JPH08120359A - Method for refining aluminum or aluminum alloy - Google Patents

Method for refining aluminum or aluminum alloy

Info

Publication number
JPH08120359A
JPH08120359A JP10661795A JP10661795A JPH08120359A JP H08120359 A JPH08120359 A JP H08120359A JP 10661795 A JP10661795 A JP 10661795A JP 10661795 A JP10661795 A JP 10661795A JP H08120359 A JPH08120359 A JP H08120359A
Authority
JP
Japan
Prior art keywords
carbide
alloy
molten metal
molten
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10661795A
Other languages
Japanese (ja)
Other versions
JP3395446B2 (en
Inventor
Motohiro Nagao
元裕 長尾
Kazutaka Kunii
一孝 國井
Ryuhei Masuda
隆平 増田
Kenji Osumi
研治 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10661795A priority Critical patent/JP3395446B2/en
Publication of JPH08120359A publication Critical patent/JPH08120359A/en
Application granted granted Critical
Publication of JP3395446B2 publication Critical patent/JP3395446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To reproduce a higher purity of Al than Ti-containing Al by reacting carbon or carbide with molten Al containing Ti as impurity and separating Ti as the carbide from the molten Al. CONSTITUTION: Scrap, etc., of Al or Al alloy containing Ti as impurity is melted and powdery, granular, bar-like, platy or bulky carbon or carbide of SiC, B4 C, etc., is added at >=0.3wt.% in terms of C to the Ti quantity in the Al and brought into contact with the molten metal to make the Ti as the carbide or the Ti-containing composite carbide. In this case, the production of the Ti carbide or the Ti-containing composite carbide is promoted by holding the molten Al to the high temp. at 1200-1500 deg.C and also, pressurizing. Inert gas is blown in this molten Al, and after separating and floating up the Ti carbide or the Ti-containing composite carbide from the molten Al, the Ti carbide, etc., is filtered and separated through a fire-resistant filter. Alternatively, the Ti-containing molten Al is passed through carbon or carbide-filling filter and the Ti is separated and removed as the carbide, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAlまたはAl合金の精
製法に関し、特にAlまたはAl合金溶湯中に含まれる
不純物であるTiを溶解段階で効率よく除去して清浄度
の高いAlまたはAl合金を得る方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of refining Al or Al alloy, and more particularly, Al or Al alloy having high cleanliness by efficiently removing Ti, which is an impurity contained in molten Al or Al alloy, in a melting stage. Is about how to get.

【0002】[0002]

【従来の技術】AlまたはAl合金は、軽量性、加工
性、表面美麗性等の特徴を有することから種々の用途に
利用されている。しかし、不純物元素の混入によって共
晶化合物が粗大化する等の不都合が生じ、強度、靭性、
表面処理性等に悪影響を与えるという問題がある。近
年、省資源・省エネルギーの観点から、AlまたはAl
合金製品のリサイクルが必要とされているが、不純物元
素を極力低減しなければリサイクルによって得られるA
lまたはAl合金が使用に耐えないものとなってしま
う。
2. Description of the Related Art Al or Al alloys are used for various purposes because they have characteristics such as light weight, workability and surface beauty. However, the inclusion of impurity elements causes problems such as coarsening of the eutectic compound, resulting in strength, toughness,
There is a problem that the surface treatability is adversely affected. In recent years, from the viewpoint of resource saving and energy saving, Al or Al
Although it is necessary to recycle alloy products, A can be obtained by recycling unless impurity elements are reduced as much as possible.
l or Al alloy becomes unusable.

【0003】この様なところから、AlまたはAl合金
からの不純物元素の除去法については様々の研究が行な
われており、その一部は実用化されている。種々の不純
物元素のうちTiに注目すると、例えば特開平4−14
7928号公報には、AlまたはAl合金の溶解温度を
低めに設定し、Tiの溶解混入そのものを抑える方法が
知られているが、この方法は固形状で混入するTiに適
用できるだけであって、一旦AlまたはAl合金溶湯中
に溶解混入したTiの除去には適用できず、スクラップ
配合量を多くするにつれてTi含有量は増大してくる。
From such a point, various studies have been conducted on a method of removing an impurity element from Al or an Al alloy, and a part of them has been put into practical use. Focusing on Ti among various impurity elements, for example, Japanese Patent Laid-Open No. 4-14
Japanese Patent No. 7928 discloses a method in which the melting temperature of Al or an Al alloy is set to be low and the mixing and mixing of Ti itself is suppressed, but this method can be applied only to Ti mixed in a solid state. It cannot be applied to the removal of Ti once melted and mixed in Al or Al alloy molten metal, and the Ti content increases as the scrap compounding amount increases.

【0004】また特表平2−500600号公報には、
Mn,W,V等の金属をCrやMnと共に添加し、不純
物Tiとの金属間化合物を生成させて除去する方法が開
示されている。しかしこの方法は、金属間化合物の生成
反応速度が遅いため処理効率が低く、しかも添加元素の
混入により溶湯を却って汚染するという問題も指摘され
る。
In addition, in Japanese Patent Publication No. 2-500600,
A method is disclosed in which metals such as Mn, W, and V are added together with Cr and Mn to form and remove an intermetallic compound with the impurity Ti. However, this method is also pointed out to have a problem that the treatment efficiency is low because the reaction rate of the formation of the intermetallic compound is slow and that the molten metal is contaminated by the addition of the additional element.

