JPH08121695A - Low temperature double-shell tank - Google Patents

Low temperature double-shell tank

Info

Publication number
JPH08121695A
JPH08121695A JP25489494A JP25489494A JPH08121695A JP H08121695 A JPH08121695 A JP H08121695A JP 25489494 A JP25489494 A JP 25489494A JP 25489494 A JP25489494 A JP 25489494A JP H08121695 A JPH08121695 A JP H08121695A
Authority
JP
Japan
Prior art keywords
tank
inner tank
low temperature
roof
roof portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25489494A
Other languages
Japanese (ja)
Inventor
Takashi Arimura
敬 有村
Masahiko Ozaki
正彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25489494A priority Critical patent/JPH08121695A/en
Publication of JPH08121695A publication Critical patent/JPH08121695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE: To provide a low temperature double-shell tank which can prevent the buckling deformation of the roof part of an inner tank generated in association with heating up at the time of overhaul inspection. CONSTITUTION: In a low temperature double-shell tank 1, an outer tank 8 for covering an inner tank 5 storing low temperature liquid L is provided with a specified space at the outside part of the inner tank 5. Granular pearlite is filled between the outer tank 8 and the inner tank 5 to form a first cold insulating layer 16, and a second cold insulating layer 17 deformable in the thickness direction is formed between the first cold insulating layer formed at the roof part 6 of the inner tank 5, and the roof part 10 of the outer tank 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LNG等の低温液を貯
蔵する低温二重殻タンクに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature double shell tank for storing a low temperature liquid such as LNG.

【0002】[0002]

【従来の技術】一般に、LNG等の低温液を貯蔵するタ
ンクとしては二重殻タンクが知られており、これは低温
液を実質的に収容する内殻としての内槽と、この内槽を
所定の間隔を隔てて外側から覆う外殻としての外槽とか
ら主に構成されている。これら内槽と外槽とは有底筒体
状に形成されたものが殆どであり、且つこれらはドーム
状に形成された屋根部を有する。内槽と外槽との間の隙
間には粒状パーライトが充填され、これによって内槽内
部の低温液は完全に保冷される。内槽は伸縮性或いは可
撓性を有する SUS製パネル(メンブレン等)の溶接密閉
構造であり、タンク建造時の常温と低温液収容時の低温
(LNGの場合-162°C)との温度差による熱収縮或い
は膨脹を許容できるようになっている。また外槽は普通
鋼材を用いた高強度設計がなされ、その自重や粒状パー
ライトによる内圧等に十分耐えられるようになってい
る。このような二重殻タンクは比較的大形のものが多
く、地上に立設された地上式や地下式、或いは屋根部の
み地上に露出された半地下式のものなどがある。
2. Description of the Related Art Generally, a double-shell tank is known as a tank for storing a low-temperature liquid such as LNG, which is an inner tank as an inner shell for substantially containing the low-temperature liquid, and this inner tank. It is mainly composed of an outer tub as an outer shell which is covered from outside by a predetermined distance. Most of the inner tank and the outer tank are formed in a bottomed cylindrical shape, and they have a roof portion formed in a dome shape. Granular perlite is filled in the gap between the inner tank and the outer tank, whereby the low temperature liquid inside the inner tank is completely kept cool. The inner tank has a welded and sealed structure of stretchable or flexible SUS panels (membrane etc.), and the temperature difference between the room temperature when the tank is built and the low temperature when the low temperature liquid is stored (-162 ° C for LNG). The thermal contraction or expansion due to the heat can be allowed. In addition, the outer tank is designed with high strength using ordinary steel so that it can withstand its own weight and internal pressure due to granular pearlite. Many of such double-shell tanks are relatively large, and there are a ground type and an underground type which are erected on the ground, or a semi-underground type where only the roof portion is exposed above the ground.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
二重殻タンクは定期的に開放点検がなされ、この際には
内槽の液抜き及びパージ後、内槽内部に作業者が入って
溶接部や機器等の点検を行う。従って内槽内部の温度を
低温から常温付近まで上昇させる必要があるが、ここで
特に内槽の熱膨脹による座屈変形が問題となってくる。
By the way, such a double-shell tank is regularly inspected for openness. At this time, after the inner tank is drained and purged, an operator enters the inner tank to perform welding. Inspect parts and equipment. Therefore, it is necessary to raise the temperature inside the inner tank from a low temperature to around room temperature, but here buckling deformation due to thermal expansion of the inner tank becomes a problem.

【0004】タンク建造時、内槽と外槽とが完成する
と、これらの隙間に粒状パーライトを充填する。これは
外槽の屋根部頂上に形成されたマンホール穴から自由落
下により行われ、その穴から落とし込まれた粒状パーラ
イトは側部の隙間へ充填された後に屋根部間の隙間へと
充填される。そしてこの後、内槽内には低温液が供給さ
れてクールダウンが行われ、こうすると内槽は低温液の
低温による熱収縮を生じる。
When the inner tank and the outer tank are completed at the time of tank construction, the space between these is filled with granular pearlite. This is done by free fall from a manhole hole formed on the roof of the outer tank, and granular perlite dropped from the hole is filled into the gap between the side parts and then into the gap between the roof parts. . Then, after this, a low-temperature liquid is supplied into the inner tank for cooling down, so that the inner tank undergoes thermal contraction due to the low temperature of the low-temperature liquid.

【0005】この熱収縮は内槽の全体に及び、側板部は
径方向内方へと縮径移動し、屋根部は下方へと降下移動
する。このとき、側板部の外面部には、側部の隙間を一
定に保ちつつ側板部の移動を許容するためのブランケッ
ト層が施されており、その縮径移動による粒状パーライ
トの落ち込みは殆どないものの、特に屋根部の降下移動
により屋根部間の隙間が大きくなって、粒状パーライト
が沈降し上部に空間が生じる。このため、この空いた空
間に粒状パーライトを増充填して、屋根部間の隙間を粒
状パーライトで満に埋め尽くす。
This heat contraction spreads over the entire inner tank, the side plate portion radially reduces inward, and the roof portion descends downward. At this time, the outer surface portion of the side plate portion is provided with a blanket layer for allowing the movement of the side plate portion while maintaining a constant gap between the side portions, and although there is almost no fall of the granular pearlite due to the diameter reduction movement, In particular, the gap between the roofs becomes large due to the downward movement of the roofs, and the granular pearlite sinks to form a space above. Therefore, this empty space is filled with granular perlite to completely fill the gaps between the roof portions with granular perlite.

【0006】そして、タンクの開放点検に伴うホットア
ップ時、こんどは内槽が熱膨脹しようとして屋根部が上
昇移動しようとする。しかし、このときには上昇分の空
間がなく、結果的に内槽屋根部は屋根部間の粒状パーラ
イトを押し付けると同時に押付反力を受け、これによる
座屈変形が生じてしまう可能性がある。
At the time of hot-up due to the open inspection of the tank, the inner tank is about to thermally expand and the roof part is about to move upward. However, at this time, there is no space for the rising portion, and as a result, the inner tank roof portion may be pressed against the granular pearlite between the roof portions and at the same time receive a pressing reaction force, which may cause buckling deformation.

【0007】そこで、上記課題を解決すべく本発明は創
案されたものであり、その目的は、開放点検に際しての
ホットアップに伴う内槽屋根部の座屈変形を防止するこ
とができる低温二重殻タンクを提供することにある。
Therefore, the present invention was devised in order to solve the above-mentioned problems, and an object thereof is a low-temperature double-layer structure capable of preventing buckling deformation of the inner tank roof portion due to hot-up at the time of open inspection. To provide a shell tank.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、低温液を収容する内槽の外側部に所定の間
隔を隔ててこれを覆う外槽を設け、これら外槽と内槽と
の間に粒状パーライトを充填して第1の保冷層を形成す
ると共に、上記内槽の屋根部に形成される上記第1の保
冷層と上記外槽の屋根部との間に、厚さ方向に変形可能
な第2の保冷層を形成したものである。
In order to achieve the above-mentioned object, the present invention provides an outer tank for covering a low temperature liquid at an outer portion of the inner tank at a predetermined interval and covers the outer tank and the inner tank. Granular pearlite is filled between the tank and the tank to form a first cold insulation layer, and a thickness is provided between the first cold insulation layer formed on the roof portion of the inner tank and the roof portion of the outer tank. A second cold insulating layer that is deformable in the vertical direction is formed.

【0009】[0009]

【作用】ホットアップに伴って内槽の屋根部が上昇移動
しようとすると、その移動に合わせて第2の保冷層が厚
さ方向に圧縮変形することでその移動を許容する。
When the roof portion of the inner tank is going to move upward due to hot-up, the second cold insulating layer is compressed and deformed in the thickness direction in accordance with the movement, thereby allowing the movement.

【0010】[0010]

【実施例】以下本発明の好適実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0011】図1は本発明に係る低温二重殻タンクを示
す縦断正面図である。タンク1は地上浮床式で、地中に
は複数のパイル2が埋設されてその上部に地面から所定
の間隔を隔ててコンクリート製基礎3が設けられる。基
礎3上にはパーライトコンクリートからなるリング状の
支持台4が設けられて内槽5を保冷しつつ下方から支え
ている。内槽5は、LNG等の低温液Lを収容し、伸縮
性或いは可撓性を有するアルミニウム又は9%Ni鋼板
等の低温用材料の溶接密閉構造とされると共に、有底筒
体状に形成されてドーム状の屋根部6を有し、その底板
部7は周縁部のみが支持台4上に着座されている。内槽
5の側板部11には必要に応じて補強材(スティフナ)
が追加され、屋根部6にも図示しない屋根骨が設けられ
ている。そしてこの内槽5の外側部には、所定の間隔を
隔ててこれを覆う外槽8が設けられている。外槽8は、
普通鋼材を用いた高強度構造とされ、その側板部9は支
持台4を囲繞して基礎3から直接立設されると共に、内
槽5と同じくドーム状の屋根部10を有する。
FIG. 1 is a vertical sectional front view showing a low temperature double shell tank according to the present invention. The tank 1 is a floating floor type, and a plurality of piles 2 are buried in the ground, and a concrete foundation 3 is provided above the pile 2 at a predetermined distance from the ground. A ring-shaped support base 4 made of perlite concrete is provided on the foundation 3 to support the inner tank 5 from below while keeping it cool. The inner tank 5 contains a low temperature liquid L such as LNG, has a welded closed structure of a low temperature material such as stretchable or flexible aluminum or a 9% Ni steel plate, and is formed in a bottomed cylindrical shape. It has a dome-shaped roof portion 6, and the bottom plate portion 7 is seated on the support base 4 only at the peripheral edge portion. The side plate portion 11 of the inner tank 5 may have a reinforcing material (stiffener) as necessary.
Is added, and the roof portion 6 is also provided with a roof bone (not shown). An outer tank 8 is provided on the outer side of the inner tank 5 to cover the inner tank 5 with a predetermined space. The outer tank 8 is
It has a high-strength structure using ordinary steel, and its side plate portion 9 surrounds the support base 4 and stands directly from the foundation 3, and also has a dome-shaped roof portion 10 like the inner tank 5.

【0012】このように形成されたタンク1は比較的大
形で、その具体的寸法としては外槽8の外径Dが70m程
度、内槽5の高さHが40m程度とされる。
The tank 1 formed in this manner is relatively large, and the specific dimensions are such that the outer tank 8 has an outer diameter D of about 70 m and the inner tank 5 has a height H of about 40 m.

【0013】そしてさらに、内槽5の側板部11には、
その全体を外側から覆うブランケット層12が設けられ
る。ブランケット層12は、ひだ状の可撓性板材からな
るパーライトダイアフラム13によって区画形成される
と共に、これと内槽側板部11との間にグラスウールに
よるブランケット14を詰め込んで主に構成されてい
る。パーライトダイアフラム13は、その下端部が支持
台4に設置され、その上端部は外槽屋根部10から吊り
下げられ、又、内槽側板部11を上端から下端にかけて
カバーすると共に、外槽側板部9から径方向内方に延出
された多数のロッド15に接続されている。そして内槽
5の熱収縮或いは膨脹時には、これらパーライトダイア
フラム13は外槽側板部9との隙間を一定に保っている
ので内槽5の収縮膨脹を許容するようになっている。
尚、図示する内槽5の収縮時においてブランケット層1
2の厚さは10cm程度である。
Further, in the side plate portion 11 of the inner tank 5,
A blanket layer 12 is provided to cover the whole from the outside. The blanket layer 12 is partitioned and formed by a pearlite diaphragm 13 made of a pleated flexible plate material, and a blanket 14 made of glass wool is mainly arranged between the blanket layer 12 and the inner tank side plate portion 11. The lower end of the pearlite diaphragm 13 is installed on the support base 4, the upper end of the pearlite diaphragm 13 is suspended from the outer tank roof portion 10, and the inner tank side plate portion 11 is covered from the upper end to the lower end. 9 are connected to a large number of rods 15 extending radially inward. When the inner tank 5 is thermally contracted or expanded, the pearlite diaphragm 13 keeps a constant gap with the outer tank side plate portion 9, so that the inner tank 5 is allowed to contract and expand.
Incidentally, when the inner tank 5 shown in the drawing contracts, the blanket layer 1
The thickness of 2 is about 10 cm.

【0014】外槽8と内槽5との間には、粒状パーライ
トを充填してなる第1の保冷層16が形成され、特に内
槽屋根部6上に形成された第1の保冷層16と外槽屋根
部10との間には、グラスウールによる厚さ方向に変形
可能な第2の保冷層17が形成されている。具体的に
は、外槽屋根部10の建造後、その裏面部全体に所定厚
さのグラスウールを敷設して第2の保冷層17を形成
し、この常温状態のまま、外槽屋根部10の頂部に形成
されたマンホール穴18(図は閉塞状態を示す)から粒
状パーライトを落し込んで1回目の充填を行う。そして
内槽5内に低温液Lを供給してクールダウンすると、内
槽5は全体的に熱収縮する。このときブランケット層1
2は、パーライトダイアフラム13がロッド15に接続
されているため外槽側板部9との隙間を一定に保つ。よ
って内槽5の収縮による粒状パーライトの側部隙間への
落ち込みは殆どない。他方、内槽屋根部6が降下するた
め、その上に堆積された粒状パーライトの上部には空間
ができる。よって、この空間に粒状パーライトを満に増
充填することで第1の保冷層16が形成され、こうする
と、内槽屋根部6は、厚い第1の保冷層16と薄い第2
の保冷層17とによって完全に覆われることになる。
A first cold insulation layer 16 filled with granular perlite is formed between the outer tank 8 and the inner tank 5, and in particular, the first cold insulation layer 16 formed on the inner tank roof portion 6 is formed. A second cold insulation layer 17 made of glass wool and deformable in the thickness direction is formed between the outer tank portion 10 and the outer tank roof portion 10. Specifically, after the outer tub roof portion 10 is constructed, glass wool having a predetermined thickness is laid on the entire back surface of the outer tub roof portion 10 to form the second cold insulation layer 17, and the outer tub roof portion 10 is kept in this room temperature state. Granular pearlite is dropped from the manhole hole 18 (the figure shows a closed state) formed at the top to perform the first filling. Then, when the low temperature liquid L is supplied into the inner tank 5 to cool down, the inner tank 5 is thermally contracted as a whole. Blanket layer 1 at this time
In No. 2, since the pearlite diaphragm 13 is connected to the rod 15, the gap between the outer tank side plate portion 9 is kept constant. Therefore, there is almost no fall of the granular pearlite into the side gap due to the contraction of the inner tank 5. On the other hand, since the inner tank roof part 6 descends, a space is created above the granular perlite accumulated on the roof part 6. Therefore, the first cold insulation layer 16 is formed by fully filling the space with the granular pearlite, and thus, the inner tank roof portion 6 has the thick first cold insulation layer 16 and the thin second cold insulation layer 16.
It will be completely covered by the cold insulation layer 17 and.

【0015】そして、これら保冷層16,17内、ブラ
ンケット層12内、及び支持台4の内側空間部内には沸
点が極めて低い(-196°C)窒素ガスが充填され、これ
によりそれら内部は完全な乾燥状態とされる。
Then, nitrogen gas having an extremely low boiling point (-196 ° C.) is filled in the cold insulating layers 16 and 17, the blanket layer 12, and the inner space of the support 4, so that the insides thereof are completely filled. It is in a dry state.

【0016】次に実施例の作用について説明する。Next, the operation of the embodiment will be described.

【0017】図1に示す低温液Lの貯蔵時、内槽5は低
温収縮状態にあり、このとき第2の保冷層17とブラン
ケット層12とは所定の厚さに広がった状態となってい
る。
When the low temperature liquid L shown in FIG. 1 is stored, the inner tank 5 is in a low temperature contraction state, and at this time, the second cold insulation layer 17 and the blanket layer 12 are spread to a predetermined thickness. .

【0018】そしてタンク開放点検時、液抜きを行って
常温に戻すホットアップを行うと、図2に示すように内
槽5は破線から実線へと膨脹し、これに伴って第2の保
冷層17とブランケット層12とがその膨脹を許容すべ
く厚さ方向に圧縮変形を行う。即ち、これら層17,1
2をなすグラスウールが厚さ方向に潰れる。特に内槽屋
根部6の上昇に対し、その上昇を許容すべく第2の保冷
層17が破線から実線へと変形するため、内槽屋根部6
への押付反力はなくなり、その座屈変形を未然に防止す
ることができる。
During the tank open inspection, when the liquid is drained and the temperature is raised to normal temperature, the inner tank 5 expands from the broken line to the solid line as shown in FIG. The blanket layer 17 and the blanket layer 12 are compressed and deformed in the thickness direction to allow the expansion. That is, these layers 17, 1
Glass wool forming 2 is crushed in the thickness direction. In particular, when the inner tank roof portion 6 rises, the second cold insulating layer 17 deforms from the broken line to the solid line to allow the rise, so the inner tank roof portion 6
There is no reaction force against pressing, and it is possible to prevent its buckling deformation.

【0019】詳述すると、内槽屋根部6は、屋根骨を有
することから比較的高い強度とされるが、これは屋根部
6自重とその上部の粒状パーライト層の重さに耐え得る
程度のものであり、よってあまり高い圧力を与えると座
屈を生じる可能性があり好ましくない。図1の低温液L
を貯蔵した状態において、内槽5の温度T1 =-162(°
C)、高さH= 39427(mm)とし、これを常温T2 =15
(°C)までホットアップさせるとすると、線膨脹係数
α=18.5×10-6(/°C)として屋根部6の上昇変位ΔH
は、ΔH=αH(T2 −T1 )= 130(mm)となる。従来
のタンクの場合、この上昇変位ΔHだけ上昇しようとし
て屋根部間の粒状パーライトを押圧するが、本実施例に
おいてはこの上昇変位ΔHを許容する厚さに第2の保冷
層17の層厚を定めれば、内槽屋根部6に過大な圧力を
与えることなくその座屈変形を防止できる。このことか
ら、第2の保冷層17は、その初期厚さを例えば 300mm
程度に定めればよいことが分かる。
More specifically, the inner tank roof portion 6 has a relatively high strength because it has a roof frame, but this is sufficient to withstand the weight of the roof portion 6 and the weight of the granular pearlite layer above it. Therefore, if too high pressure is applied, buckling may occur, which is not preferable. Low temperature liquid L in FIG.
Temperature of the inner tank 5 in the state of storing T 1 = -162 (°
C) and height H = 39427 (mm), and this is room temperature T 2 = 15
If it is hot-up to (° C), the coefficient of linear expansion α = 18.5 × 10 -6 (/ ° C) and the rising displacement ΔH of the roof 6
Is ΔH = αH (T 2 −T 1 ) = 130 (mm). In the case of the conventional tank, the granular pearlite between the roof portions is pressed in an attempt to rise by this rising displacement ΔH, but in the present embodiment, the layer thickness of the second cold insulating layer 17 is set to a thickness that allows this rising displacement ΔH. If set, the buckling deformation can be prevented without applying an excessive pressure to the inner tank roof portion 6. From this, the second cold insulation layer 17 has an initial thickness of, for example, 300 mm.
It turns out that it is sufficient to set the degree.

【0020】また、タンク1のホットアップに際して、
内槽5内にエアを吹き込んで内圧を加えることにより屋
根部6の変形を一層防止できる。つまりこの加圧を行う
と屋根部6に均一な上昇方向の圧力を与えることにな
り、これと内槽5自身の膨脹力とで押付反力に抗じ、且
つ屋根部6を確実に上昇移動させることができる。
When the tank 1 is hot-up,
By blowing air into the inner tank 5 to apply internal pressure, the roof portion 6 can be further prevented from being deformed. That is, when this pressurization is performed, a uniform upward pressure is applied to the roof portion 6, and this and the expansion force of the inner tank 5 resist the pressing reaction force, and the roof portion 6 is surely moved upward. Can be made.

【0021】さらに従来、外槽屋根部と内槽屋根部との
間の粒状パーライト層に、部分的に保冷或いは断熱性の
悪い熱経路が生じ、この熱経路を伝わって内槽からの低
温が外槽屋根部に至り、外槽屋根部の表面に部分的な霜
付きを生じることがあった。しかしながら本実施例で
は、粒状パーライト層たる第1の保冷層16に熱経路が
生じても、これを伝わってきた低温を第2の保冷層17
によって遮断して霜付きを防止できる。即ち、第2の保
冷層17内には窒素ガスの自然対流があり、これによっ
て低温を分散させることで局所的な低温を緩衝すること
ができる。
Further, conventionally, in the granular pearlite layer between the outer tank roof portion and the inner tank roof portion, a heat path with a low heat insulation or a poor heat insulating property is partially generated, and the low temperature from the inner tank is transmitted through this heat path. The outer tank roof part was sometimes reached, and partial frost was formed on the surface of the outer tank roof part. However, in this embodiment, even if a heat path is generated in the first cold insulation layer 16 which is a granular pearlite layer, the low temperature transmitted through this path is applied to the second cold insulation layer 17.
It is possible to prevent frosting by blocking with. That is, there is natural convection of nitrogen gas in the second cold insulation layer 17, and by this dispersion of the low temperature, the local low temperature can be buffered.

【0022】ここで、上記実施例は新設のタンクに適用
した場合であるが、既設の従来型タンクに適用する場合
には、外槽屋根部10の裏面部形状に合わせて粒状パー
ライトを表層部のみ抜き取り、順次その隙間にグラスウ
ールを詰めて外槽屋根部10に貼り付けるようにすれば
よい。
Here, the above-mentioned embodiment is applied to a new tank, but when applied to an existing conventional tank, granular pearlite is added to the surface layer part according to the shape of the back surface of the outer roof part 10. It is only necessary to remove only this, to fill the gap with glass wool in order, and to attach it to the outer tub roof 10.

【0023】尚、上記実施例の変形例は様々考えられ、
第2の保冷層17をグラスウール以外のもので形成する
ことも可能である。
Various modifications of the above embodiment are conceivable.
It is also possible to form the second cold insulation layer 17 with a material other than glass wool.

【0024】[0024]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0025】(1)開放点検に際してのホットアップに
伴う内槽屋根部の座屈変形を防止することができる。
(1) It is possible to prevent buckling deformation of the inner tank roof portion due to hot-up at the time of open inspection.

【0026】(2)外槽屋根部における霜付きを防止で
きる。
(2) It is possible to prevent frost formation on the roof portion of the outer tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る低温二重殻タンクの一実施例を示
す縦断正面図である。
FIG. 1 is a vertical sectional front view showing an embodiment of a low temperature double shell tank according to the present invention.

【図2】タンクの膨脹時の様子を示す縦断正面図であ
る。
FIG. 2 is a vertical sectional front view showing a state when the tank is inflated.

【符号の説明】[Explanation of symbols]

1 タンク 5 内槽 6 内槽屋根部 8 外槽 10 外槽屋根部 16 第1の保冷層 17 第2の保冷層 L 低温液 1 Tank 5 Inner Tank 6 Inner Tank Roof 8 Outer Tank 10 Outer Tank Roof 16 First Cooling Layer 17 Second Cooling Layer L Low Temperature Liquid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低温液を収容する内槽の外側部に所定の
間隔を隔ててこれを覆う外槽を設け、これら外槽と内槽
との間に第1の保冷層を形成すると共に、上記内槽の屋
根部に形成される上記第1の保冷層と上記外槽の屋根部
との間に、厚さ方向に変形可能な第2の保冷層を形成し
たことを特徴とする低温二重殻タンク。
1. An outer tank for covering a low temperature liquid is provided on an outer side portion of the inner tank at a predetermined interval to form a first cold insulation layer between the outer tank and the inner tank. A low temperature two-layer structure, wherein a second cold insulation layer that is deformable in the thickness direction is formed between the first cold insulation layer formed on the roof portion of the inner tank and the roof portion of the outer tank. Heavy shell tank.
JP25489494A 1994-10-20 1994-10-20 Low temperature double-shell tank Pending JPH08121695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25489494A JPH08121695A (en) 1994-10-20 1994-10-20 Low temperature double-shell tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25489494A JPH08121695A (en) 1994-10-20 1994-10-20 Low temperature double-shell tank

Publications (1)

Publication Number Publication Date
JPH08121695A true JPH08121695A (en) 1996-05-17

Family

ID=17271325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25489494A Pending JPH08121695A (en) 1994-10-20 1994-10-20 Low temperature double-shell tank

Country Status (1)

Country Link
JP (1) JPH08121695A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225075A (en) * 2006-02-27 2007-09-06 Ishii Iron Works Co Ltd Vertical double-shell cylindrical low-temperature storage
WO2012161493A3 (en) * 2011-05-25 2013-01-17 삼성중공업 주식회사 Storage tank for liquefied materials and ship comprising same
KR101239342B1 (en) * 2010-11-11 2013-03-06 삼성중공업 주식회사 Storage tank for liquefied natural gas
EP2038596B1 (en) * 2006-06-27 2014-08-13 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cryogenic distillation comprising vacuum insulation panel
US9353911B2 (en) 2010-11-11 2016-05-31 Ihi Corporation Blanket installation method
US9546758B2 (en) 2012-03-13 2017-01-17 Ihi Corporation Blanket installation method and blanket unit
CN114458945A (en) * 2022-02-23 2022-05-10 中太(苏州)氢能源科技有限公司 Large liquid hydrogen full-capacity tank adopting liquid-gas cooling wall

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225075A (en) * 2006-02-27 2007-09-06 Ishii Iron Works Co Ltd Vertical double-shell cylindrical low-temperature storage
EP2038596B1 (en) * 2006-06-27 2014-08-13 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cryogenic distillation comprising vacuum insulation panel
KR101239342B1 (en) * 2010-11-11 2013-03-06 삼성중공업 주식회사 Storage tank for liquefied natural gas
US9353911B2 (en) 2010-11-11 2016-05-31 Ihi Corporation Blanket installation method
WO2012161493A3 (en) * 2011-05-25 2013-01-17 삼성중공업 주식회사 Storage tank for liquefied materials and ship comprising same
US9234629B2 (en) 2011-05-25 2016-01-12 Samsung Heavy Ind. Co., Ltd. Storage tank for liquified materials and ship comprising same
US9546758B2 (en) 2012-03-13 2017-01-17 Ihi Corporation Blanket installation method and blanket unit
CN114458945A (en) * 2022-02-23 2022-05-10 中太(苏州)氢能源科技有限公司 Large liquid hydrogen full-capacity tank adopting liquid-gas cooling wall
CN114458945B (en) * 2022-02-23 2024-01-26 中太(苏州)氢能源科技有限公司 Large-sized liquid hydrogen full-capacity tank adopting liquid-gas cooled wall

Similar Documents

Publication Publication Date Title
US2777295A (en) Concrete reservoir for liquefied gases
RU2307973C2 (en) Reservoir for storing cryogenic fluid medium and method of manufacture of hermetically sealed reservoir
JPH0210320B2 (en)
US3987925A (en) Insulated tank
WO2006046872A1 (en) Tank for storage of lng or other cryogenic fluids
US3701262A (en) Means for the underground storage of liquified gas
US4136493A (en) Supporting structure for containers used in storing liquefied gas
US3583592A (en) Cryogenic storage tank
JPH08121695A (en) Low temperature double-shell tank
US3707850A (en) Cryogenic storage tank improvements
US4651401A (en) Method of erecting large cylindrical storage tanks with a plurality of vertical plate bodies arranged inside one another
US3361284A (en) Thermal insulation construction
GB1227033A (en)
US3538661A (en) Liquid storage container
US4344264A (en) Flexible corner seal structure for cryogenic container
GB2028992A (en) Support for a tank which includes at least a bottom portion which is part-spherical
US3221916A (en) Design of an all plastic cryogenic storage chamber
US3558000A (en) Metallic liner system
US3827136A (en) Method of constructing a low temperature liquefied gas tank of a membrane type
US5468089A (en) Buried storage tank with a single fluid-tight vessel for the confinement of a liquefied gas for example and arrangement of such storage tanks
JP2002267099A (en) Low-temperature tank and storage method for low- temperature liquid
US3241707A (en) Ground storage unit with centersupported roof
JP4337168B2 (en) Low temperature tank
JP2649247B2 (en) A double-walled cryogenic tank with a built-in breather and a construction method for remodeling the double-walled cryogenic tank.
JP2744762B2 (en) Large capacity low temperature liquefied gas tank