it may not be possible to obtain a sintered body having a high perovskite ratio. Therefore, the molar ratio of the metal element at that site is 99% or less, and It is preferably 95% or less. When both the A site and the B site are composed of two or more kinds of components, whichever of the metal element having the largest content in the A site constituent element and the largest content in the B site constituent element is May be separately mixed with the powder synthesized using an aqueous solution. In the present invention, the metal element separately mixed with the powder synthesized using the aqueous solution as described above may be mixed with the powder synthesized entirely using the aqueous solution, or a part thereof The powder containing other constituent elements may be synthesized using an aqueous solution and the rest may be separately mixed, but it is preferable to mix the whole with the powder synthesized using the aqueous solution, because it is simple in terms of production.
【0013】本発明で用いられ得る前記金属元素の化合
物としては、酸化物、塩化物、炭酸塩、硝酸塩、しゅう
酸塩等が挙げられる。一方、前記金属元素以外の構成元
素を含有する粉体を水溶液を用いて合成する際には、例
えば水熱合成法、共沈法、金属アルコキシド等を用いた
ゾルゲル法を利用すればよいが、非常に微細な粒径の粉
体を合成でき、低温での焼成が可能となる点で水熱合成
法が特に好ましい。しかも水熱合成法により合成した粉
体は活性が非常に高く、焼成時の昇温速度を上げて一段
と焼成温度を低温化させることもできる。具体的には、
前記金属元素以外の構成元素を含有する水溶液を調製
し、この水溶液を圧力容器内で高温高圧処理して水溶液
中に粉体を析出させればよい。Examples of the compound of the metal element that can be used in the present invention include oxides, chlorides, carbonates, nitrates and oxalates. On the other hand, when a powder containing a constituent element other than the metal element is synthesized using an aqueous solution, for example, a hydrothermal synthesis method, a coprecipitation method, a sol-gel method using a metal alkoxide, etc. may be used. The hydrothermal synthesis method is particularly preferable in that powder having an extremely fine particle size can be synthesized and firing at low temperature is possible. Moreover, the powder synthesized by the hydrothermal synthesis method has a very high activity, and it is possible to further lower the firing temperature by increasing the temperature rising rate during firing. In particular,
It suffices to prepare an aqueous solution containing constituent elements other than the metal element, and subject this aqueous solution to high temperature and high pressure treatment in a pressure vessel to precipitate powder in the aqueous solution.
【0014】なお本発明においては、前記金属元素以外
の構成元素を含有する粉体を水溶液を用いて合成した
後、300〜1000℃程度の温度で熱処理を施しても
構わない。このような熱処理は、粉体中でのペロブスカ
イト構造の形成を促進するので、結果としてセラミック
粉体焼成後の焼結体におけるペロブスカイト率の増大に
寄与する。また熱処理を施すのは、前記金属元素の化合
物が混合された後でもよく、前記金属元素の化合物を水
溶液を用いて合成した粉体と混合する前後にそれぞれ熱
処理を施してもよいことはいうまでもない。ここで熱処
理の温度を300〜1000℃としたのは、300℃未
満だとペロブスカイト構造の形成がほとんど促進され
ず、1000℃を越えると粉体の活性が失われて焼成温
度が高くなるおそれがあるからである。さらに、より好
ましい熱処理の温度は500〜900℃である。In the present invention, the powder containing the constituent elements other than the metal element may be synthesized using an aqueous solution and then heat treated at a temperature of about 300 to 1000 ° C. Such heat treatment promotes the formation of a perovskite structure in the powder, and consequently contributes to an increase in the perovskite ratio in the sintered body after firing the ceramic powder. Further, it is needless to say that the heat treatment may be performed after the compound of the metal element is mixed, and may be performed before and after the compound of the metal element is mixed with the powder synthesized using the aqueous solution. Nor. Here, the temperature of the heat treatment is set to 300 to 1000 ° C. When the temperature is less than 300 ° C., the formation of the perovskite structure is hardly promoted, and when it exceeds 1000 ° C., the activity of the powder may be lost and the firing temperature may increase. Because there is. Furthermore, the more preferable heat treatment temperature is 500 to 900 ° C.
【0015】本発明のセラミック粉体の製造方法では、
上述したように水溶液を用いて合成した粉体の比表面積
を5〜50m2 /gに制御する必要がある。何となれ
ば、比表面積が5m2 /g未満だと、前記金属元素の化
合物との混合を充分に均一化させて組成のばらつきの少
ないセラミック粉体を調製することが難しく、しかも焼
成温度が高くなる傾向がある。一方比表面積が50m2
/gを越えると、セラミック粉体を所定の形状に成形す
ることが困難となる。なお、より好ましい粉体の比表面
積は5〜20m2 /gである。In the method for producing ceramic powder of the present invention,
As described above, it is necessary to control the specific surface area of the powder synthesized using the aqueous solution to 5 to 50 m 2 / g. If the specific surface area is less than 5 m 2 / g, it is difficult to sufficiently homogenize the mixing with the compound of the metal element to prepare a ceramic powder having a small compositional variation, and the firing temperature is high. Tends to become. On the other hand, the specific surface area is 50 m 2.
If it exceeds / g, it becomes difficult to form the ceramic powder into a predetermined shape. A more preferable specific surface area of the powder is 5 to 20 m 2 / g.
【0016】また上述したような水溶液を用いて合成し
た粉体は、合成後乾燥させると、凝集して比表面積が低
減する場合がある。従って、必要に応じ比表面積が5〜
50m2 /gとなるように、凝集した粉体を粉砕するこ
とが好ましい。さらに、この水溶液を用いて合成した粉
体に前記金属元素の化合物を混合して調製されたセラミ
ック粉体についても、焼成温度の低温化の観点からやは
り比表面積を5〜50m2 /g、さらには5〜20m2
/gに制御することが好ましい。Further, the powder synthesized by using the above-mentioned aqueous solution may aggregate and reduce the specific surface area when dried after the synthesis. Therefore, the specific surface area is 5 to 5 if necessary.
It is preferable to pulverize the agglomerated powder so as to obtain 50 m 2 / g. Further, the ceramic powder prepared by mixing the powder of the metal element with the powder synthesized using this aqueous solution also has a specific surface area of 5 to 50 m 2 / g from the viewpoint of lowering the firing temperature. Is 5 to 20 m 2
It is preferable to control to / g.
【0017】本発明のセラミック粉体の製造方法は、一
般式ABO3 で表したとき、Aサイト構成元素及びBサ
イト構成元素の少なくとも一方が2種以上の成分からな
るペロブスカイト組成を有するセラミック材料であれ
ば、特に限定されず適用することが可能である。しかし
ながら、Aサイトが2種以上の成分からなりかつその主
構成元素が鉛であるペロブスカイト組成を有する場合、
本発明のセラミック粉体の製造方法はとりわけ有効であ
る。すなわち、多量の鉛を含有する水溶液は一般的にp
H制御が難しく、このような水溶液を用いて合成した粉
体においては特に組成のばらつきが生じやすい。これに
対し本発明では、鉛を除く構成元素をすべて含有する粉
体を水溶液を用いて合成し、PbO、PbO2 、Pb3
O4 等鉛の化合物をこの粉体に別途混合してセラミック
粉体を調製することで、セラミック粉体を水溶液を用い
て合成した場合特に組成のばらつきが大きい鉛含有ペロ
ブスカイト組成物についても、組成のばらつきを回避す
ることが可能となる。The method for producing a ceramic powder of the present invention is a ceramic material having a perovskite composition in which at least one of the A-site constituent element and the B-site constituent element is represented by the general formula ABO 3 If it is possible, it is applicable without particular limitation. However, when the A site has a perovskite composition in which the A site is composed of two or more components and the main constituent element is lead,
The method for producing ceramic powder of the present invention is particularly effective. That is, an aqueous solution containing a large amount of lead is generally p
It is difficult to control H, and variations in composition are particularly likely to occur in powder synthesized using such an aqueous solution. On the other hand, in the present invention, a powder containing all the constituent elements except lead is synthesized using an aqueous solution, and PbO, PbO 2 , Pb 3
A lead-containing perovskite composition having a large variation in composition when the ceramic powder is synthesized by using an aqueous solution by separately mixing a compound of lead such as O 4 with this powder is also used. It is possible to avoid the variation of.
【0018】本発明において、前記一般式ABO3 中の
Aサイト構成元素としては、Pb,Ba,Sr,Ca,
La等が挙げられ、Bサイト構成元素としては、Zr,
Ti,Zn,Nb,Mg,Fe,Mn,Sn,W,C
u,Ni,Ta等が例示される。なお、一般式ABO3
で表されるペロブスカイト組成に、ガラス成分、酸化マ
ンガン、酸化コバルト、酸化けい素、酸化銀、酸化パラ
ジウム等が添加含有された組成系であってもよく、これ
ら添加成分はセラミック粉体の調製に当って、水溶液を
用いて合成した粉体に含有されても、前記金属元素の化
合物とともに水溶液を用いて合成した粉体と別途同時あ
るいは順次混合されても構わない。また、一般式ABO
3 で表されるペロブスカイト組成の化学量論比から多少
外れても何ら差支えないことはいうまでもない。具体的
には、特開昭59-181407 号、特開昭61-101460 号、特開
昭61-155245 号、特開昭61-251563 号、特開昭62-26705
号、特開昭62-153162 号、特開昭63-233037 号、特開平
3-218958号、特開平4-119961号、特開平5-152158号、特
開昭59-203759 号、特開昭57-57204号、特開昭55-51759
号、特開昭58-217462 号等に開示のペロブスカイト組成
物に、本発明のセラミック粉体の製造方法は好ましく適
用され得る。In the present invention, the elements constituting the A site in the general formula ABO 3 include Pb, Ba, Sr, Ca,
La and the like are listed, and as the B site constituent element, Zr,
Ti, Zn, Nb, Mg, Fe, Mn, Sn, W, C
Examples include u, Ni, Ta and the like. The general formula ABO 3
The perovskite composition represented by, may be a composition system in which a glass component, manganese oxide, cobalt oxide, silicon oxide, silver oxide, palladium oxide, etc. are added and contained, and these additional components are used for the preparation of ceramic powder. Therefore, it may be contained in the powder synthesized using the aqueous solution, or may be separately or simultaneously mixed with the powder synthesized using the aqueous solution together with the compound of the metal element. In addition, the general formula ABO
It goes without saying that there is no problem even if it deviates from the stoichiometric ratio of the perovskite composition represented by 3 . Specifically, JP-A-59-181407, JP-A-61-101460, JP-A-61-155245, JP-A-61-251563, and JP-A-62-26705.
JP-A-62-153162, JP-A-63-233037, JP-A
3-218958, JP-A-4-19961, JP-A-5-152158, JP-A-59-203759, JP-A-57-57204, JP-A-55-51759
The method for producing a ceramic powder of the present invention can be preferably applied to the perovskite composition disclosed in JP-A-58-217462 and the like.
【0019】次に、上述した如く調製されたセラミック
粉体を用いて製造されるセラミック電子部品について、
簡単に説明する。図1は、このようなセラミック電子部
品の一例として、積層セラミックコンデンサの概略構造
を一部を切り欠いて示す斜視図である。図示される通
り、積層セラミックコンデンサは一般的に、複数の誘電
体セラミック層1と内部電極層2とが繰り返し積層さ
れ、内部電極層2が積層体の両端面に交互に露出される
とともに、これら内部電極層2が接続される1対の外部
電極3が積層体の両端面に形成されてなる。Next, regarding a ceramic electronic component manufactured using the ceramic powder prepared as described above,
Briefly explained. FIG. 1 is a perspective view showing a schematic structure of a monolithic ceramic capacitor with one part cut away as an example of such a ceramic electronic component. As shown in the figure, a multilayer ceramic capacitor is generally formed by repeatedly stacking a plurality of dielectric ceramic layers 1 and internal electrode layers 2 such that the internal electrode layers 2 are alternately exposed on both end surfaces of the multilayer body. A pair of external electrodes 3 to which the internal electrode layers 2 are connected are formed on both end surfaces of the laminated body.
【0020】本発明のセラミック電子部品の製造方法で
は、例えばまず、セラミック粉体にバインダー、溶剤等
を加えスラリー化して、焼成後に誘電体セラミック層と
なるグリーンシートを形成する。次にこのグリーンシー
ト上に内部電極層を印刷し、所定の枚数を積層・圧着し
た後切断して、チップ形状の成形体を作製する。次いで
成形体を脱脂・焼成し、得られた焼結体に外部電極を焼
き付けて積層セラミックコンデンサが製造される。In the method for manufacturing a ceramic electronic component of the present invention, for example, first, a binder, a solvent and the like are added to ceramic powder to form a slurry, and a green sheet which becomes a dielectric ceramic layer after firing is formed. Next, an internal electrode layer is printed on this green sheet, a predetermined number of layers are laminated, pressure-bonded and then cut to produce a chip-shaped molded body. Next, the molded body is degreased and fired, and external electrodes are baked on the obtained sintered body to manufacture a monolithic ceramic capacitor.
【0021】なお、ここではセラミック電子部品として
積層タイプの素子を示したが、本発明においては上述し
たようなセラミック粉体を用いて、単層のセラミック層
を備えたセラミック電子部品を製造してもよい。また本
発明が適用され得るセラミック材料は、誘電体に何ら限
られるものではなく、圧電体、超電導体等に本発明を適
用しても、同様に組成のばらつきが少ない焼結体を安定
的に得ることが可能となり、セラミック電子部品の電気
的特性、信頼性の向上が期待できる。Here, a laminated type element is shown as the ceramic electronic component, but in the present invention, the ceramic powder as described above is used to manufacture a ceramic electronic component having a single ceramic layer. Good. Further, the ceramic material to which the present invention can be applied is not limited to a dielectric at all, and even if the present invention is applied to a piezoelectric body, a superconductor, etc., a sintered body with a small variation in composition can be stably obtained. As a result, it is expected that the electric characteristics and reliability of the ceramic electronic component will be improved.
【0022】[0022]
【実施例】以下に、本発明の実施例を示す。 実施例1 まず出発原料として、Ca,Zr,Tiの水酸化物、硝
酸塩あるいは塩化物を所定の配合比で配合して水溶液中
水熱処理し、乾燥後の比表面積12m2 /gの粉体を合
成した。次いで、この水熱合成粉にPbOを所定量混合
した後、比表面積が12m2 /gとなるまでボールミル
等で24時間粉砕し、(Pb0.78Ca0.22)(Zr0.7
Ti0.3 )O3 なるペロブスカイト組成を有する試料N
o.1のセラミック粉体を調製した。一方比較のため、P
b,Ca,Zr,Tiの各構成元素をすべて含有する水
熱合成粉を同様に合成し、乾燥後比表面積が12m2 /
gとなるまで粉砕して、試料No.1と同一組成を有する試
料No.2のセラミック粉体を調製した。EXAMPLES Examples of the present invention will be shown below. Example 1 First, as a starting material, Ca, Zr, and Ti hydroxides, nitrates, or chlorides were mixed at a predetermined mixing ratio, hydrothermally treated in an aqueous solution, and dried to obtain a powder having a specific surface area of 12 m 2 / g. Synthesized. Next, a predetermined amount of PbO was mixed with this hydrothermally synthesized powder, and then pulverized with a ball mill or the like for 24 hours until the specific surface area became 12 m 2 / g, (Pb 0.78 Ca 0.22 ) (Zr 0.7
Sample N having a perovskite composition of Ti 0.3 ) O 3.
A ceramic powder of o.1 was prepared. On the other hand, for comparison, P
A hydrothermal synthetic powder containing all the constituent elements of b, Ca, Zr, and Ti was synthesized in the same manner, and the specific surface area after drying was 12 m 2 /
The ceramic powder of Sample No. 2 having the same composition as that of Sample No. 1 was prepared by pulverizing until it reached g.
【0023】これらのセラミック粉体について、それぞ
れ20ロットずつAサイト構成元素とBサイト構成元素
とのモル比A/Bを化学分析した。結果を図2に示す。
なお図中、黒丸が試料No.1のセラミック粉体の分析結
果、白丸が試料No.2のセラミック粉体の分析結果であ
る。図2に示されるように、試料No.1のセラミック粉体
では組成のばらつきは非常に少なくA/B=1.00±
0.01であったが、試料No.2のセラミック粉体では組
成のばらつきが非常に大きくA/B=1.00±0.1
5であった。With respect to each of these ceramic powders, 20 lots were chemically analyzed for the molar ratio A / B of the A site constituent element and the B site constituent element. The results are shown in Figure 2.
In the figure, the black circles show the analysis results of the sample No. 1 ceramic powder, and the white circles show the analysis results of the sample No. 2 ceramic powder. As shown in FIG. 2, there is very little variation in the composition of sample No. 1 ceramic powder A / B = 1.00 ±
Although it was 0.01, the composition of the ceramic powder of sample No. 2 had a very large variation in composition A / B = 1.00 ± 0.1
It was 5.
【0024】さらに、Aサイト及びBサイトの構成元素
中Zr,Tiのみを含有する乾燥後の比表面積12m2
/gの粉体を、水溶液中の水熱処理で合成した。次いで
この水熱合成粉にPbO,CaOを混合し、比表面積が
12m2 /gとなるまでボールミル等で24時間粉砕し
て、試料No.1と同一組成を有する試料No.3のセラミック
粉体を調製した。ここで、上述したような試料No.1〜3
のセラミック粉体について、分析電子顕微鏡で粒子1個
中での構成元素の濃度分布を測定した。この結果、試料
No.1のセラミック粉体では粒子の表面近傍でPb濃度が
相対的に高くかつ均一で、また粒子ごとの各構成元素の
濃度も比較的均一であったが、試料No.2のセラミック粉
体には表面近傍でのPb濃度が不均一な粒子が存在して
いた。一方、試料No.3のセラミック粉体は2種の化合物
と水熱合成粉とを混合したためPbの濃度分布が不均一
で、かつ粒子ごとの各構成元素の濃度についても均一性
に劣ることが判った。Further, the specific surface area after drying containing only Zr and Ti in the constituent elements of A site and B site is 12 m 2
/ G of powder was synthesized by hydrothermal treatment in an aqueous solution. Next, this hydrothermal synthetic powder is mixed with PbO and CaO and pulverized for 24 hours by a ball mill etc. until the specific surface area reaches 12 m 2 / g, and the ceramic powder of sample No. 3 having the same composition as sample No. 1 Was prepared. Here, sample Nos. 1 to 3 as described above
Concentration distributions of constituent elements in one particle of the ceramic powder of No. 1 were measured by an analytical electron microscope. As a result, the sample
In the case of the No. 1 ceramic powder, the Pb concentration was relatively high and uniform near the surface of the particles, and the concentration of each constituent element for each particle was also relatively uniform. Particles with non-uniform Pb concentration were present in the vicinity of the surface. On the other hand, since the ceramic powder of sample No. 3 was a mixture of two kinds of compounds and hydrothermal synthetic powder, the Pb concentration distribution was non-uniform, and the concentration of each constituent element for each particle was poor. understood.
【0025】次に、試料No.1〜3 のセラミック粉体にそ
れぞれバインダーを加え直径14mmφ×厚み1.5m
mの成形体を作製した。続いて、これらの成形体をまず
1050℃×2時間焼成したところ、試料No.1のセラミ
ック粉体については理論密度の97%まで緻密化した焼
結体が得られ、この焼結体においてはX線回折測定によ
るピーク比から算出したペロブスカイト率は100%
で、比誘電率1400であった。しかしながら、試料N
o.2のセラミック粉体では上述したようなロット間の組
成のばらつきに起因して、理論密度の97%まで緻密化
する場合がある一方で全く焼結できない場合があり、得
られた焼結体の間でもペロブスカイト率及び比誘電率が
それぞれ35〜100%、400〜1400の範囲で変
動していた。また、試料No.3のセラミック粉体は理論密
度の81%までしか緻密化は進行せず、ペロブスカイト
率は85%、比誘電率800であった。さらにこれとは
別に、試料No.3のセラミック粉体について同一形状の成
形体を作製し1200℃×2時間焼成した結果、理論密
度96%でペロブスカイト率は93%、比誘電率120
0の焼結体が得られた。従って、Aサイト構成元素が全
く含有されない水熱合成粉とAサイト構成元素の化合物
を混合して調製した試料No.3のセラミック粉体では、低
温の焼成ではAサイト構成元素とBサイト構成元素との
均一拡散が充分には進行せず、ペロブスカイト率が高く
電気的特性に優れた焼結体を得ることができないことが
確認された。Next, a binder was added to each of the ceramic powders of Sample Nos. 1 to 3 to have a diameter of 14 mm and a thickness of 1.5 m.
A molded body of m was produced. Subsequently, when these compacts were first fired at 1050 ° C. for 2 hours, a sintered compact densified to 97% of the theoretical density was obtained for the ceramic powder of sample No. 1, and in this sintered compact Perovskite rate calculated from the peak ratio by X-ray diffraction measurement is 100%
The relative dielectric constant was 1400. However, sample N
The ceramic powder of o.2 may be densified up to 97% of the theoretical density due to the variation in composition between lots as described above, but may not be sintered at all. Even between the bodies, the perovskite rate and the relative permittivity varied within the ranges of 35 to 100% and 400 to 1400, respectively. The densification of the ceramic powder of sample No. 3 proceeded only up to 81% of the theoretical density, and the perovskite ratio was 85% and the relative dielectric constant was 800. Separately from this, a ceramic powder of sample No. 3 was molded into the same shape and fired at 1200 ° C. for 2 hours. As a result, the theoretical density was 96%, the perovskite ratio was 93%, and the relative dielectric constant was 120.
A sintered body of 0 was obtained. Therefore, in the ceramic powder of Sample No. 3 prepared by mixing the hydrothermal synthetic powder containing no A-site constituent element and the compound of the A-site constituent element, the A-site constituent element and the B-site constituent element were obtained by low temperature firing. It was confirmed that the uniform diffusion with and did not proceed sufficiently, and a sintered body having a high perovskite ratio and excellent electrical characteristics could not be obtained.
【0026】また、試料No.1のセラミック粉体に800
℃×1時間の熱処理を施した後、比表面積が12m2 /
gとなるまで粉砕し、バインダー及び有機溶剤を加えス
ラリー化して、ドクターブレード型シート成形機で厚み
38μmのグリーンシートを形成した。次にこのグリー
ンシート上に、内部電極層として70wt%Ag/30
wt%Pdペーストを所定の形状で印刷し、60枚を積
層・圧着した後切断して、チップ形状の成形体を作製し
た。次いでこの成形体を脱脂後、1050℃×2時間焼
成し、得られた焼結体に外部電極としてAgペーストを
800℃で焼き付けて、4.5×3.2mmの積層セラ
ミックコンデンサを100個製造した。これらの積層セ
ラミックコンデンサについて、1kHzの条件下デジタ
ルLCRメーターで測定した容量は、0.32±0.0
2μFであった。さらに、同様の積層セラミックコンデ
ンサの製造を20回繰り返し製造ロット間の変動を調べ
た結果、容量は0.32±0.03μFで変動率は9%
と非常に小さかった。In addition, 800 is added to the ceramic powder of sample No. 1.
After heat treatment at ℃ × 1 hour, the specific surface area is 12m 2 /
The mixture was pulverized to a weight of g, a binder and an organic solvent were added to form a slurry, and a doctor blade type sheet forming machine was used to form a green sheet having a thickness of 38 μm. Next, 70 wt% Ag / 30 was used as an internal electrode layer on this green sheet.
A wt% Pd paste was printed in a predetermined shape, 60 sheets were stacked, pressure-bonded, and then cut to produce a chip-shaped molded body. Next, this molded body is degreased and fired at 1050 ° C. for 2 hours, and Ag paste as an external electrode is baked at 800 ° C. on the obtained sintered body to manufacture 100 multilayer ceramic capacitors of 4.5 × 3.2 mm. did. The capacitance of these multilayer ceramic capacitors measured by a digital LCR meter under the condition of 1 kHz is 0.32 ± 0.0.
It was 2 μF. Furthermore, the same multilayer ceramic capacitor was manufactured 20 times and the variation between manufacturing lots was examined. As a result, the capacitance was 0.32 ± 0.03 μF and the variation rate was 9%.
And was very small.
【0027】一方試料No.2のセラミック粉体について、
同様に積層セラミックコンデンサを製造して製造ロット
間の変動を調べたところ、容量は0.27±0.08μ
Fで変動率が30%と大きかった。しかも、A/Bが
1.10を越えるセラミック粉体において、焼成時に内
部電極層と反応して容量が得られない場合もあった。ま
た、試料No.3のセラミック粉体に対しても積層セラミッ
クコンデンサを製造することを試みたが、1050℃×
2時間の焼成では緻密な焼結体を得ることができず、当
然のことながら容量は得られなかった。On the other hand, regarding the ceramic powder of sample No. 2,
Similarly, when a monolithic ceramic capacitor was manufactured and variation between manufacturing lots was examined, the capacitance was 0.27 ± 0.08μ.
In F, the variation rate was as large as 30%. Moreover, in the case of the ceramic powder having A / B exceeding 1.10, there was a case where the capacity could not be obtained by reacting with the internal electrode layers during firing. We also attempted to manufacture a monolithic ceramic capacitor for sample No. 3 ceramic powder.
A dense sintered body could not be obtained by firing for 2 hours, and as a matter of course, the capacity could not be obtained.
【0028】さらに、試料No.1及び2 のセラミック粉体
を用いて製造したセラミックコンデンサ各50個につい
て、85℃、95%RHの高温高湿中で50Vの直流電
圧を印加して耐湿負荷試験を行ない、容量抵抗積が1Ω
・F以下となったものを不良品と判定し、500時間後
の不良品発生数でそれぞれ信頼性を評価した。この結
果、500時間後の不良率が試料No.1については2%で
ある一方、試料No.2では38%であり、試料No.1のセラ
ミック粉体を用いて製造したセラミックコンデンサは、
不良の発生が少なく信頼性が良好であった。 実施例2 まず出発原料として、Ba,Mg,Zn,Nb,Tiの
水酸化物、硝酸塩あるいは塩化物を所定の配合比で配合
して水溶液中水熱処理し乾燥後、800℃×1時間の熱
処理を施し比表面積15m2 /gの粉体を合成した。次
いで、この水熱合成粉にPb3 O4 を所定量混合しさら
に800℃×1時間の熱処理を施した後、比表面積が1
5m2 /gとなるまでボールミル等で24時間粉砕し、
(Pb0.875 Ca0.125 )[(Zn1/3 Nb2/3 )0.3
(Mg1/3 Nb2/3 )0.5 Ti0.2 ]O3 なるペロブス
カイト組成を有する試料No.4のセラミック粉体を調製し
た。一方比較のため、Pb,Ba,Mg,Zn,Nb,
Tiの各構成元素をすべて含有する水熱合成粉を同様に
合成し、乾燥後比表面積が15m2 /gとなるまで粉砕
して、試料No.4と同一組成を有する試料No.5のセラミッ
ク粉体を調製した。これらのセラミック粉体について、
それぞれ20ロットずつAサイト構成元素とBサイト構
成元素とのモル比A/Bを化学分析したところ、試料N
o.4のセラミック粉体では組成のばらつきは非常に少な
くA/B=1.00±0.01であったが、試料No.5の
セラミック粉体では組成のばらつきが非常に大きくA/
B=1.00±0.19であった。Further, for each of 50 ceramic capacitors manufactured using the ceramic powders of Sample Nos. 1 and 2, a DC voltage of 50 V was applied in a high temperature and high humidity condition of 85 ° C. and 95% RH to perform a moisture resistance load test. And the capacitance resistance product is 1Ω
・ F or less was judged as a defective product, and the reliability was evaluated by the number of defective products after 500 hours. As a result, the defective rate after 500 hours was 2% for sample No. 1 and 38% for sample No. 2, and the ceramic capacitor manufactured using the ceramic powder of sample No. 1 was
There were few defects and the reliability was good. Example 2 First, as a starting material, Ba, Mg, Zn, Nb, and Ti hydroxides, nitrates, or chlorides were mixed at a predetermined mixing ratio, hydrothermally treated in an aqueous solution, dried, and then heat-treated at 800 ° C. for 1 hour. Then, a powder having a specific surface area of 15 m 2 / g was synthesized. Next, a predetermined amount of Pb 3 O 4 was mixed with this hydrothermally synthesized powder and further heat-treated at 800 ° C. for 1 hour, and then the specific surface area was 1
Grind with a ball mill etc. for 24 hours until it reaches 5 m 2 / g,
(Pb 0.875 Ca 0.125 ) [(Zn 1/3 Nb 2/3 ) 0.3
A ceramic powder of sample No. 4 having a perovskite composition of (Mg 1/3 Nb 2/3 ) 0.5 Ti 0.2 ] O 3 was prepared. On the other hand, for comparison, Pb, Ba, Mg, Zn, Nb,
A hydrothermal synthetic powder containing all the constituent elements of Ti was synthesized in the same manner, pulverized after drying until the specific surface area became 15 m 2 / g, and the ceramic of sample No. 5 having the same composition as sample No. 4 A powder was prepared. For these ceramic powders,
Chemical analysis of the molar ratio A / B of the A-site constituent element and the B-site constituent element in 20 lots each gave sample N
The ceramic powder of o.4 had very little variation in composition, A / B = 1.00 ± 0.01, but the ceramic powder of sample No. 5 had a very large variation in composition.
B = 1.00 ± 0.19.
【0029】さらに、Aサイト及びBサイトの構成元素
中Mg,Zn,Nb,Tiのみを含有する乾燥後の比表
面積15m2 /gの粉体を、水溶液中の水熱処理で合成
した。次いでこの水熱合成粉にPbO,BaOを混合
し、比表面積が15m2 /gとなるまでボールミル等で
24時間粉砕して、試料No.4と同一組成を有する試料N
o.6のセラミック粉体を調製した。ここで、上述したよ
うな試料No.4〜6 のセラミック粉体について、分析電子
顕微鏡で粒子1個中での構成元素の濃度分布を測定し
た。この結果、試料No.4のセラミック粉体では粒子の表
面近傍でPb濃度が相対的に高くかつ均一で、また粒子
ごとの各構成元素の濃度も比較的均一であったが、試料
No.5のセラミック粉体には表面近傍でのPb濃度が不均
一な粒子が存在していた。一方、試料No.6のセラミック
粉体は2種の化合物と水熱合成粉とを混合したためPb
の濃度分布が不均一で、かつ粒子ごとの各構成元素の濃
度についても均一性に劣ることが判った。Further, a powder having a specific surface area of 15 m 2 / g after drying containing only Mg, Zn, Nb, and Ti among the constituent elements of A site and B site was synthesized by hydrothermal treatment in an aqueous solution. Next, PbO and BaO were mixed with this hydrothermally synthesized powder, and the mixture was crushed for 24 hours with a ball mill etc. until the specific surface area became 15 m 2 / g. Sample N having the same composition as sample No. 4
A ceramic powder of o.6 was prepared. Here, with respect to the ceramic powders of Sample Nos. 4 to 6 as described above, the concentration distribution of constituent elements in one particle was measured by an analytical electron microscope. As a result, in the ceramic powder of sample No. 4, the Pb concentration was relatively high and uniform near the surface of the particles, and the concentration of each constituent element for each particle was also relatively uniform.
In the No. 5 ceramic powder, particles having a non-uniform Pb concentration near the surface were present. On the other hand, the ceramic powder of sample No. 6 is Pb because it is a mixture of two kinds of compounds and hydrothermal synthetic powder.
It was found that the concentration distribution of was uneven, and the concentration of each constituent element of each particle was inferior in uniformity.
【0030】次に、試料No.4〜6 のセラミック粉体にそ
れぞれバインダーを加え直径14mmφ×厚み1.5m
mの成形体を作製した。続いて、これらの成形体をまず
950℃×2時間焼成したところ、試料No.4のセラミッ
ク粉体については理論密度の97%まで緻密化した焼結
体が得られ、この焼結体においてはX線回折測定による
ピーク比から算出したペロブスカイト率は100%で、
比誘電率12500であった。しかしながら、試料No.5
のセラミック粉体では上述したようなロット間の組成の
ばらつきに起因して、理論密度の97%まで緻密化する
場合がある一方で全く焼結できない場合があり、得られ
た焼結体の間でもペロブスカイト率及び比誘電率がそれ
ぞれ50〜100%、8000〜12500の範囲で変
動していた。また、試料No.6のセラミック粉体は理論密
度の78%までしか緻密化は進行せず、ペロブスカイト
率は78%、比誘電率9000であった。さらにこれと
は別に、試料No.6のセラミック粉体について同一形状の
成形体を作製し1050℃×2時間焼成した結果、理論
密度96%でペロブスカイト率は97%、比誘電率12
000の焼結体が得られた。従って、Aサイト構成元素
が全く含有されない水熱合成粉とAサイト構成元素の化
合物を混合して調製した試料No.6のセラミック粉体で
は、低温の焼成ではAサイト構成元素とBサイト構成元
素との均一拡散が充分には進行せず、ペロブスカイト率
が高く電気的特性に優れた焼結体を得ることができない
ことが確認された。Next, a binder was added to each of the ceramic powders of Sample Nos. 4 to 6 to have a diameter of 14 mm and a thickness of 1.5 m.
A molded body of m was produced. Subsequently, when these compacts were first fired at 950 ° C. for 2 hours, a sintered compact densified to 97% of the theoretical density was obtained for the ceramic powder of sample No. 4, and in this sintered compact, The perovskite ratio calculated from the peak ratio by X-ray diffraction measurement is 100%,
The relative dielectric constant was 12500. However, sample No. 5
Due to the above-mentioned variation in composition between lots, the ceramic powder of may be densified up to 97% of the theoretical density, but may not be sintered at all. However, the perovskite ratio and the relative dielectric constant varied within the ranges of 50 to 100% and 8000 to 12,500, respectively. The densification of the ceramic powder of sample No. 6 proceeded only to 78% of the theoretical density, the perovskite ratio was 78%, and the relative dielectric constant was 9000. Separately from this, a ceramic powder of Sample No. 6 was molded into the same shape and fired at 1050 ° C. for 2 hours. As a result, the theoretical density was 96%, the perovskite ratio was 97%, and the relative dielectric constant was 12%.
000 sintered bodies were obtained. Therefore, in the ceramic powder of Sample No. 6 prepared by mixing the hydrothermal synthetic powder containing no A-site constituent element and the compound of the A-site constituent element, the A-site constituent element and the B-site constituent element were obtained by low temperature firing. It was confirmed that the uniform diffusion with and did not proceed sufficiently, and a sintered body having a high perovskite ratio and excellent electrical characteristics could not be obtained.
【0031】また、試料No.4のセラミック粉体にバイン
ダー及び有機溶剤を加えスラリー化して、ドクターブレ
ード型シート成形機で厚み38μmのグリーンシートを
形成した。次にこのグリーンシート上に、内部電極層と
して70wt%Ag/30wt%Pdペーストを所定の
形状で印刷し、60枚を積層・圧着した後切断して、チ
ップ形状の成形体を作製した。次いでこの成形体を脱脂
後、950℃×2時間焼成し、得られた焼結体に外部電
極としてAgペーストを800℃で焼き付けて、4.5
×3.2mmの積層セラミックコンデンサを100個製
造した。これらの積層セラミックコンデンサについて、
1kHzの条件下デジタルLCRメーターで測定した容
量は、2.8±0.05μFであった。さらに、同様の
積層セラミックコンデンサの製造を20回繰り返し製造
ロット間の変動を調べた結果、容量は2.8±0.08
μFで変動率は3%と非常に小さかった。A binder and an organic solvent were added to the ceramic powder of sample No. 4 to form a slurry, and a doctor blade type sheet forming machine was used to form a green sheet having a thickness of 38 μm. Next, 70 wt% Ag / 30 wt% Pd paste was printed in a predetermined shape as an internal electrode layer on this green sheet, and 60 sheets were stacked, pressure-bonded and then cut to produce a chip-shaped molded body. Next, after degreasing this molded body, it was fired at 950 ° C. for 2 hours, and Ag paste as an external electrode was baked at 800 ° C. on the obtained sintered body to obtain 4.5.
100 x 3.2 mm multilayer ceramic capacitors were manufactured. For these monolithic ceramic capacitors,
The capacitance measured by a digital LCR meter under the condition of 1 kHz was 2.8 ± 0.05 μF. Furthermore, the same multilayer ceramic capacitor was manufactured 20 times and the variation between manufacturing lots was examined. As a result, the capacitance was 2.8 ± 0.08.
The fluctuation rate at μF was as small as 3%.
【0032】一方試料No.5のセラミック粉体について、
同様に積層セラミックコンデンサを製造して製造ロット
間の変動を調べたところ、容量は2.2±0.8μFで
変動率が36%と大きかった。しかも、A/Bが1.1
0を越えるセラミック粉体において、焼成時に内部電極
層と反応して容量が得られない場合もあった。また、試
料No.6のセラミック粉体に対しても積層セラミックコン
デンサを製造することを試みたが、950℃×2時間の
焼成では緻密な焼結体を得ることができず、当然のこと
ながら容量は得られなかった。On the other hand, regarding the ceramic powder of sample No. 5,
Similarly, when a monolithic ceramic capacitor was manufactured and the fluctuation between manufacturing lots was examined, the capacity was 2.2 ± 0.8 μF and the fluctuation rate was as large as 36%. Moreover, A / B is 1.1
In the case of ceramic powder exceeding 0, there was a case where the capacity could not be obtained by reacting with the internal electrode layers during firing. We also tried to manufacture a monolithic ceramic capacitor for sample No. 6 ceramic powder, but it was not possible to obtain a dense sintered body by firing at 950 ° C x 2 hours, and of course, No capacity was obtained.
【0033】さらに、試料No.4及び5 のセラミック粉体
を用いて製造したセラミックコンデンサ各50個につい
て、85℃、95%RHの高温高湿中で50Vの直流電
圧を印加して耐湿負荷試験を行ない、それぞれ実施例1
と同様に信頼性を評価した。この結果、500時間後の
不良率が試料No.4については2%である一方、試料No.5
では40%であり、試料No.4のセラミック粉体を用いて
製造したセラミックコンデンサは、不良の発生が少なく
信頼性が良好であった。Further, for each of 50 ceramic capacitors manufactured by using the ceramic powders of Sample Nos. 4 and 5, a DC voltage of 50 V was applied in a high temperature and high humidity condition of 85 ° C. and 95% RH to perform a moisture resistance load test. Example 1, respectively
Similarly, the reliability was evaluated. As a result, the defect rate after 500 hours was 2% for sample No. 4, while that for sample No. 5
Was 40%, and the ceramic capacitor manufactured using the ceramic powder of sample No. 4 had few defects and had good reliability.
【0034】[0034]
【発明の効果】以上詳述したように本発明によれば、電
気的特性が優れるとともに信頼性の良好な組成のばらつ
きが少ない焼結体を低温での焼成で安定的に得ることが
可能で、ひいてはセラミック電子部品の製造に好適に供
されるセラミック粉体を提供することができる。As described in detail above, according to the present invention, it is possible to stably obtain a sintered body having excellent electrical characteristics and good reliability and little variation in composition, by firing at low temperature. As a result, it is possible to provide a ceramic powder that is suitably used for manufacturing a ceramic electronic component.
【図1】 積層セラミックコンデンサの概略構造を一部
を切り欠いて示す斜視図。FIG. 1 is a perspective view showing a schematic structure of a monolithic ceramic capacitor with a part cut away.
【図2】 試料No.1及び2 のセラミック粉体についてそ
れぞれ20ロットずつA/Bを化学分析した結果を示す
図。FIG. 2 is a diagram showing the results of chemical analysis of A / B for 20 lots of each of the ceramic powders of Sample Nos. 1 and 2.
1…誘電体セラミック層、2…内部電極層、3…外部電
極。1 ... Dielectric ceramic layer, 2 ... Internal electrode layer, 3 ... External electrode.
Claims (4)
成元素及びBサイト構成元素の少なくとも一方が2種以
上の成分からなるペロブスカイト組成を有するセラミッ
ク粉体の調製に当り、前記Aサイト構成元素及びBサイ
ト構成元素のうちの1種の金属元素の化合物を、この金
属元素以外のAサイト構成元素及びBサイト構成元素を
すべて含有する水溶液を用いて合成した比表面積が5〜
50m2 /gの粉体に混合するセラミック粉体の製造方
法であって、前記金属元素は2種以上の成分からなるサ
イトの構成元素のうち、前記サイト中の含有量が最大の
成分であることを特徴とするセラミック粉体の製造方
法。1. When preparing a ceramic powder having a perovskite composition in which at least one of an A-site constituent element and a B-site constituent element is represented by the general formula ABO 3 , the above A-site constituent element is prepared. A compound of one metal element of the elements and B-site constituent elements was synthesized using an aqueous solution containing all A-site constituent elements and B-site constituent elements other than this metal element, and the specific surface area was 5 to 5.
A method for producing a ceramic powder, which is mixed with 50 m 2 / g of powder, wherein the metal element is a component having the largest content in the site among the constituent elements of the site composed of two or more kinds of components. A method for producing a ceramic powder, comprising:
請求項1記載のセラミック粉体の製造方法。2. The method for producing a ceramic powder according to claim 1, wherein the metal element is lead.
する請求項1記載のセラミック粉体の製造方法。3. The method for producing a ceramic powder according to claim 1, wherein the powder is a hydrothermal synthetic powder.
形体を作製した後焼成する工程を具備したセラミック電
子部品の製造方法において、前記セラミック粉体は請求
項1記載のセラミック粉体の製造方法で調製されたもの
であることを特徴とするセラミック電子部品の製造方
法。4. A method for producing a ceramic electronic component, comprising the step of producing a molded body of ceramic powder having a predetermined shape and then firing it, wherein the ceramic powder is produced by the method of claim 1. A method of manufacturing a ceramic electronic component, which is prepared by the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6147252A JPH0812329A (en) | 1994-06-29 | 1994-06-29 | Production of ceramic powder and production of ceramic electronic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6147252A JPH0812329A (en) | 1994-06-29 | 1994-06-29 | Production of ceramic powder and production of ceramic electronic parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0812329A true JPH0812329A (en) | 1996-01-16 |
Family
ID=15426031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6147252A Pending JPH0812329A (en) | 1994-06-29 | 1994-06-29 | Production of ceramic powder and production of ceramic electronic parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0812329A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003197462A (en) * | 2001-12-28 | 2003-07-11 | Murata Mfg Co Ltd | Method of manufacturing laminated ceramic electronic component |
WO2020196101A1 (en) * | 2019-03-25 | 2020-10-01 | 堺化学工業株式会社 | Metal composite oxide and production method thereof, and electrode for solid oxide fuel cell |
-
1994
- 1994-06-29 JP JP6147252A patent/JPH0812329A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003197462A (en) * | 2001-12-28 | 2003-07-11 | Murata Mfg Co Ltd | Method of manufacturing laminated ceramic electronic component |
WO2020196101A1 (en) * | 2019-03-25 | 2020-10-01 | 堺化学工業株式会社 | Metal composite oxide and production method thereof, and electrode for solid oxide fuel cell |
CN113661144A (en) * | 2019-03-25 | 2021-11-16 | 堺化学工业株式会社 | Metal composite oxide, method for producing same, and electrode for solid oxide fuel cell |
CN113661144B (en) * | 2019-03-25 | 2023-11-07 | 堺化学工业株式会社 | Metal composite oxide, method for producing same, and electrode for solid oxide fuel cell |
TWI841711B (en) * | 2019-03-25 | 2024-05-11 | 日商堺化學工業股份有限公司 | Metal composite oxide and method for producing the same, and electrode for solid oxide fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1130004B1 (en) | Manufacturing method for oxide having perovskite structure | |
DE69700235T2 (en) | Monolithic ceramic capacitor | |
JP2001506425A (en) | Ceramic multilayer capacitors | |
JP2001351828A (en) | Non-reducing dielectric ceramic and laminated ceramic capacitor using the same | |
JPH0678189B2 (en) | Non-reducing high dielectric constant dielectric ceramic composition | |
KR100364969B1 (en) | Barium Titanate Semiconductor Ceramic Powder and Laminated Semiconductor Ceramic Device | |
EP0630032B1 (en) | Non-reducible dielectric ceramic composition | |
JP2003002739A (en) | Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor | |
KR100475348B1 (en) | Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element | |
US6631070B2 (en) | Ceramic capacitor with czt dielectric | |
JP7037945B2 (en) | Ceramic capacitors and their manufacturing methods | |
US20080067897A1 (en) | Production Method of Piezoelectric Ceramic, Production Method of Piezoelectric Element, and Piezoelectric Element | |
JP2919360B2 (en) | Dielectric porcelain composition | |
JP2022088409A (en) | Ceramic capacitor | |
JPH0812329A (en) | Production of ceramic powder and production of ceramic electronic parts | |
CN114853472A (en) | Dielectric composition and electronic component | |
US10519066B2 (en) | Dielectric porcelain composition, method for producing dielectric porcelain composition, and multilayer ceramic electronic component | |
JP2580374B2 (en) | Method for producing composite perovskite type dielectric porcelain powder | |
JPH0794022A (en) | Dielectric material and ceramic part | |
JPH07183155A (en) | Laminated ceramic electronic component and its manufacture | |
JP3470299B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP3652099B2 (en) | Dielectric porcelain and multilayer ceramic capacitor | |
JPH05262556A (en) | Production of dielectric porcelain | |
JPH0987014A (en) | Production of high dielectric constant porcelain composition | |
JPH10139536A (en) | Dielectric porcelain composition |