JPH08122323A - Metal-sample decomposing apparatus - Google Patents

Metal-sample decomposing apparatus

Info

Publication number
JPH08122323A
JPH08122323A JP6264084A JP26408494A JPH08122323A JP H08122323 A JPH08122323 A JP H08122323A JP 6264084 A JP6264084 A JP 6264084A JP 26408494 A JP26408494 A JP 26408494A JP H08122323 A JPH08122323 A JP H08122323A
Authority
JP
Japan
Prior art keywords
sample
metal
heating
metal sample
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6264084A
Other languages
Japanese (ja)
Other versions
JP3328448B2 (en
Inventor
Yasuhiro Hayakawa
泰弘 早川
Akihiro Ono
昭紘 小野
Hiroyuki Kondo
裕之 近藤
Takeshi Uemura
健 植村
Masahiro Midorikawa
正博 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26408494A priority Critical patent/JP3328448B2/en
Publication of JPH08122323A publication Critical patent/JPH08122323A/en
Application granted granted Critical
Publication of JP3328448B2 publication Critical patent/JP3328448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a metal-sample decomposing apparatus by which a simple can be fixed and heated quickly and in which an electrolyte or an acid is not leaked. CONSTITUTION: A metal-sample decomposing apparatus is provided with a decomposition cell 12 which supports a block-shaped metal sample S via a seal member 19 and which supplies an electrolyte or an acid to a sample face so as to decompose the metal sample S and with a heating device 41 which heats the metal sample S. The metal-sample decomposition apparatus comprises a sample fixation device 31 provided with a pressure member 32 which can be advanced to, and retreated from, the metal sample S supported by the decomposition cell 12 and with a driving gear 33 which advances and retreats the pressure member 32. In addition, the heating device 41 is provided with a heating lamp 42 and with a condensing mirror 44 by which light from the heating lamp 42 is condensed on the sample face. Then, the heating lamp 42 and the condensing mirror 44 are attached to the pressure member 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、原子吸光分析法、分
光光度法、プラズマ発光分析法、試験紙光電光度分析法
その他分析法において、分析試料調製のための金属試料
分解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal sample decomposing apparatus for preparing an analytical sample in atomic absorption analysis, spectrophotometry, plasma emission analysis, test strip photoelectric photometry and other analytical methods.

【0002】[0002]

【従来の技術】金属を製造する工程で、精錬工程中の溶
融金属の化学成分を迅速に測定し、精錬をコントロール
したり、成分調整することは、金属の物理的または化学
的特性を決定する上で非常に重要なことである。現在、
金属中の化学成分を迅速に測定するためには、スパーク
放電発光分光分析法や蛍光X線分析法などが広く用いら
れている。これら機器分析法は迅速性に優れるが、分析
精度上の問題がある。
2. Description of the Related Art In the process of producing a metal, the chemical composition of molten metal during the refining process is rapidly measured to control the refining or adjust the composition to determine the physical or chemical characteristics of the metal. That is very important above. Current,
In order to rapidly measure chemical components in metals, spark discharge optical emission spectroscopy, fluorescent X-ray analysis and the like are widely used. Although these instrumental analysis methods are excellent in speed, there is a problem in analysis accuracy.

【0003】一方、プラズマ発光分析をはじめとする化
学分析は一般に分析精度が良く、研究実験室内で広く利
用されている。しかし、迅速性で劣ることから、精錬工
程中の溶融金属の化学成分の分析には利用しにくいもの
であった。この迅速性に欠ける原因は、これら化学分析
のための試料溶液調製に長時間を要するためである。す
なわち、上記試料溶液の作成のためには、金属試片
(対象母材)からドリル等で研削粉を得る、上記試料
を1g正確に秤量する、この秤量試料をビーカーに移
し、溶解用酸(塩酸、硝酸、硫酸、過塩素酸等)を20
ml添加する、加熱して試料を完全に溶解する、完全
溶解後、溶解液を冷却する、溶解液を100mlのメス
フラスコに移し純粋で100mlに正確に薄める、の各手
順を経る必要があり、20分前後の長時間を要する。製
鋼工場では1日に数千個の試料を分析することも行われ
ており、試料調製時間の短縮は重要な課題となってい
る。
On the other hand, chemical analysis such as plasma emission analysis generally has high analytical accuracy and is widely used in research laboratories. However, since it is inferior in speed, it is difficult to use for analysis of chemical components of molten metal during refining process. The reason for this lack of swiftness is that it takes a long time to prepare a sample solution for these chemical analyses. That is, in order to prepare the sample solution, grinding powder is obtained from a metal test piece (target base material) with a drill, 1 g of the sample is accurately weighed, the weighed sample is transferred to a beaker, and a dissolving acid ( 20 hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, etc.
ml addition, heating to completely dissolve the sample, after complete dissolution, cooling the solution, transferring the solution to a 100 ml volumetric flask and diluting it exactly to 100 ml, it is necessary to go through each procedure, It takes a long time of around 20 minutes. At steelmaking factories, thousands of samples are analyzed every day, and shortening the sample preparation time is an important issue.

【0004】このような金属試料を分解し試料溶液を調
製する工程の大幅な迅速化、省力化を図るために、ブロ
ック状の鋳込み試料の表面を電解し、試料溶液を得て直
接、連続的に分析装置に導入するための装置が特開昭6
3−151853号公報に開示されている。
In order to greatly speed up the process of decomposing such a metal sample to prepare a sample solution and save labor, the surface of a block-shaped cast sample is electrolyzed to obtain a sample solution directly and continuously. A device for introducing into an analyzer is disclosed in Japanese Patent Laid-Open No.
It is disclosed in Japanese Patent Publication No. 3-151853.

【0005】また、金属試料中の硫黄および燐を迅速に
分析するために、ブロック状金属試料を電気分解または
還元力を有する酸と反応させて硫黄および燐の水素化物
ガスを発生させ、これらガスをガス検出器で検出・定量
する方法および装置が特開平6−186221号公報に
開示されている。
In order to rapidly analyze sulfur and phosphorus in a metal sample, a block metal sample is reacted with an acid having an electrolyzing or reducing power to generate a hydride gas of sulfur and phosphorus, and these gases are generated. Japanese Patent Laid-Open No. 6-186221 discloses a method and an apparatus for detecting and quantifying gas with a gas detector.

【0006】[0006]

【発明が解決しようとする課題】上記の特開昭63−1
51853号公報に開示された化学分析用装置によれば
1試料当たり数分程度の短時間で試料溶液の調製が可能
となり、従来の化学分析法に要する時間と比較して、約
1/10に大幅短縮ができる。しかし、この装置におい
ても次のような問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the chemical analysis apparatus disclosed in Japanese Patent No. 51853, it is possible to prepare a sample solution in a short time of about several minutes per sample, which is about 1/10 of the time required for a conventional chemical analysis method. Can be greatly shortened. However, this device also has the following problems.

【0007】 金属試料の固定が不十分の場合、電解
液漏れが生じ、電解に支障が生じること、 金属試料中に室温で容易に電気分解されない難分解
性の化合物が含まれている場合、上記装置では分析が不
可能なこと。
If the metal sample is insufficiently fixed, electrolyte leakage may occur and electrolysis may be hindered. If the metal sample contains a persistent compound that is not easily electrolyzed at room temperature, It cannot be analyzed by the device.

【0008】問題点の解決には、金属試料の真上から
空気圧シリンダにより試料固定部を適当な圧力で押し付
ける方法が有効である。問題点の解決には、赤外線ラ
ンプ照射による加熱が有効であるが、迅速な加熱のため
には金属試料の真上からの照射が効率的である。しか
し、試料固定部が金属試料の真上に配置されている場
合、赤外線ランプは斜め上方から照射せざるを得なかっ
た。
In order to solve the problem, it is effective to press the sample fixing portion with an appropriate pressure from directly above the metal sample with a pneumatic cylinder. In order to solve the problem, heating by irradiation with an infrared lamp is effective, but for rapid heating, irradiation from directly above the metal sample is efficient. However, when the sample fixing part is arranged right above the metal sample, the infrared lamp had to irradiate it obliquely from above.

【0009】また、燐および硫黄分析を目的とした特開
平6−186221号公報の技術においても上記の問
題があり、試料の加熱が必要な場合があったが、試料の
斜め上方から赤外線ランプにより照射する方法では効率
が悪く、加熱時間が長くかかる問題があった。
Further, the technique disclosed in Japanese Patent Laid-Open No. 6-186221 for the purpose of analyzing phosphorus and sulfur has the above-mentioned problems, and heating of the sample may be required. The method of irradiation has a problem that efficiency is low and heating time is long.

【0010】以上、電気分解の場合について説明した
が、酸分解により分析試料を調製する場合も同様な問題
がある。
Although the case of electrolysis has been described above, the same problem occurs when an analytical sample is prepared by acid decomposition.

【0011】この発明は、試料の固定および加熱を迅速
に行うことができ、電解液または酸漏れが生じることの
ない金属試料分解装置を提供しようとするものである。
The present invention is intended to provide a metal sample decomposing apparatus capable of rapidly fixing and heating a sample and preventing leakage of an electrolytic solution or an acid.

【0012】[0012]

【課題を解決するための手段】この発明の金属試料分解
装置は、シール部材を介してブロック状金属試料を支持
し、試料面に電解液または酸を供給して金属試料を分解
する分解セルと、金属試料を加熱する加熱装置とを備え
た金属試料分解装置において、前記分解セルに支持され
た金属試料に対して進退可能な押え部材と、押え部材を
進退する駆動装置とを備えた試料固定装置を有し、前記
加熱装置が加熱ランプと加熱ランプからの光を試料面に
集光する集光鏡とを備え、加熱ランプおよび集光鏡が前
記押え部材に取り付けられている。
A metal sample decomposing device of the present invention is a decomposition cell for supporting a block-shaped metal sample via a seal member and supplying an electrolytic solution or an acid to the sample surface to decompose the metal sample. In a metal sample decomposing device including a heating device for heating a metal sample, a sample fixing device including a holding member that can move forward and backward with respect to the metal sample supported by the decomposition cell, and a drive device that moves the pressing member forward and backward. The heating device includes a heating lamp and a condenser mirror for condensing light from the heating lamp onto a sample surface, and the heating lamp and the condenser mirror are attached to the holding member.

【0013】押え部材を進退する駆動装置には、空気圧
シリンダ、油圧シリンダ、あるいは電動リニアアクチュ
エータが用いられる。加熱ランプとして、ハロゲンラン
プ、または赤外線ランプが適している。加熱ランプから
の光を試料面に集光するには、集光鏡の鏡面を楕円体面
で形成するとよい。また、金属試料を効率よく加熱する
には、集光鏡の照射口が試料面の直上に開口し、鏡軸が
試料面に垂直であることが望ましい。
A pneumatic cylinder, a hydraulic cylinder, or an electric linear actuator is used as a drive device for moving the pressing member forward and backward. A halogen lamp or an infrared lamp is suitable as the heating lamp. In order to collect the light from the heating lamp on the sample surface, the mirror surface of the condenser mirror may be formed into an ellipsoidal surface. Further, in order to efficiently heat the metal sample, it is desirable that the irradiation port of the condenser mirror is opened directly above the sample surface and the mirror axis is perpendicular to the sample surface.

【0014】上記金属試料分解装置に金属試料の温度を
検出する温度検出器と、温度検出器からの信号に基づい
て加熱ランプの印加電圧を制御する温度調節器とを設け
てもよい。温度検出器として、応答速度の速いサーミス
ターまたは熱電対が適している。温度調節器は、検出し
た温度に基づいて加熱ランプの印加電圧をオン・オフす
る、または連続的に調整するのいずれであってもよい。
The metal sample decomposing device may be provided with a temperature detector for detecting the temperature of the metal sample and a temperature controller for controlling the voltage applied to the heating lamp based on the signal from the temperature detector. A thermistor or thermocouple, which has a fast response speed, is suitable as the temperature detector. The temperature controller may either turn on / off the applied voltage of the heating lamp or continuously adjust the applied voltage based on the detected temperature.

【0015】上記のように構成された金属試料分解装置
の出側に、試料溶液または試料ガスを分析試料とする分
析装置が接続される。試料ガスを分析試料とする場合、
分解セルの分解室にキャリアガスを供給するキャリアガ
ス供給装置が接続される。
An analysis device using a sample solution or a sample gas as an analysis sample is connected to the outlet side of the metal sample decomposition device configured as described above. When using the sample gas as the analysis sample,
A carrier gas supply device for supplying a carrier gas is connected to the decomposition chamber of the decomposition cell.

【0016】[0016]

【作用】加熱ランプからの光は直接または集光鏡面で反
射されて試料面を照射する。加熱ランプからの光を集光
照射することにより金属試料は急速に昇温する。また、
押え部材に加熱ランプが取り付けられているので、金属
試料の固定に引き続き、直ちに金属試料の真上から加熱
できる。この結果、短時間で所要量の試料溶液または試
料ガスが得られる。さらに、金属試料を分解セルにシー
ル部材を介して支持し、押え部材で金属試料を支持部に
押し付けて固定する。したがって、試料支持部から電解
液または酸が漏れることはない。
The light from the heating lamp irradiates the sample surface directly or by being reflected by the condenser mirror surface. By concentrating and irradiating the light from the heating lamp, the temperature of the metal sample is rapidly raised. Also,
Since the heating lamp is attached to the holding member, immediately after the metal sample is fixed, the metal sample can be heated immediately above. As a result, the required amount of sample solution or sample gas can be obtained in a short time. Further, the metal sample is supported on the decomposition cell via the seal member, and the metal sample is pressed against the supporting portion by the pressing member to be fixed. Therefore, the electrolytic solution or the acid does not leak from the sample support.

【0017】温度検出器と温度調節器を備えた装置で
は、金属試料を適切な温度に迅速かつ効率的に加熱する
ことができる。
The apparatus provided with the temperature detector and the temperature controller can quickly and efficiently heat the metal sample to an appropriate temperature.

【0018】[0018]

【実施例】この発明の一実施例を図を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.

【0019】図1は、この発明の金属試料分解装置の一
例を示している。この実施例の金属試料分解装置は鉄鋼
試料を電気分解して、試料溶液を調製する。この実施例
では、金属試料分解装置にプラズマ発光分析装置が接続
される。
FIG. 1 shows an example of the metal sample decomposing apparatus of the present invention. The metal sample decomposition apparatus of this example electrolyzes a steel sample to prepare a sample solution. In this embodiment, a plasma emission analyzer is connected to the metal sample decomposing device.