【0005】更に特開平4−56744号公報には、A
l合金中の不純物TiがBと反応し硼化物として除去さ
れる旨の記載もあるが、これをTiの除去に利用しよう
としても、硼化物の生成反応速度が遅いため処理効率が
低く、しかも処理効率を高めるために多量のBを添加す
ると、余剰Bの混入により溶湯が却って汚染される。
Further, Japanese Patent Application Laid-Open No. 4-56744 discloses A
Although there is a description that the impurity Ti in the 1-alloy reacts with B and is removed as boride, even if it is attempted to utilize this for the removal of Ti, the reaction rate of boride formation is slow and the treatment efficiency is low. When a large amount of B is added in order to improve the processing efficiency, the excess B is mixed and the molten metal is contaminated instead.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の様な
事情に着目してなされたものであって、その目的は、A
lまたはAl合金溶湯中から不純物元素であるTiを低
コストで効率よく除去することのできる方法を確立し、
高純度なAlまたはAl合金を得ることのできる精製法
を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to
l or a method capable of efficiently removing Ti, which is an impurity element, from the molten Al alloy at a low cost,
An object of the present invention is to provide a refining method capable of obtaining high-purity Al or Al alloy.

【0007】[0007]

【課題を解決するための手段】上記課題を達成すること
のできた本発明に係るAlまたはAl合金の精製法の構
成は、不純物としてTiを含むAlまたはAl合金溶湯
を炭素および/または炭化物と接触せしめ、Ti炭化物
および/またはTi含有複合炭化物を生成させてこれを
分離する工程を含むところに要旨を有するものである。
ここで使用される炭素および/または炭化物としては、
粉状物、粒状物、棒状物、板状物あるいは塊状物等を使
用することができ、これらの炭素および/または炭化物
をAlまたはAl合金溶湯中のTi含有量に対しC換算
で0.3重量%以上添加することにより、不純物Tiを
炭化物として効率よく除去することができる。
The structure of the refining method of Al or Al alloy according to the present invention, which has been able to achieve the above object, comprises contacting an Al or Al alloy molten metal containing Ti as an impurity with carbon and / or carbide. The main point is to include the step of producing Ti carbide and / or Ti-containing composite carbide and separating the same.
The carbon and / or carbide used here includes
A powdery material, a granular material, a rod-shaped material, a plate-shaped material, a lumped material or the like can be used, and these carbon and / or carbides are 0.3 in terms of C with respect to the Ti content in the Al or Al alloy molten metal. By adding at least wt%, the impurity Ti can be efficiently removed as a carbide.

【0008】尚炭化物としては、たとえばSiC、B4
C、Al43 、VC、Ni3 C、Mo2 C等が例示さ
れ、これらは単独で使用し得る他、必要により2種以上
を併用することができる。
As the carbide, for example, SiC, B 4
C, Al 4 C 3 , VC, Ni 3 C, Mo 2 C and the like are exemplified, and these can be used alone or in combination of two or more if necessary.

【0009】上記方法を実施するに当たっては、Alま
たはAl合金溶湯に炭素および/または炭化物を接触さ
せる前もしくは接触後に、溶湯温度を1200〜150
0℃に保持し、あるいは更に当該溶湯を1kgf/cm
2 程度以上に加圧してやれば、Ti炭化物および/また
はTi含有複合炭化物の生成反応が促進されるので好ま
しい。
In carrying out the above method, the temperature of the molten metal is set to 1200 to 150 before or after the carbon and / or carbide is brought into contact with the molten aluminum or aluminum alloy.
Hold at 0 ℃, or 1kgf / cm
It is preferable to apply a pressure of about 2 or more because the reaction of forming Ti carbide and / or Ti-containing composite carbide is promoted.

【0010】また、Ti炭化物および/またはTi含有
複合炭化物が生成したAlまたはAl合金溶湯に不活性
ガスを吹込み、溶湯中の該Ti炭化物および/またはT
i含有複合炭化物の浮上分離を促進する方法、あるいは
該金属間化合物を耐火性フィルターを介して除去する方
法等を採用すれば、それらの除去を効率よく行なうこと
ができる。
Further, an inert gas is blown into the Al or Al alloy molten metal produced by the Ti carbide and / or the Ti-containing composite carbide, and the Ti carbide and / or T in the molten metal is injected.
By adopting a method of promoting floating separation of the i-containing composite carbide, a method of removing the intermetallic compound through a refractory filter, or the like, it is possible to efficiently remove them.

【0011】更に、粉状物、粒状物、棒状物、板状物あ
るいは塊状物の炭素および/または炭化物を使用する他
の例としては、これら粉状物や粒状物等が充填された層
にAlまたはAl合金溶湯を通し、もしくは炭素および
/または炭化物で形成されたフィルターにAlまたはA
l合金溶湯を通し、該AlまたはAl合金溶湯中のTi
をこれら炭素および/または炭化物と反応させて除去す
る方法も、好ましい方法として推奨される。この場合、
フィルター通過時の溶湯温度を1200〜1500℃、
圧力を1kgf/cm2 程度以上に高めてやれば、当該
溶湯中に含まれるTiを一層効率よく除去することが可
能となる。
Further, as another example of using carbon and / or carbide in the form of powder, granules, rods, plates or agglomerates, a layer filled with these powders or granules, etc. Al or A is passed through a molten metal of Al or Al alloy or is applied to a filter formed of carbon and / or carbide.
The molten Al alloy is passed through and Ti in the Al or molten Al alloy
A method of removing C by reacting with these carbons and / or carbides is also recommended as a preferable method. in this case,
The temperature of the molten metal when passing through the filter is 1200 to 1500 ° C,
If the pressure is increased to about 1 kgf / cm 2 or more, Ti contained in the molten metal can be removed more efficiently.

【0012】[0012]

【作用】AlまたはAl合金溶湯中に不純物として含ま
れるTiは、Alと金属間化合物を形成し易いため、T
iをAl以外の金属との金属間化合物として除去するこ
とは殆ど不可能なことと考えられている。ところが、本
発明者らが効率のよいTi除去法の開発を記して研究を
進めるうち、不純物として含まれるTiは、Cまたは炭
化物との間でTi−Alよりも安定な炭化物または複合
炭化物を生成し、該Ti炭化物または複合炭化物は、A
lまたはAl合金溶湯中に固形物として存在し、ろ過等
によって比較的簡単に分離除去できることを見いだし、
こうした知見を基に本発明を完成したものである。
[Function] Since Ti contained as an impurity in Al or Al alloy molten metal easily forms an intermetallic compound with Al, T
It is considered almost impossible to remove i as an intermetallic compound with a metal other than Al. However, as the present inventors describe the development of an efficient Ti removal method and proceed with the research, Ti contained as an impurity forms a carbide or a composite carbide that is more stable than Ti-Al with C or a carbide. The Ti carbide or the composite carbide is A
It was found that it exists as a solid in the molten metal of Al or Al alloy and can be separated and removed relatively easily by filtration or the like.
The present invention has been completed based on these findings.

【0013】即ち本発明では、不純物元素としてTiを
含むAlまたはAl合金溶湯を、Cおよび/または炭化
物と接触させることによってTi炭化物および/または
Ti複合炭化物を生成せしめ、これらをAlおよび/ま
たはAl合金溶湯から除去するものである。ここでCと
はC:100%の炭素や黒鉛等をいい、また炭化物と
は、Cを主成分としこれらに少量のSiO2 、MgO、
Al、Co、TiO2 等が混入したカーボン主体の混合
物、あるいはSiC、B4 C、Al43 、VC、Ni
3 C、Mo2 Cの様なTiと共に安定な複合炭化物を形
成し得る金属炭化物を総称する。
That is, according to the present invention, an Al or Al alloy molten metal containing Ti as an impurity element is brought into contact with C and / or a carbide to form a Ti carbide and / or a Ti compound carbide, and these are Al and / or Al. It is to be removed from the molten alloy. Here, C means C: 100% carbon or graphite, etc., and carbide means C as a main component and a small amount of SiO 2 , MgO,
Carbon-based mixture containing Al, Co, TiO 2, etc., or SiC, B 4 C, Al 4 C 3 , VC, Ni
A general term for metal carbides that can form stable composite carbides with Ti such as 3 C and Mo 2 C.

【0014】これらの炭素や炭化物をAlまたはAl合
金溶湯と接触させる最も一般的な方法は、 粉末状、粒状、板状、塊状等の炭素や炭化物をAlま
たはAl合金溶湯に添加して混合する方法、 炭素や炭化物からなる粒状物あるいは塊状物等の充填
層、もしくは炭素や炭化物によって形成したフィルター
に、AlまたはAl合金溶湯を通過させる方法、 樋や邪魔板等を炭素質材料によって形成し、これらに
AlまたはAl合金溶湯を接触させる方法、 等が採用され、これらの方法によりAlまたはAl合金
中に含まれるTiはCや炭化物と反応して不溶性の炭化
物や複合炭化物を生成し、あるいは固形炭化物等の表面
に炭化物や複合炭化物として付着する。従ってこれらを
濾過等によって溶湯から分離除去すれば、Tiを効率よ
く除去することができる。また上記の方法を採用する
場合は、溶湯の通過速度を適当に調節することによっ
て、通過溶湯は不純物Tiの除去された清浄度の高いも
のとして得ることができる。
The most general method for bringing these carbons and carbides into contact with the molten Al or Al alloy is to add powdery, granular, plate-like, or lumpy carbon or carbide to the molten Al or Al alloy and mix them. Method, a method of passing a molten Al or Al alloy melt through a packed bed of granular materials or agglomerates of carbon or carbide, or a filter formed of carbon or carbide, forming a gutter or baffle plate with a carbonaceous material, A method of bringing them into contact with Al or a molten Al alloy, or the like is adopted, and Ti contained in Al or an Al alloy reacts with C or a carbide to form an insoluble carbide or a composite carbide by these methods, or It adheres to the surface of carbide or the like as carbide or composite carbide. Therefore, if these are separated and removed from the molten metal by filtration or the like, Ti can be efficiently removed. Further, when the above method is adopted, by appropriately adjusting the passing speed of the molten metal, the passing molten metal can be obtained as the one having high cleanliness with the impurities Ti removed.

【0015】尚、炭素や炭化物を粉末や粒状として溶湯
中に添加する場合は、AlまたはAl合金溶湯中に含ま
れるTi量に対して化学当量添加すればよいが、反応率
や処理時における炭素の燃焼ロス等を考慮すると、当量
比で1.5倍程度以上添加することが望ましい。未反応
の炭素や炭化物は殆どそのまま溶湯表面へ浮上し、濾過
工程で炭化物と共に該溶湯から除去されるので、添加量
の上限は特に存在しないが、過度の添加は経済的に無駄
であるので、当量比で3倍程度以下に抑えることが望ま
しい。
When carbon or carbide is added to the molten metal in the form of powder or particles, it may be added in a chemical equivalent amount with respect to the amount of Ti contained in the Al or Al alloy molten metal. Considering the combustion loss and the like, it is desirable to add about 1.5 times or more in terms of equivalent ratio. Unreacted carbon and carbides float to the surface of the molten metal almost as they are and are removed from the molten metal together with the carbides in the filtration step, so there is no upper limit to the amount added, but excessive addition is economically wasteful. It is desirable to suppress the equivalence ratio to about 3 times or less.

【0016】炭化物等を板状物や塊状物として添加し、
あるいは炭化物で樋や邪魔板等を形成し、これらにTi
を炭化物として付着させて除去する場合は、溶湯との接
触率を高めるため溶湯との接触面積を十分に高めると共
に、溶湯に十分な攪拌を加えることが望まれる。そし
て、これらの表面における炭化物の付着量が飽和した時
点で新たな炭化物と交換すればよい。本発明では、上記
の様にして炭素や炭化物を被処理溶湯と接触させること
によりTi炭化物やTi複合炭化物を生成せしめ、これ
らをAlまたはAl合金溶湯から分離除去することによ
って、不純物Tiの除去が達成できる。
Carbide etc. are added as a plate or a lump,
Alternatively, a gutter or baffle is formed from carbide and Ti
In the case of adhering and removing carbon as a carbide, it is desirable to sufficiently increase the contact area with the molten metal in order to increase the contact rate with the molten metal and to add sufficient stirring to the molten metal. Then, when the amount of adhered carbides on these surfaces becomes saturated, the carbides may be replaced with new carbides. In the present invention, as described above, carbon carbide or carbide is brought into contact with the molten metal to be treated to generate Ti carbide or Ti compound carbide, and these are separated and removed from the Al or Al alloy molten metal to remove the impurity Ti. Can be achieved.

【0017】Ti炭化物や複合炭化物の除去方法は特に
限定されないが、一般的な方法としては、粉状や粒状等
の表層部にTi炭化物が生成・付着したものはAl溶湯
よりも軽量であって湯面に浮上するので、処理の末期に
溶湯を鎮静化して湯面から除去し、あるいは耐火性フィ
ルター等によって濾別すればよい。このとき、溶湯中に
窒素、アルゴン、He、ネオン等の不活性ガスを微細な
気泡状で吹込み、気泡の浮上と共に該炭化物の浮上を促
進させることも好ましい方法の1つであり、この方法を
採用すれば同時に脱水素も進められるという利点も享受
できる。
The method for removing the Ti carbide and the composite carbide is not particularly limited, but as a general method, the one in which the Ti carbide is formed and adhered to the surface layer portion such as powder or particles is lighter than the molten aluminum. Since it floats on the surface of the molten metal, the molten metal may be calmed and removed from the surface of the molten metal at the end of the treatment, or filtered by a fire resistant filter or the like. At this time, one of the preferable methods is to blow an inert gas such as nitrogen, argon, He, or neon into the molten metal in the form of fine bubbles to promote the floating of the bubbles and the floating of the carbide. By adopting, it is possible to enjoy the advantage that dehydrogenation can be promoted at the same time.

【0018】また塊状、板状等の炭化物を使用する場合
は、処理後表面にTi炭化物が生成付着して浮上したそ
れらの塊状物や板状物を湯面から除去すればよく、また
樋や邪魔板を用いて脱Tiを行なう場合は、それらの表
面がTi炭化物等で飽和されるまで繰り返し使用し、飽
和する直前に新しい樋や邪魔板と交換すればよい。粒状
や塊状等の炭化物層に溶湯を通してTi炭化物等を該粒
状物や塊状物の表面に生成・付着させる場合も同様であ
り、該粒状物等の表面がTi炭化物等で飽和される前に
新しい粒状物と交換すればよい。
In the case of using lump-shaped or plate-shaped carbides, it is sufficient to remove those lumps or plate-like materials that have been formed and adhered to the surface of Ti carbide after the treatment, and are removed from the molten metal surface. In the case of performing Ti removal using a baffle plate, it may be repeatedly used until the surface thereof is saturated with Ti carbide or the like, and replaced with a new gutter or baffle plate immediately before the saturation. The same applies to the case where Ti carbide or the like is generated and adhered to the surface of the granular or lump by passing the molten metal into the granular or lump carbide layer, and the new surface is formed before the surface of the granular or the like is saturated with Ti carbide or the like. It may be exchanged for granules.

【0019】ところで、上記方法によりTiをTi炭化
物やTi複合炭化物として除去するに際し、処理時の温
度や圧力がTi除去効率にどの様な影響を及ぼすかにつ
いて検討を行った結果、処理温度を1200℃以上に設
定すると共に、該処理系を適度に加圧してやれば、上記
Ti炭化物やTi複合炭化物の生成率が高まり、ひいて
はTi除去率が一段と高められることが確認された。ち
なみに図2は、処理温度とTi炭化物もしくはTi複合
炭化物の生成量の関係を調べた結果を示したグラフであ
り、このグラフからも明らかである様に、処理温度が1
200℃以上になると前記炭化物の生成量は明らかに急
増する傾向が認められる。このことから、Ti除去率を
一層効果的に高めるには、処理温度を1200℃以上に
高めることが有効であることを確認できる。但し、処理
温度が過度に高くなるとAlの酸化ロスが増大してくる
ので、好ましくは1400℃程度以下に抑えることが望
ましい。Alロスを最小限に抑えつつTi除去率を効果
的に高める上で特に好ましい処理温度は1200〜14
00℃の範囲である。
By the way, when removing Ti as Ti carbide or Ti composite carbide by the above method, the effect of temperature and pressure during the treatment on the Ti removal efficiency was examined. As a result, the treatment temperature was 1200. It was confirmed that if the treatment system is set to not less than 0 ° C. and the treatment system is appropriately pressurized, the production rate of the Ti carbide and the Ti compound carbide is increased, and the Ti removal rate is further enhanced. Incidentally, FIG. 2 is a graph showing the results of examining the relationship between the treatment temperature and the production amount of Ti carbide or Ti compound carbide. As is clear from this graph, the treatment temperature is 1
At 200 ° C. or higher, it is observed that the amount of the above-mentioned carbide formed obviously increases sharply. From this, it can be confirmed that increasing the treatment temperature to 1200 ° C. or higher is effective in increasing the Ti removal rate more effectively. However, if the processing temperature becomes excessively high, the oxidation loss of Al increases, so it is preferable to suppress it to about 1400 ° C. or less. Particularly preferable treatment temperature is 1200 to 14 in order to effectively increase the Ti removal rate while minimizing the Al loss.
It is in the range of 00 ° C.

【0020】また、該炭化物生成時の反応系を適度に加
圧し、好ましくは1kgf/cm2程度以上、より好ま
しくは1.5kgf/cm2 以上に加圧してやれば、上
記炭化物の生成が一段と加速され、Ti除去率を更に高
めることができるので好ましい。
Further, if the reaction system at the time of forming the carbide is appropriately pressurized, preferably about 1 kgf / cm 2 or more, more preferably 1.5 kgf / cm 2 or more, the formation of the above carbide is further accelerated. It is preferable because the Ti removal rate can be further increased.

【0021】上記の加熱あるいは加圧は、要するに炭化
物生成促進を目的として行なわれるものであるから、そ
の時期はAlまたはAl合金溶湯に炭素および/または
炭化物を接触させるときであり、炭素や炭化物を添加し
てから昇温・加圧する方法、一旦昇温・加圧してから炭
素や炭化物を添加する方法のいずれを採用することも可
能である。また加圧は、被処理溶湯を湯面から加圧する
のが最も一般的であるが、例えば前記の様に炭素等の充
填層や炭素質フィルターを通すことにより炭化物の生成
とその除去を同時に行う方法を採用する場合は、充填層
やフィルター出口側を適度の負圧とし、背圧によって適
度の加圧状態を得ることも可能である。
Since the above heating or pressurization is carried out for the purpose of accelerating the formation of carbides, the timing is the time when carbon and / or carbides are brought into contact with the molten Al or Al alloy and the carbon and carbides are removed. It is possible to employ either a method of increasing the temperature and pressurizing after adding, or a method of once increasing the temperature and pressurizing and then adding carbon or carbide. Pressurization is most commonly performed by pressing the molten metal to be treated from the surface of the molten metal. For example, as described above, the formation and removal of carbides are performed simultaneously by passing through a packed bed of carbon or the like or a carbonaceous filter. When the method is adopted, it is also possible to obtain a moderately negative pressure on the packed bed or the outlet side of the filter and obtain a moderately pressurized state by back pressure.

【0022】上記の様にして不純物Tiを除去した後
は、必要により塩化カリウム系フラックス等を用いた公
知の方法で精錬を行うことによって、高純度なAlまた
はAl合金を製造することができる。
After removing the impurity Ti as described above, high purity Al or Al alloy can be produced by refining by a known method using a potassium chloride type flux or the like, if necessary.

【0023】[0023]

【実施例】以下、実施例を挙げて本発明の構成および作
用効果を具体的に説明するが、本発明はもとより下記実
施例によって制限を受けるものではなく、前・後記の趣
旨に適合し得る範囲で変更を加えて実施することも勿論
可能であり、それらはいずれも本発明の技術範囲に包含
される。
EXAMPLES The constitutions and effects of the present invention will be specifically described below with reference to examples, but the present invention is not limited by the following examples and can be adapted to the gist of the preceding and the following. It is of course possible to make changes within the scope of the invention, and all of them are included in the technical scope of the present invention.

【0024】実施例1 原料として、Ti:1.0〜10重量%を含むJIS−
1100の純Al系スクラップを使用し、溶解温度:7
50℃、溶解炉:3トンの誘導溶解炉で大気溶解する方
法を採用し、このとき、溶湯に板状(300mmw ×1
000mml ×50mmt )または粉末状(平均粒子
径:100μm)の炭素を、溶湯中のTi量に対して
0.1〜200重量%添加して90分間攪拌した後、板
状Cは湯面から除去し、また粉末状Cは溶湯を耐火性フ
ィルターに通すことによって除去した。また、他の方法
として、上記溶湯を300メッシュのC製フィルターに
通し、溶湯中に含まれるTiを該フィルターの網目表面
にTi炭化物として付着させることによって除去した。
その後、溶湯をサンプリングして元素分析を行なった。
溶湯は引き続いて精錬(KCl系フラックス:溶湯量に
対し0.1重量%をN2ガス:流量0.6m3 /h、3
0分で吹き込み)を行なった後、半連続鋳造を行ない、
直径300mmのビレット(4本取り)を製造した。上
記溶湯処理段階でサンプリングした溶湯の元素分析を行
ない、Ti残留濃度が0.02%以下で、且つC濃度が
欠陥限界である0.04%未満のものを合格(○)、T
i濃度が0.02%以下で且つC濃度が0.04%以上
のもの、あるいは初期Ti濃度が0.1%以下の場合の
み処理後のTi濃度が0.02%以下で且つC濃度が
0.04%未満であるものを準合格(△)、処理後のT
i濃度が0.02%を超えるものを不合格(×)とし
た。
Example 1 As a raw material, JIS-containing Ti: 1.0 to 10% by weight
Melting temperature: 7 using 1100 pure Al-based scrap
50 ° C, melting furnace: A method of melting in an induction melting furnace of 3 tons was adopted. At this time, the molten metal had a plate shape (300 mm w x 1
000 mm l × 50 mm t ) or powdery (average particle size: 100 μm) carbon was added in an amount of 0.1 to 200% by weight with respect to the amount of Ti in the molten metal, and the mixture was stirred for 90 minutes. And the powdered C was removed by passing the melt through a refractory filter. As another method, the molten metal was passed through a 300 mesh filter made of C, and Ti contained in the molten metal was removed by adhering it as Ti carbide on the mesh surface of the filter.
After that, the molten metal was sampled for elemental analysis.
The molten metal is subsequently refined (KCl-based flux: 0.1% by weight based on the amount of molten metal, N 2 gas: flow rate 0.6 m 3 / h, 3
(Blow-in for 0 minutes), then perform semi-continuous casting,
A billet (4 pieces) having a diameter of 300 mm was manufactured. Elemental analysis of the molten metal sampled in the above-mentioned molten metal treatment step was performed, and if the residual Ti concentration was 0.02% or less and the C concentration was less than 0.04%, which was the defect limit, it was passed (○), T
Only when the i concentration is 0.02% or less and the C concentration is 0.04% or more, or when the initial Ti concentration is 0.1% or less, the treated Ti concentration is 0.02% or less and the C concentration is Those with less than 0.04% are semi-passed (△), T after processing
A sample having an i concentration of more than 0.02% was regarded as a failure (x).

【0025】また、得られた各ビレットについて熱間お
よび冷間圧延により厚さ0.3mmのAl板について、
熱間加工割れ試験(○:割れ発生率0.1%未満、×:
割れ発生率0.1%以上)、冷延板強度試験(○:12
kgf/mm2 以上、×:12kgf/mm2 未満)、
冷延板の塗装性試験(○:表面欠陥発生率0.1%以
下、×:同発生率0.1%超)を行ない、夫々の性能を
評価した。結果を表1に示す。尚、上記において炭素に
代えて炭化物を使用して同様の実験を行なったところ、
殆ど同様の結果を得た。
Further, for each of the obtained billets, an Al plate having a thickness of 0.3 mm was subjected to hot and cold rolling,
Hot work cracking test (○: cracking occurrence rate is less than 0.1%, ×:
Crack occurrence rate of 0.1% or more), cold-rolled sheet strength test (○: 12
kgf / mm 2 or more, x: less than 12 kgf / mm 2 ),
Each cold-rolled sheet was subjected to a paintability test (∘: surface defect occurrence rate of 0.1% or less, x: same occurrence rate of more than 0.1%) to evaluate each performance. The results are shown in Table 1. Incidentally, when a similar experiment was conducted using a carbide instead of carbon in the above,
Almost similar results were obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例2 原料として、Ti:0.06重量%を含むJIS−30
04のAl合金系スクラップを使用し、溶解温度:75
0℃、溶解炉:4トンの誘導溶解炉で大気溶解する方法
を採用し、このとき、溶湯に板状(250mmw ×80
0mml ×60mmt )または粉末状(平均粒子径:2
00μm)の炭素を、溶湯中のTi量に対して0.1〜
200重量%添加して45分間攪拌した後、板状Cは湯
面から除去し、また粉末状Cは溶湯を耐火性フィルター
に通すことによって除去した。また、他の方法として、
上記溶湯を250メッシュのC製フィルターに通し、溶
湯中に含まれるTiを該フィルターの網目表面にTi炭
化物として付着させることによって除去した後、溶湯を
サンプリングして元素分析を行なった。溶湯は引き続い
て精錬(KCl系フラックス:対溶湯0.1重量%を窒
素ガスによって吹き込み)を行なった後、半連続鋳造を
行ない、直径300mmのビレット(4本取り)を製造
した。上記処理段階でサンプリングした溶湯の元素分析
を行ない、Ti残留濃度が0.02%以下のものを合格
とした。また、得られた各ビレットについて、上記実施
例1と同様にして熱間加工割れ試験、冷延板強度試験、
冷延板の塗装性試験を行ない、夫々の性能を評価した。
結果を表2に示す。
Example 2 JIS-30 containing 0.06% by weight of Ti as a raw material
Melting temperature: 75 using 04 Al alloy scrap
0 ° C, melting furnace: A method of melting in an induction melting furnace of 4 tons was adopted. At this time, the molten metal had a plate shape (250 mm w x 80 mm).
0 mm l x 60 mm t ) or powder (average particle size: 2)
(00 μm) of carbon with respect to the amount of Ti in the molten metal is 0.1 to
After adding 200% by weight and stirring for 45 minutes, the plate C was removed from the molten metal surface, and the powder C was removed by passing the molten metal through a refractory filter. Also, as another method,
The molten metal was passed through a 250-mesh C filter, Ti contained in the molten metal was removed by adhering it as Ti carbide on the mesh surface of the filter, and then the molten metal was sampled for elemental analysis. The molten metal was subsequently subjected to refining (KCl-based flux: 0.1% by weight of the molten metal was blown with nitrogen gas), and then semi-continuous casting was performed to manufacture a billet having a diameter of 300 mm (4 pieces). Elemental analysis of the molten metal sampled in the above treatment step was carried out, and those having a Ti residual concentration of 0.02% or less were accepted. For each of the obtained billets, a hot work cracking test, a cold rolled sheet strength test, and
Each cold-rolled sheet was subjected to a paintability test to evaluate its performance.
Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】表1,2からも明らかである様に、Alま
たはAl合金溶湯中に適量のCまたは炭化物を添加して
処理し、あるいは該溶湯を炭素で形成されたフィルター
に通すと、該溶湯中に不純物元素として含まれるTiが
Ti炭化物もしくはTi複合炭化物として効率よく除去
され、清浄度の高いAlまたはAl合金を得ることがで
きる。
As is clear from Tables 1 and 2, when an appropriate amount of C or carbide is added to an Al or Al alloy molten metal for treatment or the molten metal is passed through a filter made of carbon, the molten metal is melted. Ti contained as an impurity element therein is efficiently removed as Ti carbide or Ti compound carbide, and Al or Al alloy having high cleanliness can be obtained.

【0030】尚、図1は、AlまたはAl合金溶湯中に
含まれるTi量に対する粒状もしくは粉末状Cの添加量
と残存Ti濃度の関係を整理して示したグラフであり、
このグラフからも明らかである様に、Ti量に対し約
0.3重量%程度以上のCを添加することによって、S
iを効率よく除去し得ること、また、それ以上にC添加
量を多くしてもそれ以上にTi濃度の低下は殆ど期待で
きず、それ以上の添加は経済的に無駄であることが分か
る。
FIG. 1 is a graph showing the relationship between the amount of addition of granular or powdery C and the residual Ti concentration with respect to the amount of Ti contained in Al or Al alloy molten metal.
As is clear from this graph, by adding about 0.3% by weight or more of C to the amount of Ti, S
It can be seen that i can be removed efficiently, and even if the amount of C added is increased more than that, a decrease in Ti concentration can hardly be expected, and addition of more than that is economically wasteful.

【0031】尚上記では、Cを用いてTiを除去する方
法について具体例を示したが、炭化物(SiC、B4
C、Al43 、VC)等を使用することによっても同
様のTi除去効果を得ることができる。
In the above, a specific example of the method of removing Ti by using C is shown, but carbides (SiC, B 4
The same Ti removing effect can be obtained by using C, Al 4 C 3 , VC) or the like.

【0032】実施例3 上記実施例1において、粉末状(平均粒子径:100μ
m)炭素の添加量を、溶湯中のTi量に対して10倍量
に設定し、処理温度を800〜1400℃の範囲で変え
た以外は実施例1と全く同様にしてTi除去を行ない、
溶湯中の残存Ti濃度を比較した。
Example 3 In the above Example 1, powder (average particle diameter: 100 μm)
m) Ti was removed in exactly the same manner as in Example 1 except that the amount of carbon added was set to 10 times the amount of Ti in the molten metal and the treatment temperature was changed in the range of 800 to 1400 ° C.
The residual Ti concentrations in the melts were compared.

【0033】また、粉末状炭素を添加した後、溶湯を耐
火性フィルターに通して炭化物を除去する際に、該処理
容器を密閉し内部に加圧空気を吹き込むことにより湯面
に1.5kgf/cm2 の圧力をかけてから濾過を行な
った以外は上記と全く同様にして実験を行ない、残存T
i濃度を調べた。
After the powdered carbon has been added, when the molten metal is passed through a refractory filter to remove the carbides, the treatment vessel is closed and pressurized air is blown into the inside of the molten metal so that 1.5 kgf / The experiment was conducted in exactly the same manner as above except that filtration was performed after applying a pressure of cm 2.
The i concentration was checked.

【0034】結果は図2,3に示す通りであり、処理温
度を1000℃以上、より好ましくは1200℃以上に
高めることによって、Ti除去率をより効果的に高め得
ることが分かる(図2)。また、該溶湯を適度に加圧し
てやれば、Ti除去率を更に高め得ることが分かる(図
3)。
The results are shown in FIGS. 2 and 3, and it can be seen that the Ti removal rate can be more effectively increased by increasing the treatment temperature to 1000 ° C. or higher, more preferably 1200 ° C. or higher (FIG. 2). . Further, it can be seen that the Ti removal rate can be further increased by appropriately pressurizing the molten metal (FIG. 3).

【0035】[0035]

【発明の効果】本発明は以上の様に構成されており、A
lまたはAl合金中に不純物元素として含まれるTiを
低コストで且つ効率よく除去することができ、高純度な
AlまたはAl合金を溶製することができた。
The present invention is constituted as described above, and A
It was possible to efficiently remove Ti contained as an impurity element in 1 or Al alloy at low cost, and to produce high-purity Al or Al alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】AlまたはAl合金溶湯中に含まれるTi量に
対する添加C量と残存Ti濃度の関係を整理して示した
グラフである。
FIG. 1 is a graph showing the relationship between the amount of added C and the residual Ti concentration with respect to the amount of Ti contained in Al or Al alloy melt.

【図2】処理温度がTi炭化物もしくはTi複合炭化物
の生成率に与える影響を調べた結果を示すグラフであ
る。
FIG. 2 is a graph showing the results of examining the influence of the treatment temperature on the production rate of Ti carbide or Ti composite carbide.

【図3】Ti除去処理時の温度および圧力が溶湯中の残
存Ti濃度に与える影響を調べた結果を示すグラフであ
る。
FIG. 3 is a graph showing the results of examining the effect of temperature and pressure during Ti removal treatment on the residual Ti concentration in the molten metal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大隅 研治 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Osumi 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Research Institute, Kobe Steel Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 不純物としてTiを含むAlまたはAl
合金溶湯を炭素および/または炭化物と接触せしめ、T
i炭化物および/またはTi含有複合炭化物を生成させ
てこれを分離する工程を含むことを特徴とするAlまた
はAl合金の精製法。
1. Al or Al containing Ti as an impurity
The molten alloy is brought into contact with carbon and / or carbide, and T
A method for purifying Al or an Al alloy, which comprises the step of producing an i-carbide and / or a Ti-containing composite carbide and separating the same.
【請求項2】 炭素および/または炭化物を、粉状物、
粒状物、棒状物、板状物あるいは塊状物としてAlまた
はAl合金溶湯に添加し接触させる請求項1に記載の精
製法。
2. Carbon and / or carbide is a powder,
The refining method according to claim 1, wherein the granular or rod-shaped material, the plate-shaped material or the lump-shaped material is added to the molten Al or Al alloy and brought into contact therewith.
【請求項3】 炭素および/または炭化物を、Alまた
はAl合金溶湯中のTi含有量に対し、C換算で0.3
重量%以上添加する請求項2に記載の精製法。
3. Carbon and / or carbide is 0.3 in terms of C with respect to the Ti content in Al or Al alloy molten metal.
The refining method according to claim 2, wherein the amount is at least wt%.
【請求項4】 炭化物が、SiC、B4 C、Al4
3 、VC、Ni3 C、Mo2 Cから選択される少なくと
も1種である請求項1〜3のいずれかに記載の精製法。
4. The carbide is SiC, B 4 C, Al 4 C
The purification method according to claim 1, wherein the purification method is at least one selected from 3 , VC, Ni 3 C, and Mo 2 C.
【請求項5】 AlまたはAl合金溶湯に炭素および/
または炭化物を接触させる前もしくは接触後に、溶湯温
度を1200〜1500℃に保持してTi炭化物および
/またはTi含有複合炭化物の生成を促進する請求項1
〜4のいずれかに記載の精製法。
5. The molten aluminum or Al alloy containing carbon and / or
Alternatively, the molten metal temperature is maintained at 1200 to 1500 ° C. before or after the contact with the carbide to promote the formation of the Ti carbide and / or the Ti-containing composite carbide.
5. The purification method according to any one of 4 to 4.
【請求項6】 AlまたはAl合金溶湯に炭素および/
または炭化物を接触させる前もしくは接触後に、溶湯温
度を1200〜1500℃に保持すると共に、当該溶湯
を加圧することによりTi炭化物および/またはTi含
有複合炭化物の生成を促進する請求項1〜4のいずれか
に記載の精製法。
6. A molten aluminum or Al alloy containing carbon and / or
Alternatively, the temperature of the molten metal is maintained at 1200 to 1500 ° C. before or after the contact with the carbide, and the molten metal is pressurized to accelerate the formation of the Ti carbide and / or the Ti-containing composite carbide. The purification method according to Crab.
【請求項7】 Ti炭化物および/またはTi含有複合
炭化物が生成したAlまたはAl合金溶湯に不活性ガス
を吹き込み、溶湯中のTi炭化物および/またはTi含
有複合炭化物の浮上分離を促進する請求項1〜6のいず
れかに記載の精製法。
7. The float separation of Ti carbide and / or Ti-containing composite carbide in the melt is promoted by blowing an inert gas into an Al or Al alloy melt produced by Ti carbide and / or Ti-containing composite carbide. 7. The purification method according to any one of 6 to 6.
【請求項8】 Ti炭化物および/またはTi含有複合
炭化物が生成したAlまたはAl合金溶湯を耐火性フィ
ルターに通し、Ti炭化物および/またはTi含有複合
炭化物を該フィルターによって除去する請求項1〜7の
いずれかに記載の精製法。
8. The molten Al or Al alloy produced by the Ti carbide and / or the Ti-containing composite carbide is passed through a refractory filter, and the Ti carbide and / or the Ti-containing composite carbide is removed by the filter. The purification method according to any one.
【請求項9】 粉状物、粒状物、棒状物、板状物あるい
は塊状物の炭素および/または炭化物を充填した層、も
しくは炭素および/または炭化物で形成されたフィルタ
ーに、AlまたはAl合金溶湯を通し、該AlまたはA
l合金溶湯中のTiを炭素および/または炭化物と反応
させて除去する請求項1に記載の精製法。
9. A molten metal of Al or Al alloy in a powder-, granular-, rod-shaped, plate-shaped or lump-shaped layer filled with carbon and / or carbide, or a filter formed of carbon and / or carbide. Through the Al or A
The refining method according to claim 1, wherein Ti in the molten alloy is removed by reacting it with carbon and / or carbide.
【請求項10】 フィルター通過時の溶湯温度を120
0〜1500℃、圧力を1kgf/cm2 以上とする請
求項9に記載の精製法。
10. The molten metal temperature when passing through the filter is 120.
The purification method according to claim 9, wherein the pressure is 0 to 1500 ° C and the pressure is 1 kgf / cm 2 or more.
JP10661795A 1994-08-25 1995-04-28 Purification method of Al or Al alloy Expired - Fee Related JP3395446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10661795A JP3395446B2 (en) 1994-08-25 1995-04-28 Purification method of Al or Al alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20103894 1994-08-25
JP6-201038 1994-08-25
JP10661795A JP3395446B2 (en) 1994-08-25 1995-04-28 Purification method of Al or Al alloy

Publications (2)

Publication Number Publication Date
JPH08120359A true JPH08120359A (en) 1996-05-14
JP3395446B2 JP3395446B2 (en) 2003-04-14

Family

ID=26446742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10661795A Expired - Fee Related JP3395446B2 (en) 1994-08-25 1995-04-28 Purification method of Al or Al alloy

Country Status (1)

Country Link
JP (1) JP3395446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171362B1 (en) 1998-12-25 2001-01-09 Kobe Steel, Ltd Method for refining molten aluminum alloy and flux for refining molten aluminum alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171362B1 (en) 1998-12-25 2001-01-09 Kobe Steel, Ltd Method for refining molten aluminum alloy and flux for refining molten aluminum alloy

Also Published As

Publication number Publication date
JP3395446B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
CA1289748C (en) Producing titanium carbide
CN1699000A (en) Method for preparing a metallic article having an other additive constituent, without any melting
JPH06145836A (en) Production of alloy utilizing aluminum slag
AU2007268370B8 (en) Method for producing metal alloy and intermetallic products
JPS63100150A (en) Master alloy for producing titanium alloy and its production
JP2001323329A (en) Chromium containing metal and its production method
JP3395446B2 (en) Purification method of Al or Al alloy
US3058822A (en) Method of making additions to molten metal
JP5814500B2 (en) Method for producing stainless steel ingot having carbon [C] of 10 ppm or less in ingot
JP3766363B2 (en) Method for refining molten aluminum alloy
RU2102495C1 (en) Metallothermal reaction mixture
RU2599464C2 (en) Charge and method for aluminothermic production of chromium-based alloy using said charge
Zheng et al. Effect of reduction parameters on the size and morphology of the metallic particles in carbothermally reduced stainless steel dust
Ikornikov et al. MILL SCALE WASTE REPROCESSING BY CENTRIFUGAL METALLOTHERMIC SHS FOR PRODUCTION OF CAST FERROALLOYS Fe−(Si; Si–Al; B; B–Al)
RU2549820C1 (en) Method for aluminothermic obtainment of ferroalloys
JPH06299263A (en) Method for removing slag from al or al alloy molten metal
JP2003253325A (en) Method for manufacturing high cleanliness steel with ladle refining with the use of carbide slag
RU2425161C1 (en) Procedure for production of composite super-dispersed powder
Ohmann et al. Semi-Solid Remelting of Magnesium Chips
WO2017164898A1 (en) Method of treating unrefined tungstic acid to produce alloy grade tungsten for use in tungsten bearing steels and nickel based superalloys
JPH04120225A (en) Manufacture of ti-al series alloy
Doutre et al. Aluminum
JP3462617B2 (en) Purification method of Al or Al alloy
JP2024518265A (en) Method for recovering processed aluminum scrap of aviation aluminum alloys
Zheng et al. Effect of Reduction Parameters on the Size and Morphology of the Metallic Particles in Carbothermally Reduced Stainless Steel Dust

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees