JPH08122661A - Light irradiation member for endoscope - Google Patents

Light irradiation member for endoscope

Info

Publication number
JPH08122661A
JPH08122661A JP6281170A JP28117094A JPH08122661A JP H08122661 A JPH08122661 A JP H08122661A JP 6281170 A JP6281170 A JP 6281170A JP 28117094 A JP28117094 A JP 28117094A JP H08122661 A JPH08122661 A JP H08122661A
Authority
JP
Japan
Prior art keywords
light
microlens
irradiation
optical system
system member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6281170A
Other languages
Japanese (ja)
Other versions
JP3534853B2 (en
Inventor
Masaaki Morizumi
雅明 森住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP28117094A priority Critical patent/JP3534853B2/en
Publication of JPH08122661A publication Critical patent/JPH08122661A/en
Application granted granted Critical
Publication of JP3534853B2 publication Critical patent/JP3534853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE: To supply observed bodies at a long to a short distance with uniform and excellent irradiation light. CONSTITUTION: A microlens body 20 is arranged on the projection end surface of a light guide 16 consisting of a bundle of optical fibers, and this microlens body 20 is formed to be decreased in radius of curvature as going to the observation optical system member, i.e., a microlenses 18-1 side. Consequently, a secondary projection end surface S1 is formed and an irradiation area expands toward the short-distance side. Further, the radius of curvature of the microlens 18-1 can be decreased as going to the peripheral part of the microlens body, and the irradiation area is expanded on the whole in this case. Further, the irradiation light can be slanted to the observation optical system member side by offsetting the individual microlens to individual optical, and light distribution to the short-distance side can be promoted in combination with the constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内視鏡の光照射部材、特
に先端部から被観察体内へ光を照射するために配置され
た照射光学系部材の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light irradiating member for an endoscope, and more particularly to a structure of an irradiating optical system member arranged for irradiating light into a body to be observed from a distal end thereof.

【0002】[0002]

【従来の技術】電子内視鏡装置では、内視鏡先端部に、
ライトガイドを含む照射光学系部材、固体撮像素子であ
るCCD(Charge Coupled Device)に接続される観察
光学系部材が備えられている。この照射光学系部材によ
れば、ライトガイドを介して光源部からの光が先端部ま
で導かれ、この先端部から被観察体内へ照射されること
になり、この光照射に基づいて上記CCDでは被観察体
内像が捉えられる。そして、このCCDから出力される
画像信号を信号処理回路で処理することによって、最終
的に被観察体内の画像がモニタ上に表示される。また、
光学的に観察する内視鏡では、イメージガイド及び接眼
レンズが設けられ、この場合も上記照射光学系部材によ
り照射された光で捉えられる被観察体内を接眼レンズで
観察することができる。
2. Description of the Related Art In an electronic endoscope system, the tip of the endoscope is
An irradiation optical system member including a light guide and an observation optical system member connected to a CCD (Charge Coupled Device) which is a solid-state image sensor are provided. According to this irradiation optical system member, the light from the light source is guided to the tip through the light guide, and is irradiated into the body to be observed from this tip. The in-vivo image can be captured. Then, the image signal output from the CCD is processed by the signal processing circuit, so that the image inside the object to be observed is finally displayed on the monitor. Also,
In an endoscope that optically observes, an image guide and an eyepiece lens are provided, and in this case also, the inside of the observed body captured by the light emitted by the irradiation optical system member can be observed by the eyepiece lens.

【0003】図7には、上記照射光学系部材の構成が示
されており、この照射光学系部材は、多数本の光ファイ
バーからなるライトガイド1と照射窓レンズ(投光レン
ズ)2から構成される。そして、この光ファイバーに
は、図示のように光源から角度θ1 の範囲で光が入射す
ると、出射端からは角度θ2 の広がりを以て光が出射す
ることになり、この出射光が観察窓レンズ2で拡散され
て被観察体内へ照射される。図8は、各光ファイバーか
ら出射される光の状態を模式的に表したものであるが、
このような広がりを有することにより、観察窓レンズ2
から所定の拡散光を得ることが可能となる。
FIG. 7 shows the structure of the irradiation optical system member. This irradiation optical system member is composed of a light guide 1 composed of a large number of optical fibers and an irradiation window lens (projection lens) 2. It Then, when light enters the optical fiber from the light source in the range of the angle θ1 as shown in the figure, the light is emitted from the emitting end with a spread of the angle θ2, and the emitted light is diffused by the observation window lens 2. Then, it is irradiated into the body to be observed. FIG. 8 schematically shows the state of light emitted from each optical fiber.
By having such a spread, the observation window lens 2
It is possible to obtain a predetermined diffused light from.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の内視鏡の光照射部材では、照射光が正面に真っ直ぐ
出力されるように配置されており、またその照射範囲が
上記ライトガイド1の太さや照射窓レンズ2の構成等で
限定されるため、特に近距離では必ずしも良好な照射状
態とはならないという問題があった。内視鏡の撮影距離
は数mm(近距離)から十数cm(遠距離)程度である
が、先端面から真っ直ぐ出力される照射光によれば、遠
距離の観察、撮影に有利であり、近距離から遠距離まで
の全ての距離において、均一な照射状態とすることは困
難であった。
However, in the light illuminating member of the above-mentioned conventional endoscope, the illuminating light is arranged so as to be output straight to the front, and the illuminating range thereof is larger than that of the light guide 1. There is a problem that a good irradiation state is not always obtained particularly at a short distance because the structure is limited by the configuration of the sheath window lens 2. The imaging distance of the endoscope is about several millimeters (near distance) to more than ten centimeters (far distance), but the irradiation light emitted straight from the tip surface is advantageous for observing and photographing at a long distance. It was difficult to obtain a uniform irradiation state at all distances from short distance to long distance.

【0005】本発明は上記問題点に鑑みてなされたもの
であり、その目的は、遠距離から近距離までの被観察体
に均一かつ良好な照射光を与えることができる内視鏡の
光照射部材を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is light irradiation of an endoscope capable of giving uniform and good irradiation light to an object to be observed from a long distance to a short distance. It is to provide a member.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1請求項記載の発明は、被観察体内を観察するた
めの観察光学系部材と共に設けられ、被観察体内へ光照
射するために光ファイバー束からなるライトガイドを有
する内視鏡の照射光学系部材において、上記ライトガイ
ドの出射端面にマイクロレンズ(集合)体を配置したこ
とを特徴とする。第2請求項記載の発明は、上記マイク
ロレンズ体を、上記観察光学系部材側へ行く程、個々の
マイクロレンズの曲率半径が小さくなるように形成した
ことを特徴とする。第3請求項記載の発明は、上記マイ
クロレンズ体を、周辺部へ行く程、個々のマイクロレン
ズの曲率半径が小さくなるように形成したことを特徴と
する。第4請求項記載の発明は、上記マイクロレンズ体
を、照射光が上記観察光学系部材側へ斜めに出力される
ように、その一部又は全部において個々のマイクロレン
ズを個々の光ファイバーに対してオフセット状態となる
ように設けたことを特徴とする。
In order to achieve the above object, the invention according to the first aspect is provided with an observing optical system member for observing the inside of an object to be observed and irradiates the inside of the object to be observed with light. In an irradiation optical system member of an endoscope having a light guide composed of an optical fiber bundle, a microlens (aggregate) body is arranged on the exit end face of the light guide. The invention according to a second aspect is characterized in that the microlens body is formed such that the radius of curvature of each microlens becomes smaller toward the observation optical system member side. The invention described in claim 3 is characterized in that the microlens body is formed such that the radius of curvature of each microlens becomes smaller toward the peripheral portion. According to a fourth aspect of the present invention, in the microlens body, a part or all of the microlens is provided to each optical fiber so that the irradiation light is obliquely output to the observation optical system member side. It is characterized in that it is provided in an offset state.

【0007】[0007]

【作用】上記の構成によれば、ライトガイドの出射端面
上のマイクロレンズ体において、個々のマイクロレンズ
の曲率半径を観察光学系部材側へ行く程小さくなるよう
に変化させた場合は、照射光が観察光学系部材側へ傾く
ように配分され、遠距離側を犠牲にすることなく、近距
離側を照射できることになる。また、個々のマイクロレ
ンズを同一の曲率半径で形成し、このマイクロレンズ体
を観察光学系部材側へシフトさせ、オフセット状態にす
ることによって、照射光を近距離側へ傾けることもでき
る。
According to the above construction, when the radius of curvature of each microlens in the microlens body on the emission end face of the light guide is changed so as to become smaller toward the observation optical system member side, the irradiation light Are distributed so as to incline toward the observation optical system member side, and the short distance side can be irradiated without sacrificing the long distance side. Further, by forming each microlens with the same radius of curvature and shifting the microlens body to the observation optical system member side to be in an offset state, it is possible to tilt the irradiation light to the short distance side.

【0008】また、周辺部へ行く程、個々のマイクロレ
ンズの曲率半径を小さくなるように変化させた場合は、
ライトガイドから出射される光束の幅が全体的に拡大さ
れることになり、この結果、近距離側の照射範囲を広げ
ることが可能となる。この場合、例えば中心から観察光
学系部材側のマイクロレンズを、個々の光ファイバーに
対してオフセット状態となるように形成し、幅が広がっ
た光束の一部を観察光学系部材側に傾けることができ
る。これによれば、近距離側の照射範囲が更に拡大する
利点がある。
When the radius of curvature of each microlens is changed so as to decrease toward the periphery,
The width of the light flux emitted from the light guide is expanded as a whole, and as a result, the irradiation range on the short distance side can be expanded. In this case, for example, a microlens on the side of the observation optical system member from the center can be formed so as to be in an offset state with respect to each optical fiber, and a part of the light beam having a widened width can be tilted toward the observation optical system member side. . According to this, there is an advantage that the irradiation range on the short distance side is further expanded.

【0009】[0009]

【実施例】図1には、第1実施例に係る電子内視鏡の光
照射部材の構成が示され、図2には内視鏡先端部の構成
が示されている。まず、図2において、先端部10に
は、観察光学系部材として、観察窓レンズ11及び対物
レンズ12等が設けられ、これら観察光学系部材(1
1,12)の後方にCCD13が取り付けられている。
このCCD13には、信号線を介してプロセッサ装置が
接続されており、このプロセッサ装置でCCD13から
出力された画像信号が処理される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a light irradiation member of an electronic endoscope according to the first embodiment, and FIG. 2 shows the structure of a distal end portion of the endoscope. First, in FIG. 2, an observation window lens 11 and an objective lens 12 are provided as the observation optical system member at the tip portion 10, and these observation optical system members (1
A CCD 13 is attached to the rear of 1, 12).
A processor device is connected to the CCD 13 via a signal line, and the image signal output from the CCD 13 is processed by the processor device.

【0010】また、上記観察光学系部材(11,12)
の両サイドに、照射光学系部材として、照射窓レンズ
(投光レンズ)15A,15B、光ファイバー束からな
るライトガイド16A,16Bが設けられており、この
ライトガイド16A,16Bは、電子内視鏡本体内を通
って光源装置まで配設される。従って、光源装置からの
光が2本のライトガイド16A,16Bを介して先端部
10へ導かれることになる。
The observation optical system members (11, 12)
The irradiation window lenses (projection lenses) 15A and 15B and the light guides 16A and 16B composed of optical fiber bundles are provided on both sides of the light guides 16A and 16B as the irradiation optical system members. The light source device is arranged through the main body. Therefore, the light from the light source device is guided to the tip portion 10 via the two light guides 16A and 16B.

【0011】図1において、上記ライトガイド16は多
数本の光ファイバー17−1〜17−n(説明の都合上
5本の光ファイバーのみ描いてある)からなり、このラ
イトガイド16の出射端面に、マイクロレンズ18−1
〜18−nを有するマイクロレンズ体20が配置され
る。即ち、このマイクロレンズ18−1〜18−nは光
ファイバー17−1〜17−nのそれぞれに対応して形
成される。また、このライトガイド16では、光ファイ
バー17−1及びマイクロレンズ18−1側が上述した
観察光学系部材側に配置されることになるため、マイク
ロレンズ18−nからマイクロレンズ18−1に行くに
従って、その曲率半径が小さくなるように形成される。
In FIG. 1, the light guide 16 is composed of a large number of optical fibers 17-1 to 17-n (only five optical fibers are drawn for convenience of explanation). Lens 18-1
A microlens body 20 having ~ 18-n is arranged. That is, the microlenses 18-1 to 18-n are formed corresponding to the optical fibers 17-1 to 17-n, respectively. Further, in the light guide 16, the optical fiber 17-1 and the microlens 18-1 side are arranged on the side of the observation optical system member described above, and therefore, as the microlens 18-n goes to the microlens 18-1, The radius of curvature is formed to be small.

【0012】従って、図1に示されるように、光ファイ
バー17−1内を通過する光は、マイクロレンズ18−
1によって短い距離で収束した後に広い角度で拡散し、
一方光ファイバー17−n内を通過する光は、マイクロ
レンズ18−nによって、長い距離で収束した後に狭い
角度で拡散することになる。この結果、マイクロレンズ
体20から出力される光は、二次出射端面S1 から出射
されたことと同様の結果となり、照射光(主光線)は観
察光学系部材側に傾くように配分されることになる。
Therefore, as shown in FIG. 1, the light passing through the inside of the optical fiber 17-1 is the micro lens 18-.
1 converges at a short distance, then spreads at a wide angle,
On the other hand, the light passing through the optical fiber 17-n is converged by the microlens 18-n at a long distance and then diffused at a narrow angle. As a result, the light output from the microlens body 20 has the same result as that emitted from the secondary emission end face S1, and the irradiation light (main ray) is distributed so as to be inclined toward the observation optical system member side. become.

【0013】この第1実施例のマイクロレンズ体20を
配置したときの照射状態が図2に示されており、従来の
光照射は範囲100であり、上記マイクロレンズ体20
による光照射は範囲200となる。この図から明らかな
ように、観察光学系部材側へ向かう程、マイクロレンズ
18の曲率半径を小さくすることにより、近距離側の照
射範囲が従来に比べて広がることになる。なお、遠距離
側では周囲の光が少し減少することになるが、観察光学
系部材で観察する領域に影響を与えることはない。この
ようにして、最適な照射状態で捉えられる被観察体内
は、観察窓レンズ11、対物レンズ12を介してCCD
13で撮像されることになる。
The irradiation state when the microlens body 20 of the first embodiment is arranged is shown in FIG. 2. The conventional light irradiation is in the range 100, and the microlens body 20 is used.
The light irradiation by the light is in the range 200. As is clear from this figure, as the radius of curvature of the microlens 18 is made smaller toward the observation optical system member side, the irradiation range on the short distance side becomes wider than in the conventional case. It should be noted that although the surrounding light is slightly reduced on the far distance side, it does not affect the region observed by the observation optical system member. In this way, the inside of the body to be observed, which is captured in the optimum irradiation state, is exposed to the CCD through the observation window lens 11 and the objective lens 12.
The image is captured at 13.

【0014】図3には、第2実施例の光照射部材の構成
が示されており、この第2実施例はマイクロレンズをオ
フセット状態に配置したものである。即ち、図3のライ
トガイド22は光ファイバー23−1〜23−nからな
り、このライトガイド22の出射端面に、マイクロレン
ズ24−1〜24−nからなるマイクロレンズ体25が
取り付けられる。第1実施例と同様に、光ファイバー2
3−1及びマイクロレンズ24−1が観察光学系部材
(11,12)側に配置される。このマイクロレンズ2
4−1〜24−nは同じ曲率半径で形成されており、こ
のマイクロレンズ24−1〜24−nのそれぞれの球面
の中心位置が対応する光ファイバー23−1,23−n
のそれぞれの中心軸から観察光学系部材(11,12)
の方向に長さtだけオフセットされて配置されている。
FIG. 3 shows the construction of the light irradiation member of the second embodiment. In this second embodiment, the microlenses are arranged in an offset state. That is, the light guide 22 of FIG. 3 includes optical fibers 23-1 to 23-n, and the microlens body 25 including the microlenses 24-1 to 24-n is attached to the emission end surface of the light guide 22. Similar to the first embodiment, the optical fiber 2
3-1 and the microlens 24-1 are arranged on the observation optical system member (11, 12) side. This micro lens 2
4-1 to 24-n are formed with the same radius of curvature, and the optical fibers 23-1, 23-n corresponding to the center positions of the respective spherical surfaces of the microlenses 24-1 to 24-n.
Observation optical system members (11, 12) from their respective central axes
Are offset by a length t in the direction of.

【0015】この第2実施例によれば、各光ファイバー
23−1〜23−nの出力光(主光線)は図の上側に傾
くことになり、第1実施例の場合と同様に、二次出射端
面S2 が形成される。従って、第2実施例の場合も、図
2と同様に、近距離側へ広がる照射範囲を得ることが可
能となる。
According to the second embodiment, the output light (main ray) of each of the optical fibers 23-1 to 23-n is inclined to the upper side of the figure, and the secondary light is emitted as in the first embodiment. An emission end face S2 is formed. Therefore, also in the case of the second embodiment, it is possible to obtain the irradiation range that spreads to the short distance side, as in FIG.

【0016】図4には、第3実施例の照射光学系部材の
構成が示されており、この第3実施例は全体的に照射範
囲を拡張したものである。即ち、図4のライトガイド2
6は多数本の光ファイバー27−1〜27−nからな
り、このライトガイド26の出射端面に、マイクロレン
ズ28−1〜28−nからなるマイクロレンズ体29が
取り付けられており、この光ファイバー27−1及びマ
イクロレンズ28−1が観察光学系部材(11,12)
側に配置される。この第3実施例のマイクロレンズ体2
9では、中心部のマイクロレンズ28−iから周辺部の
マイクロレンズ28−1,28−nに行く程、その曲率
半径が小さくなるように形成される。
FIG. 4 shows the structure of the irradiation optical system member of the third embodiment, and this third embodiment is an expansion of the irradiation range as a whole. That is, the light guide 2 of FIG.
6 is composed of a large number of optical fibers 27-1 to 27-n, and a microlens body 29 composed of microlenses 28-1 to 28-n is attached to the exit end face of the light guide 26. 1 and the microlens 28-1 are observation optical system members (11, 12)
Placed on the side. The microlens body 2 of the third embodiment
In No. 9, the radius of curvature becomes smaller from the microlens 28-i in the central portion to the microlenses 28-1, 28-n in the peripheral portion.

【0017】この第3実施例によれば、周辺部へ行く
程、マイクロレンズ28の照射範囲は広くなり、この場
合は球面状の二次出射端面S3 が形成されることにな
る。この球面状の二次出射端面S3 によれば、照射範囲
が全体に広がり、この結果近距離側にも光が良好に照射
されることになる。
According to the third embodiment, the irradiation range of the microlens 28 becomes wider toward the peripheral portion, and in this case, the spherical secondary emission end face S3 is formed. According to this spherical secondary emission end surface S3, the irradiation range is spread over the entire area, and as a result, light is satisfactorily irradiated also on the short distance side.

【0018】図5には、第4実施例の構成が示されてお
り、この第4実施例は上記第3実施例において観察光学
系部材側の一部のマイクロレンズをオフセットさせたも
のである。即ち、光ファイバー27−1〜27−nに
は、周辺部に行く程その曲率半径が小さくなるマイクロ
レンズ30−1〜30−n(マイクロレンズ体31)が
設けられる。また同時に、中心部のマイクロレンズ30
−iから観察光学系部材側のマイクロレンズ30−1ま
で(マイクロレンズ体31の半分)、マイクロレンズ3
0−1に行く程、それぞれの球面の中心位置が対応する
光ファイバー27−i〜27−1のそれぞれの中心軸か
ら観察光学系部材(11,12)の方向に長さt(この
tは30−1に向かう程大きくしてもよい)だけオフセ
ットさせている。従って、観察光学系部材側のマイクロ
レンズ30ではその照射範囲が拡張された上、照射光が
更に観察光学系部材側に傾けられる。なお、上記の球面
中心位置とは、完全なレンズ球面における中心位置であ
り、実施例ではレンズの一部をカットした形となってい
る。
FIG. 5 shows the construction of the fourth embodiment. This fourth embodiment is one in which a part of the microlenses on the observation optical system member side is offset in the third embodiment. . That is, the optical fibers 27-1 to 27-n are provided with microlenses 30-1 to 30-n (microlens bodies 31) whose radius of curvature becomes smaller toward the periphery. At the same time, the central micro lens 30
-I to the microlens 30-1 on the observation optical system member side (half of the microlens body 31), the microlens 3
As it goes to 0-1, the center position of each spherical surface is a length t from the center axis of each of the corresponding optical fibers 27-i to 27-1 toward the observation optical system member (11, 12) (where t is 30). It may be increased toward -1). Therefore, the irradiation range of the microlens 30 on the observation optical system member side is expanded, and the irradiation light is further inclined to the observation optical system member side. It should be noted that the above-mentioned spherical center position is a center position on a perfect lens spherical surface, and is a shape obtained by cutting a part of the lens in the embodiment.

【0019】図6には、上記第4実施例の照射状態が示
されており、第4実施例では図示300の照射範囲が得
られることになる。即ち、両方の照射窓レンズ15A,
15Bの内視鏡の外周側では、図2の場合と比較する
と、従来の照射範囲100よりも広い照射範囲が確保さ
れると共に、照射窓レンズ15A,15Bの観察光学系
部材(11,12)側では、更に近距離側に照射範囲が
拡張されることになる。従って、遠距離から近距離まで
の広い撮影範囲に照射光を配分することが可能となる。
なお、この第4実施例では、マイクロレンズ部31の半
分について、オフセット状態とするようにしたが、マイ
クロレンズ30の全体をオフセット状態としてもよい。
FIG. 6 shows the irradiation state of the fourth embodiment, and in the fourth embodiment, the irradiation range shown in the drawing 300 can be obtained. That is, both irradiation window lenses 15A,
On the outer peripheral side of the endoscope of 15B, as compared with the case of FIG. 2, an irradiation range wider than the conventional irradiation range 100 is secured, and the observation optical system members (11, 12) of the irradiation window lenses 15A, 15B. On the side, the irradiation range will be extended to the closer side. Therefore, it becomes possible to distribute the irradiation light to a wide photographing range from a long distance to a short distance.
Although the half of the microlens portion 31 is set to the offset state in the fourth embodiment, the entire microlens 30 may be set to the offset state.

【0020】上記実施例では、電子内視鏡に適用した例
を示したが、本発明は光学的に観察する内視鏡に適用す
ることができる。また、上記実施例の2系統の照射光学
系部材は、1系統とすることができる。
In the above-mentioned embodiment, the example applied to the electronic endoscope is shown, but the present invention can be applied to the endoscope for optical observation. Further, the irradiation optical system members of the two systems of the above-mentioned embodiment can be one system.

【0021】[0021]

【発明の効果】以上説明したように、第1請求項記載の
発明によれば、光ファイバー束からなるライトガイドの
出射端面に、マイクロレンズ(集合)体を配置したの
で、ライトガイドからの出射光の配光分布を変えること
ができ、照射光を近距離側へシフトさせたり、照射領域
を近距離側へ拡張することが可能となる。
As described above, according to the invention described in the first aspect, since the microlens (aggregate) body is arranged on the emission end face of the light guide composed of the optical fiber bundle, the light emitted from the light guide is emitted. It is possible to change the light distribution of the light, and it is possible to shift the irradiation light to the short distance side or to expand the irradiation region to the short distance side.

【0022】第2請求項記載の発明によれば、上記マイ
クロレンズ体において、上記観察光学系部材側へ行く
程、個々のマイクロレンズの曲率半径を小さく形成した
ので、照射領域を近距離側へ拡張することができ、遠距
離から近距離まで照射光を均一に与えることが可能とな
る。第3請求項記載の発明によれば、周辺部へ行く程、
個々のマイクロレンズの曲率半径を小さく形成したの
で、照射領域を全体的に拡張することにより、照射領域
を近距離側へも拡張することができ、遠距離から近距離
まで照射光が良好に与えられることになる。
According to the second aspect of the invention, in the microlens body, the radius of curvature of each microlens is made smaller toward the observation optical system member side. It can be expanded, and irradiation light can be uniformly applied from a long distance to a short distance. According to the invention described in claim 3,
Since the radius of curvature of each microlens is made small, the irradiation area can be expanded to the short distance side by expanding the irradiation area as a whole, and the irradiation light can be given well from long distance to short distance. Will be done.

【0023】。第4請求項記載の発明によれば、上記マ
イクロレンズ体の個々のマイクロレンズを個々の光ファ
イバーに対してオフセット状態となるようにし、照射光
が観察光学系部材側へ斜めに出力されるようにしたの
で、単独の構成により、光ファイバーからの出力光を近
距離側へシフトすることができ、また上記の構成との組
合せにより、近距離側への配光を促進することが可能と
なる。
.. According to the fourth aspect of the invention, the individual microlenses of the microlens body are set in an offset state with respect to the individual optical fibers so that the irradiation light is obliquely output to the observation optical system member side. Therefore, with a single configuration, the output light from the optical fiber can be shifted to the short distance side, and in combination with the above configuration, the light distribution to the short distance side can be promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る内視鏡(電子内視
鏡)の光照射部材の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a light irradiation member of an endoscope (electronic endoscope) according to a first embodiment of the present invention.

【図2】図1の光照射部材を取り付けた内視鏡先端部の
構成及び照射光の出力状態を示す図である。
FIG. 2 is a diagram showing a configuration of an endoscope tip portion to which the light irradiation member of FIG. 1 is attached and an output state of irradiation light.

【図3】第2実施例の光照射部材の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of a light irradiation member of a second embodiment.

【図4】第3実施例の光照射部材の構成を示す図であ
る。
FIG. 4 is a diagram showing a configuration of a light irradiation member of a third embodiment.

【図5】第4実施例の光照射部材の構成を示す図であ
る。
FIG. 5 is a diagram showing a configuration of a light irradiation member of a fourth embodiment.

【図6】第4実施例における照射光の出力状態を示す図
である。
FIG. 6 is a diagram showing an output state of irradiation light in a fourth embodiment.

【図7】従来の光照射部材の構成を示す図である。FIG. 7 is a diagram showing a configuration of a conventional light irradiation member.

【図8】図7のライトガイドにおける光出力状態を模式
的に描いた図である。
8 is a diagram schematically illustrating a light output state in the light guide of FIG.

【符号の説明】[Explanation of symbols]

10 … 先端部、 11 … 観察窓レンズ、 12 … 対物レンズ、 2,15(A,B) … 照射窓レンズ、 1,16(A,B),22,26(A,B) … ライ
トガイド、 17,23,27 … 光ファイバー、 18,24,28,30 … マイクロレンズ、 20(A,B),25,29,31(A,B) … マ
イクロレンズ(集合)体。
10 ... Tip part, 11 ... Observation window lens, 12 ... Objective lens, 2,15 (A, B) ... Irradiation window lens, 1, 16 (A, B), 22, 26 (A, B) ... Light guide, 17, 23, 27 ... Optical fiber, 18, 24, 28, 30 ... Microlens, 20 (A, B), 25, 29, 31 (A, B) ... Microlens (aggregate) body.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 観察光学系部材と共に設けられ、光ファ
イバー束からなるライトガイドを有する内視鏡の照射光
学系部材において、上記ライトガイドの出射端面にマイ
クロレンズ体を配置したことを特徴とする内視鏡の光照
射部材。
1. An irradiation optical system member for an endoscope, which is provided with an observation optical system member and has a light guide composed of an optical fiber bundle, wherein a microlens body is arranged on an emission end face of the light guide. The light irradiation member of the endoscope.
【請求項2】 上記マイクロレンズ体は、上記観察光学
系部材側へ行く程、個々のマイクロレンズの曲率半径が
小さくなるように形成したことを特徴とする上記第1請
求項記載の内視鏡の光照射部材。
2. The endoscope according to claim 1, wherein the microlens body is formed such that the radius of curvature of each microlens becomes smaller toward the observation optical system member side. Light irradiation member.
【請求項3】 上記マイクロレンズ体は、周辺部へ行く
程、個々のマイクロレンズの曲率半径が小さくなるよう
に形成したことを特徴とする上記第1請求項記載の内視
鏡の光照射部材。
3. The light illuminating member for an endoscope according to claim 1, wherein the microlens body is formed such that the radius of curvature of each microlens becomes smaller toward the peripheral portion. .
【請求項4】 上記マイクロレンズ体は、照射光が上記
観察光学系部材側へ斜めに出力されるように、その一部
又は全部において個々のマイクロレンズを個々の光ファ
イバーに対してオフセット状態となるように設けたこと
を特徴とする上記第1乃至第3請求項記載の内視鏡の光
照射部材。
4. The microlens body is such that some or all of the microlenses are offset with respect to the individual optical fibers so that the irradiation light is obliquely output to the observation optical system member side. The light irradiating member for an endoscope according to any one of claims 1 to 3, wherein the light irradiating member is provided as described above.
JP28117094A 1994-10-19 1994-10-19 Light irradiation member of endoscope Expired - Lifetime JP3534853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28117094A JP3534853B2 (en) 1994-10-19 1994-10-19 Light irradiation member of endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28117094A JP3534853B2 (en) 1994-10-19 1994-10-19 Light irradiation member of endoscope

Publications (2)

Publication Number Publication Date
JPH08122661A true JPH08122661A (en) 1996-05-17
JP3534853B2 JP3534853B2 (en) 2004-06-07

Family

ID=17635332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28117094A Expired - Lifetime JP3534853B2 (en) 1994-10-19 1994-10-19 Light irradiation member of endoscope

Country Status (1)

Country Link
JP (1) JP3534853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053862A (en) * 1997-08-01 2000-04-25 Olympus Optical Co., Ltd. Illumination optical system
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
JP2012203038A (en) * 2011-03-23 2012-10-22 Olympus Corp Wide-angle light detection member and scan type observation device using the same
CN115508923A (en) * 2022-09-21 2022-12-23 歌尔光学科技有限公司 Fly-eye lens, projection illumination light path and projection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053862A (en) * 1997-08-01 2000-04-25 Olympus Optical Co., Ltd. Illumination optical system
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
JP2012203038A (en) * 2011-03-23 2012-10-22 Olympus Corp Wide-angle light detection member and scan type observation device using the same
CN115508923A (en) * 2022-09-21 2022-12-23 歌尔光学科技有限公司 Fly-eye lens, projection illumination light path and projection device
CN115508923B (en) * 2022-09-21 2024-03-12 歌尔光学科技有限公司 Fly-eye lens, projection illumination light path and projection device

Also Published As

Publication number Publication date
JP3534853B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JP2001166223A (en) Endoscope
JP3017245B2 (en) Endoscope
US20150057533A1 (en) Optical scanning device
JPS62287215A (en) Optical system device for endoscope lighting
JPS6115401B2 (en)
JPH06175041A (en) Image focusinge endoscope and endoscope inspecting method using phase-conjugate image focusing technology
JP3534853B2 (en) Light irradiation member of endoscope
US6063024A (en) Observation apparatus
JP5084331B2 (en) Observation optical system
JPS6042728A (en) Image forming optical system
US4874220A (en) Viewing optical system for use with endoscope
JPH10253841A (en) Image forming optical device
JP2934024B2 (en) Coaxial illumination observation device
JP2006288821A (en) Electronic endoscope
US11269174B2 (en) Endoscopic imaging
JPS6088923A (en) Endoscope
JP2556514B2 (en) Illumination optics for rigid endoscopes
JP2584465Y2 (en) Skin surface observation device
JP5492382B2 (en) Work surface photography camera
JP3477314B2 (en) Endoscope lighting system
JPS59193403A (en) Image transmitting and observing device
JP3097929B2 (en) Transmitted light-incident light selection type condensing guide
JP3041062B2 (en) Endoscope device
JPH04175717A (en) Objective tool for expansion observation device
JPH03275028A (en) Endoscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term