【0020】金属試料分解装置は、主として電解装置1
1、試料固定装置31、試料加熱装置41、および温度
制御装置51とからなっている。
The metal sample decomposing device is mainly an electrolysis device 1.
1, a sample fixing device 31, a sample heating device 41, and a temperature control device 51.

【0021】電解装置11の電解セル12はフッ化エチ
レン樹脂で作られており、電解室13にグラファイト電
極16が挿入されている。グラファイト電極16には定
電位/定電流電解装置17の一端が接続されている。電
解室13の上部は試料支持部14となっており、フッ素
ゴム製の環状ガスケット19が取り付けられている。電
解室13の入側に、定流量ポンプ22を介して電解液タ
ンク21が接続されている。
The electrolysis cell 12 of the electrolysis device 11 is made of fluorinated ethylene resin, and the graphite electrode 16 is inserted in the electrolysis chamber 13. One end of a constant potential / constant current electrolysis device 17 is connected to the graphite electrode 16. The upper part of the electrolysis chamber 13 serves as a sample support portion 14, and an annular gasket 19 made of fluororubber is attached. An electrolytic solution tank 21 is connected to the inlet side of the electrolytic chamber 13 via a constant flow pump 22.

【0022】試料固定装置31は、円筒状のハウジング
32の頂部に空気圧シリンダ33のピストンロッド34
が連結されている。空気圧シリンダ34には、圧力調節
器36および電磁弁37を介して空気圧源35が接続さ
れている。ハウジング32は空気圧シリンダ33の駆動
により昇降し、押え部材として作用する。また、ハウジ
ング32の下端面に、白金線製の接触子39が取り付け
られている。接触子39は、定電位/定電流電解装置1
7の一端が接続されており、電解を行う際に試料S側の
電気接続端子となる。
The sample fixing device 31 comprises a cylindrical housing 32, and a piston rod 34 of a pneumatic cylinder 33 mounted on the top of the cylindrical housing 32.
Are connected. An air pressure source 35 is connected to the air pressure cylinder 34 via a pressure regulator 36 and a solenoid valve 37. The housing 32 moves up and down by the driving of the pneumatic cylinder 33 and acts as a holding member. A contact 39 made of platinum wire is attached to the lower end surface of the housing 32. The contact 39 is a constant potential / constant current electrolysis device 1
One end of 7 is connected and becomes an electrical connection terminal on the side of the sample S when electrolysis is performed.

【0023】試料加熱装置41は、上記ハウジング32
内に赤外線ランプ42および集光鏡44が取り付けられ
ている。赤外線ランプ42は消費電力が150wであ
り、集光鏡44の上端寄りに配置されている。集光鏡4
4の鏡面45は楕円体面をしている。また、集光鏡44
の照射口46は試料面の直上に開口し、鏡軸Mが試料面
に垂直となっている。
The sample heating device 41 includes the housing 32.
An infrared lamp 42 and a condenser mirror 44 are attached inside. The infrared lamp 42 has a power consumption of 150 w and is arranged near the upper end of the condenser mirror 44. Condensing mirror 4
The mirror surface 45 of No. 4 has an ellipsoidal surface. In addition, the condenser mirror 44
The irradiation port 46 is opened immediately above the sample surface, and the mirror axis M is perpendicular to the sample surface.

【0024】温度制御装置51は、空気圧シリンダ54
が上記ハウジング32の側方に配置されており、空気圧
シリンダ54には上記空気圧源35が圧力調節器36お
よび電磁弁53を介して接続されている。空気圧シリン
ダ54のピストンロッド55の先端部に、サーミスタ温
度検出器57が取り付けられている。温度制御装置51
は温度調節器61を備えており、温度調節器61の入力
側にサーミスタ温度検出器57が、また出力側に温度調
節器62がそれぞれ接続されている。
The temperature control device 51 includes a pneumatic cylinder 54.
Is arranged on the side of the housing 32, and the pneumatic pressure source 35 is connected to the pneumatic cylinder 54 via a pressure regulator 36 and a solenoid valve 53. A thermistor temperature detector 57 is attached to the tip of the piston rod 55 of the pneumatic cylinder 54. Temperature control device 51
Is equipped with a temperature controller 61, the thermistor temperature detector 57 is connected to the input side of the temperature controller 61, and the temperature controller 62 is connected to the output side.

【0025】電解室13の出側には、フィルタ65、気
液分離管66および試料導入管67を介してプラズマ発
光分析装置68が接続されている。また、気液分離管6
6には、廃液容器69が接続されている。
A plasma emission analyzer 68 is connected to the outlet side of the electrolysis chamber 13 via a filter 65, a gas-liquid separation pipe 66 and a sample introduction pipe 67. In addition, the gas-liquid separation tube 6
A waste liquid container 69 is connected to 6.

【0026】ここで、上記のように構成された金属試料
分解装置により、試料溶液を調製する方法について説明
する。
Here, a method for preparing a sample solution by the metal sample decomposing apparatus configured as described above will be described.

【0027】製鋼工程で採取した溶鋼を短円柱状(直径
30 mm 、高さ20 mm )に鋳込み、1面を研磨して試
料Sとする。研磨面を下にして試料Sを電解セル12の
環状ガスケット19を介して試料支持部14に載せる。
ついで、電磁弁37を開いて空気圧シリンダ33を駆動
し、ハウジング32を降下させて試料Sを押え、電解セ
ル12の試料支持部14に固定する。これにより、試料
Sと環状ガスケット19との間は隙間なく密閉できるの
で、定流量ポンプ22により電解液を電解セル12に送
液する際、電解液が漏れることはない。また、接触子3
9が試料面に接触し、試料Sとの導通が得られる。試料
Sが試料支持部14に固定されると、電磁弁53を開い
て空気圧シリンダ54を駆動し、サーミスタ温度検出器
57の検出端58を試料Sの側面に押し付けて接触させ
る。つぎに、赤外線ランプ42を点灯するとともに、定
流量ポンプ22を駆動して電解液を電解セル12に供給
する。赤外線ランプ42による、試料面上の照射野の直
径は約15 mm である。試料Sは、約1〜2分で60℃
となる。サーミスタ温度検出器57で検出された試料温
度は温度調節器61に入力され、温度調節器61は加熱
電源62をオン・オフして試料を60±1℃に保持す
る。電解液は試料Sの下面(研磨面)に接して電解セル
12から流出する。試料Sを陽極とし、グラファイト電
極16と試料Sとの間に電圧(1.5 V)を加える。こ
れにより、試料Sが電気分解され、分析元素を含む試料
溶液が得られる。試料溶液の調製時間は約30秒であ
る。試料溶液はフィルタ65を通ってプラズマ発光分析
装置68に送られる。
The molten steel sampled in the steelmaking process is cast into a short columnar shape (diameter 30 mm, height 20 mm) and one surface is polished to obtain a sample S. The sample S is placed on the sample support portion 14 via the annular gasket 19 of the electrolytic cell 12 with the polishing surface facing down.
Then, the solenoid valve 37 is opened to drive the pneumatic cylinder 33, the housing 32 is lowered to press the sample S, and the sample S is fixed to the sample support portion 14 of the electrolysis cell 12. As a result, the sample S and the annular gasket 19 can be hermetically sealed without any gap, so that when the constant flow pump 22 sends the electrolytic solution to the electrolytic cell 12, the electrolytic solution does not leak. Also, the contact 3
9 comes into contact with the sample surface, and conduction with the sample S is obtained. When the sample S is fixed to the sample support portion 14, the electromagnetic valve 53 is opened to drive the pneumatic cylinder 54, and the detection end 58 of the thermistor temperature detector 57 is pressed against the side surface of the sample S and brought into contact therewith. Next, the infrared lamp 42 is turned on and the constant flow pump 22 is driven to supply the electrolytic solution to the electrolytic cell 12. The diameter of the irradiation field on the sample surface by the infrared lamp 42 is about 15 mm. Sample S is 60 ° C in about 1 to 2 minutes
Becomes The sample temperature detected by the thermistor temperature detector 57 is input to the temperature controller 61, and the temperature controller 61 turns on / off the heating power source 62 to hold the sample at 60 ± 1 ° C. The electrolytic solution comes into contact with the lower surface (polishing surface) of the sample S and flows out from the electrolytic cell 12. Using the sample S as an anode, a voltage (1.5 V) is applied between the graphite electrode 16 and the sample S. As a result, the sample S is electrolyzed and a sample solution containing the analysis element is obtained. The preparation time of the sample solution is about 30 seconds. The sample solution is sent to the plasma emission spectrometer 68 through the filter 65.

【0028】上記のように、ハウジング32は、試料
Sを固定する、試料Sを真上から照射できる赤外線ラ
ンプ42を収納する、電解の際の試料側電気接続端子
となる、という3つの機能を兼ね備えている。
As described above, the housing 32 has three functions of fixing the sample S, accommodating the infrared lamp 42 capable of irradiating the sample S from directly above, and serving as a sample side electric connection terminal during electrolysis. Have both.

【0029】図2は、この発明の他の実施例を示してい
る。この実施例では、金属試料分解装置に試験紙光電光
度分析装置が接続される。なお、図1に示した装置およ
び部材と同様のものには同一の参照符号を付け、その説
明は省略する。
FIG. 2 shows another embodiment of the present invention. In this embodiment, a test strip photoelectric photometric device is connected to the metal sample decomposing device. It should be noted that the same parts and components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0030】電解液供給孔24が、グラファイト電極1
6を貫通している。電解液供給孔24の入側に定流量ポ
ンプ22を介して電解液タンク21が接続されている。
また、 電解セル12の電解室13に、圧力調節弁27
を介して窒素ガスボンベ26が接続されている。窒素ガ
スはキャリヤガスとして作用し、電解室13で発生した
試料ガス(水素化物ガス)を試験紙光電光度分析装置7
1に搬送する。
The electrolytic solution supply hole 24 has the graphite electrode 1
It penetrates through 6. The electrolytic solution tank 21 is connected to the inlet side of the electrolytic solution supply hole 24 via a constant flow rate pump 22.
In addition, the pressure control valve 27 is installed in the electrolysis chamber 13 of the electrolysis cell 12.
A nitrogen gas cylinder 26 is connected via the. The nitrogen gas acts as a carrier gas, and the sample gas (hydride gas) generated in the electrolysis chamber 13 is used as a test paper photoelectric photometric analyzer 7
Transport to 1.

【0031】電解室13の出側に、フィルタ65、気液
分離管66および試料導入管67を介して試験紙光電光
度分析装置71が接続されている。さらに、廃液容器6
9が気液分離管66に接続されている。
A test strip photoelectric photometric analyzer 71 is connected to the outlet side of the electrolysis chamber 13 via a filter 65, a gas-liquid separation tube 66 and a sample introduction tube 67. Furthermore, the waste liquid container 6
9 is connected to the gas-liquid separation pipe 66.

【0032】試験紙光電光度分析装置71は、H2 S検
出用試験紙およびPH3 検出用試験紙(いずれも図示し
ない)を備えている。両試験紙にそれぞれ水素化物ガス
を接触させて試験紙を発色させ、発色強度を検出して硫
黄および燐を定量する。
The test paper photoelectric photometric analyzer 71 is provided with a test paper for H 2 S detection and a test paper for PH 3 detection (neither is shown). A hydride gas is brought into contact with each of the test papers to develop the color of the test paper, and the color development intensity is detected to quantify sulfur and phosphorus.

【0033】ここで、上記のように構成された金属試料
分解装置およびこれに接続された燐および硫黄分析装置
を用いて、試料ガス(水素化物ガス)を調製し、分析す
る方法について説明する。
Here, a method of preparing and analyzing a sample gas (hydride gas) using the metal sample decomposing device configured as described above and the phosphorus and sulfur analyzing device connected thereto will be described.

【0034】製鋼工程で採取した溶鋼を短円柱状(直径
30 mm 、高さ20 mm )に鋳込み、1面を研磨して鋼
試料Sとする。研磨面を下にして鋼試料Sをセル本体1
2の支持部14に環状ガスケット19を介して載せる。
定流量ポンプ22により、一定流量(20ml/min)で、
電解液タンク21から電解液(HCl)を電解セル12
に供給する。同時に窒素ガスボンベ26から窒素ガスを
電解セル12に80ml/minで供給する。電解液は、電解
室13において鋼試料面に吹き付けられるように流入
し、電解室13の出口から窒素ガスと共に排出される。
電解液の送液開始と同時に定電位/定電流電解装置17
から鋼試料Sを陽極として鋼試料Sとグラファイト電極
16との間に電圧(0.5 V) を印加する。鋼試料Sは
連続的に電解され、同時に硫黄および燐の水素化物ガス
が発生する。なお、分析開始前には、電解室13に電解
液を供給しない状態で、窒素ガスボンベ26から窒素ガ
スを電解室13に供給し、このガスを試験紙光電光度分
析装置71まで通じて全配管内の残留ガスをあらかじめ
パージしておく。
The molten steel sampled in the steelmaking process is cast into a short cylindrical shape (diameter 30 mm, height 20 mm) and one surface is polished to obtain a steel sample S. The steel sample S is placed on the cell body 1 with the polishing surface facing down.
The second supporting portion 14 is mounted via the annular gasket 19.
With constant flow rate pump 22 at a constant flow rate (20 ml / min),
Electrolyte cell (HCl) from the electrolyte tank 21 to the electrolytic cell 12
Supply to. At the same time, nitrogen gas is supplied from the nitrogen gas cylinder 26 to the electrolysis cell 12 at 80 ml / min. The electrolytic solution flows into the electrolytic chamber 13 so as to be sprayed onto the steel sample surface, and is discharged from the outlet of the electrolytic chamber 13 together with the nitrogen gas.
Constant potential / constant current electrolysis device 17 at the same time as the start of electrolyte delivery
A voltage (0.5 V) is applied between the steel sample S and the graphite electrode 16 using the steel sample S as an anode. The steel sample S is continuously electrolyzed, and at the same time, sulfur and phosphorus hydride gases are generated. Before the analysis is started, nitrogen gas is supplied from the nitrogen gas cylinder 26 to the electrolysis chamber 13 in a state where the electrolytic solution is not supplied to the electrolysis chamber 13. The residual gas of 1 is previously purged.

【0035】電解室13から流出する電解液および水素
化物ガスは、フィルタ65で濾過され、気液分離管66
で水素化物ガスが分離される。水素化物ガスが試料導入
管67を経て試験紙光電光度分析装置75に供給され、
硫黄および燐が分析される。電解開始とともに試料ガス
を連続的に得ることができ、1試料の分析所要時間は約
1分であり、迅速に硫黄および燐を分析することができ
た。
The electrolytic solution and the hydride gas flowing out from the electrolytic chamber 13 are filtered by the filter 65, and the gas-liquid separation tube 66 is provided.
The hydride gas is separated at. Hydride gas is supplied to the test strip photoelectric photometric analyzer 75 via the sample introduction tube 67,
Sulfur and phosphorus are analyzed. A sample gas could be continuously obtained with the start of electrolysis, and the time required for analysis of one sample was about 1 minute, and sulfur and phosphorus could be analyzed rapidly.

【0036】なお、上記実施例では電気分解装置を用い
て試料溶液および試料ガスを得る場合について説明した
が、酸により試料溶液および試料ガスを調製する装置で
あっても、試料固定装置および試料加熱装置は上記電気
分解装置を用いた場合と同様に構成される。
In the above embodiment, the case where the sample solution and the sample gas are obtained by using the electrolyzer is explained. However, even in the apparatus for preparing the sample solution and the sample gas by the acid, the sample fixing device and the sample heating device are used. The device is constructed in the same manner as when the above electrolyzer is used.

【0037】[0037]

【発明の効果】この発明によれば、ブロック状金属試料
の固定および加熱を迅速に行うことができ、電解液また
は酸漏れが生じることはない。したがって、金属試料分
解を能率的に行うことができる。また、室温では分解困
難な難分解性化合物が試料中に存在していても、短時間
で化学分析可能な試料溶液または試料ガスを得ることが
できる。
According to the present invention, the block-shaped metal sample can be quickly fixed and heated, and the electrolyte or acid leakage does not occur. Therefore, the metal sample can be decomposed efficiently. Further, even if a hardly decomposable compound that is difficult to decompose at room temperature is present in the sample, a sample solution or sample gas that can be chemically analyzed can be obtained in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すもので、金属試料分
解装置の構成図である。
FIG. 1 is a block diagram of a metal sample decomposing apparatus according to an embodiment of the present invention.

【図2】この発明の他の実施例を示すもので、金属試料
分解装置の構成図である。
FIG. 2 shows another embodiment of the present invention and is a configuration diagram of a metal sample decomposing device.

【符号の説明】[Explanation of symbols]

11 試料電解装置 12 電解セル 13 電解室 14 試料支持部 16 グラファイト電極 17 定電位/定電流電解装置 19 環状ガスケット 21 電解液タンク 22 定流量ポンプ 26 窒素ガスボンベ 27 圧力調節弁 31 試料固定装置 32 ハウジング(押え部材) 33 空気圧シリンダ 35 空気圧源 39 接触子(電解陽極側) 41 試料加熱装置 42 赤外線ランプ 44 集光鏡 51 温度制御装置 54 空気圧シリンダ 57 サーミスタ温度検出器 61 温度調節器 62 赤外線ランプ電源 65 フィルタ 66 気液分離管 68 プラズマ発光分析装置 71 試験紙光電光度分析装置 S 金属試料 11 Sample Electrolyzer 12 Electrolysis Cell 13 Electrolysis Chamber 14 Sample Support 16 Graphite Electrode 17 Constant Potential / Constant Current Electrolyzer 19 Annular Gasket 21 Electrolyte Tank 22 Constant Flow Pump 26 Nitrogen Gas Cylinder 27 Pressure Control Valve 31 Sample Fixing Device 32 Housing ( Pressing member) 33 Pneumatic cylinder 35 Pneumatic pressure source 39 Contact (electrolytic anode side) 41 Sample heating device 42 Infrared lamp 44 Condensing mirror 51 Temperature control device 54 Pneumatic cylinder 57 Thermistor temperature detector 61 Temperature controller 62 Infrared lamp power supply 65 Filter 66 gas-liquid separation tube 68 plasma emission analyzer 71 test paper photoelectric photometric analyzer S metal sample

フロントページの続き (72)発明者 近藤 裕之 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 植村 健 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 緑川 正博 埼玉県坂戸市泉町3−15−10Front page continued (72) Hiroyuki Kondo, Inventor Hiroyuki Kondo 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Laboratories (72) Inventor, Ken Uemura 1 Fuji-cho, Hirohata-ku, Himeji-shi, Hyogo Shin-Nihon Hirohata Works, Ltd. (72) Inventor Masahiro Midorikawa 3-15-10 Izumicho, Sakado City, Saitama Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シール部材を介してブロック状金属試料
を支持し、試料面に電解液または酸を供給して金属試料
を分解する分解セルと、金属試料を加熱する加熱装置と
を備えた金属試料分解装置において、前記分解セルに支
持された金属試料に対して進退可能な押え部材と、押え
部材を進退する駆動装置を備えた試料固定装置を有し、
前記加熱装置が加熱ランプと加熱ランプからの光を試料
面に集光する集光鏡とを備え、加熱ランプおよび集光鏡
が前記押え部材に取り付けられたことを特徴とする金属
試料分解装置。
1. A metal provided with a decomposition cell for supporting a block-shaped metal sample via a seal member and supplying an electrolytic solution or an acid to the sample surface to decompose the metal sample, and a heating device for heating the metal sample. In the sample decomposing device, a holding member capable of advancing and retreating with respect to the metal sample supported by the decomposing cell, and a sample fixing device having a drive device for advancing and retracting the pressing member,
The metal sample decomposing device, wherein the heating device includes a heating lamp and a condenser mirror for condensing light from the heating lamp on a sample surface, and the heating lamp and the condenser mirror are attached to the holding member.
【請求項2】 金属試料の温度を検出する温度検出器
と、温度検出器からの信号に基づいて加熱ランプの印加
電圧を制御する温度調節器とを備えた請求項1記載の金
属試料分解装置。
2. The metal sample decomposing apparatus according to claim 1, further comprising a temperature detector for detecting the temperature of the metal sample, and a temperature controller for controlling the voltage applied to the heating lamp based on a signal from the temperature detector. .
JP26408494A 1994-10-27 1994-10-27 Metal sample decomposition device Expired - Fee Related JP3328448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26408494A JP3328448B2 (en) 1994-10-27 1994-10-27 Metal sample decomposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26408494A JP3328448B2 (en) 1994-10-27 1994-10-27 Metal sample decomposition device

Publications (2)

Publication Number Publication Date
JPH08122323A true JPH08122323A (en) 1996-05-17
JP3328448B2 JP3328448B2 (en) 2002-09-24

Family

ID=17398300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26408494A Expired - Fee Related JP3328448B2 (en) 1994-10-27 1994-10-27 Metal sample decomposition device

Country Status (1)

Country Link
JP (1) JP3328448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005112A1 (en) * 2007-06-29 2009-01-08 Jfe Steel Corporation Method for analysis of metal sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005112A1 (en) * 2007-06-29 2009-01-08 Jfe Steel Corporation Method for analysis of metal sample
JP2009031269A (en) * 2007-06-29 2009-02-12 Jfe Steel Kk Method of obtaining content rate of solid dissolved element of interest in metal sample
US8222038B2 (en) 2007-06-29 2012-07-17 Jfe Steel Corporation Method for analyzing metal specimen

Also Published As

Publication number Publication date
JP3328448B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
Liu et al. Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry
Ding et al. Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration
US10705023B2 (en) Solution cathode glow discharge plasma-atomic emission spectrum apparatus and method capable of performing direct gas sample introduction and used for detecting heavy metal element
Schickling et al. Optimization of electrochemical hydride generation coupled to microwave-induced plasma atomic emission spectrometry for the determination of arsenic and its use for the analysis of biological tissue samples
US4486272A (en) Method of electrochemical measurement utilizing photochemical reaction and apparatus therefor
JPH08122323A (en) Metal-sample decomposing apparatus
Johansson et al. Determination of nickel using electrochemical reduction and carbonyl generation with in situ trapping electrothermal atomic absorption spectrometry
CN112986219B (en) Electrode sample introduction DBD micro plasma atomic emission spectrum detection system and method
US3545863A (en) Method for detection of mercury in a helium glow discharge
Bulska et al. ETAAS determination of lead with on-line preconcentration using a flow-through electrochemical microcell
JP3328447B2 (en) Metal sample continuous electrolyzer
Bian et al. Online flow digestion of biological and environmental samples for inductively coupled plasma–optical emission spectroscopy (ICP–OES)
JPH0151939B2 (en)
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
JPH08220086A (en) Method for rapidly decomposing iron steel sample
GB2158608A (en) Sample introduction device
JPH08178914A (en) Analyzing instrument for metal-containing component
JP2708236B2 (en) Analysis of trace carbon, sulfur and phosphorus in metal samples
JPH0726952B2 (en) Method and apparatus for analyzing trace amounts of carbon, sulfur and phosphorus in metal samples
Van Elteren et al. Radiotracer examination of gas-liquid separators used in arsenic speciation by hydride generation—AAS
JPH08327625A (en) Method and equipment for analyzing carbon, sulfur and phosphorus in metal sample
CN113630950B (en) Liquid anode glow discharge micro-plasma excitation source and excitation method
Wilson et al. LEd-SpEC: Spectroscopic detection of water contaminants using glow discharges from liquid microelectrodes
Guo et al. Design and Performance of a Novel Electrolytic Cell with Micro-Channel Electrodes for Electrochemical Hydride Generation Atomic Fluorescence Spectrometry--Preliminary Report
JP2675496B2 (en) High-precision analyzer for trace components in metal samples

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees