JPH08120256A - Ultraviolet-intercepting agent - Google Patents

Ultraviolet-intercepting agent

Info

Publication number
JPH08120256A
JPH08120256A JP27866394A JP27866394A JPH08120256A JP H08120256 A JPH08120256 A JP H08120256A JP 27866394 A JP27866394 A JP 27866394A JP 27866394 A JP27866394 A JP 27866394A JP H08120256 A JPH08120256 A JP H08120256A
Authority
JP
Japan
Prior art keywords
silicate mineral
ultraviolet
layered silicate
group
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27866394A
Other languages
Japanese (ja)
Inventor
Harumasa Kuwabara
東方 桑原
Teruo Aoyama
輝雄 青山
Hideyo Morozumi
英世 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunimine Industries Co Ltd
Original Assignee
Kunimine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunimine Industries Co Ltd filed Critical Kunimine Industries Co Ltd
Priority to JP27866394A priority Critical patent/JPH08120256A/en
Publication of JPH08120256A publication Critical patent/JPH08120256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE: To obtain an ultraviolet-intercepting agent which is excellent in ultraviolet-intercepting effect, is a fine powder excellent in dispersion stability, and is so chemically stable that it, hardly undergoes changes in quality, by using a layered silicate mineral which contains metal ions intercalated between layers. CONSTITUTION: Metal ions are selected from among the groups of iron, aluminum, titanium, zinc, copper alkaline earth metals, and chromium. A layered silicate mineral as the raw material is a clay mineral belonging to the smectite group, including montmorillonite, etc. The intercalation is done by using a salt of one of the above metals (e.g. iron chloride), i.e., subjecting the silicate mineral to water elutriation, removing the precipitate, adding the salt to the supernatant liq., and conducting the intercalation under stirring at room temp., a pH of 10 or lower, and a cation-exchange rate of 90% or higher. The resulting product is filtered to separate solids, and the solids are dried and ground to give the objective product. The salt is added in an amt. of 3-20wt.% of the silicate mineral.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、層状ケイ酸塩鉱物を有
してなる紫外線防御剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a UV protection agent having a layered silicate mineral.

【0002】[0002]

【従来の技術】紫外線は、サンタン、サンバーン、光過
敏性皮膚炎、皮膚の老化の促進を引き起こし、あるいは
皮膚がんの原因となるなど、人間の皮膚に対して悪影響
を及ぼす。こういったことが一般的に広く認識されるよ
うになり、化粧品、衣類をはじめとして様々なものに紫
外線防止機能を付与することが試みられている。例えば
化粧品の場合には、酸化チタンの微粒子等からなる無機
系紫外線散乱剤や共役二重結合をもつフェノール系物質
からなる有機系紫外線吸収剤などを配合することにより
紫外線防止効果を与えている。
2. Description of the Related Art Ultraviolet rays have an adverse effect on human skin such as suntan, sunburn, photosensitivity dermatitis, acceleration of skin aging, and skin cancer. These things have become widely recognized, and it has been attempted to impart an ultraviolet protection function to various things such as cosmetics and clothes. For example, in the case of cosmetics, an ultraviolet ray-preventing effect is given by adding an inorganic ultraviolet ray-scattering agent composed of fine particles of titanium oxide or an organic ultraviolet-absorbing agent composed of a phenolic substance having a conjugated double bond.

【0003】[0003]

【発明が解決しようとする課題】しかし、無機系紫外線
散乱剤については微粒子化に伴う使用性の悪化、微粒子
化後の再凝集、光触媒活性による耐光性の減少などの問
題がある。また有機系紫外線吸収剤の場合は処方上、量
的な制限があるなどの問題がある。このようなことか
ら、紫外線防止効果に優れ、化学的に安定で、様々な種
類や形態の材料に配合して処方上の制限を受けにくい、
新規な紫外線防御剤の開発が望まれていた。
However, the inorganic ultraviolet scattering agent has problems such as deterioration of usability due to microparticulation, reaggregation after microparticulation, and reduction of light resistance due to photocatalytic activity. Further, in the case of an organic ultraviolet absorber, there is a problem in that there is a limit in terms of prescription. From these things, it has an excellent effect of preventing ultraviolet rays, is chemically stable, and is not easily restricted by prescription by being mixed with various types and forms of materials.
The development of new UV protection agents has been desired.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく鋭意研究した結果、層間に金属イオンをイ
ンターカレーションさせた層状ケイ酸塩鉱物が優れた紫
外線遮断作用を示すことを見出し、この知見に基づき本
発明をなすに至った。すなわち本発明は、(1)層間に
金属イオンをインターカレーションさせた層状ケイ酸塩
鉱物を有してなる紫外線防御剤、(2)金属イオンが鉄
族、アルミニウム族、チタン族、亜鉛族、銅族、アルカ
リ土金属またはクロム族から選ばれた金属である(1)
項に記載の紫外線防御剤、及び(2)金属イオンが鉄、
アルミニウム、ニッケル、ジルコニウム、亜鉛、銅、バ
リウムまたはチタンである(1)項に記載の紫外線防御
剤を提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have found that a layered silicate mineral in which metal ions are intercalated between layers exhibits an excellent ultraviolet blocking action. The present invention has been completed based on this finding. That is, the present invention provides (1) an ultraviolet protective agent having a layered silicate mineral in which metal ions are intercalated between layers, (2) the metal ions are iron group, aluminum group, titanium group, zinc group, A metal selected from the group consisting of copper, alkaline earth metals and chromium (1)
The ultraviolet protection agent according to the item, and (2) the metal ion is iron,
The ultraviolet protection agent according to item (1) is aluminum, nickel, zirconium, zinc, copper, barium or titanium.

【0005】本発明において用いられる層状ケイ酸塩鉱
物は、シリカ−酸素四面体が2次元的に網状に連続した
四面体シートと、アルミニウム−酸素などの八面体が網
状に連続した八面体シートの組み合わせからなり、その
組み合わせによって様々な形状をとりうる。その層の表
面はマイナスの電荷をもっているためカチオンを吸着す
る性質があるが、層間に入り込んだカチオンはイオン結
合よりも弱い結合をしているため自由に他のカチオンと
交換することができる。このため層表面で各種イオン交
換反応を行うことができる。本発明者らは、この交換性
イオンを鉄やニッケルなどの鉄族、アルミニウムなどの
アルミニウム族、チタンやジルコニウムなどのチタン
族、亜鉛などの亜鉛族、銅などの同族、バリウムなどの
アルカリ土金属またはタングステンなどのクロム属から
選ばれた金属のイオンと交換すると、紫外線を遮断する
性質のほとんどなかった層状ケイ酸塩鉱物に優れた紫外
線遮断効果が生じることを見出した。
The layered silicate mineral used in the present invention is composed of a tetrahedral sheet in which silica-oxygen tetrahedra are two-dimensionally continuous in a net shape and an octahedral sheet in which octahedra such as aluminum-oxygen are continuous in a net shape. It consists of combinations and can take various shapes depending on the combination. The surface of the layer has a property of adsorbing cations because it has a negative charge, but the cations that enter the layers have a weaker bond than an ionic bond and can be freely exchanged with other cations. Therefore, various ion exchange reactions can be performed on the layer surface. The present inventors have defined this exchangeable ion as an iron group such as iron and nickel, an aluminum group such as aluminum, a titanium group such as titanium and zirconium, a zinc group such as zinc, a family member such as copper, and an alkaline earth metal such as barium. It has also been found that when exchanging with ions of a metal selected from the genus of chromium such as tungsten, the layered silicate mineral, which has almost no property of blocking ultraviolet rays, has an excellent ultraviolet blocking effect.

【0006】本発明の紫外線防御剤の製造方法について
説明する。原料の層状ケイ酸塩鉱物は、スメクタイト属
に属する粘土鉱物で、一般にはモンモリロナイト、バイ
デライト、ノントロナイト、サポナイトおよびヘクトラ
イト等であり、これらは天然または合成品のいずれであ
ってもよく、特にモンモリロナイトが好ましい。市販品
では、クニピア(クニミネ工業社)、スメクトン(クニ
ミネ工業社)、ビーガム(バンダービルト社)、ラポナ
イト(ラポルテ社)、フッ素四ケイ素雲母(トピー工業
社)等が利用できる。インターカレーションは前記の金
属の金属塩を用いて行うことができる。このような金属
塩としては塩化鉄、塩化アルミニウム、塩化ニッケル、
塩化ジルコニウム、塩化亜鉛、塩化銅、塩化バリウム、
塩化チタンなどがあげられる。原料の層状ケイ酸塩鉱物
に水を加え、例えば金属の塩化物等を添加して撹拌する
など、通常の方法でインターカレーションを行う。原料
の層状ケイ酸塩鉱物は、原鉱を精製して用いるのが好ま
しい。すなわち原鉱を水簸し、沈殿物を除いたのち、上
澄液に金属塩を添加して撹拌下でインターカレーション
を行わせる。次いで液をろ過して固形分を分離し、これ
を乾燥後、必要により粉砕して目的の紫外線防御剤を得
る。金属塩の添加量は層状ケイ酸塩鉱物の陽イオン交換
容量によって決定され、多くの場合は層状ケイ酸塩鉱物
100重量部に対して2重量部以上、好ましくは3〜2
0重量部であるが、これに限定されるものではない。層
状ケイ酸塩鉱物の陽イオン交換率が好ましくは85%以
上、特に好ましくは90%以上になるようにインターカ
レーションの反応を行う。インターカレーションを行う
際の液のpHは好ましくは10以下、温度は通常、室温
である。この金属イオンをインターカレーションした層
状ケイ酸塩鉱物は、乾燥して粉体として、あるいは所定
量の水性媒体に分散させて用いられる。
The method for producing the ultraviolet protective agent of the present invention will be described. The layered silicate mineral as a raw material is a clay mineral belonging to the genus Smectite, generally montmorillonite, beidellite, nontronite, saponite, hectorite, etc., which may be natural or synthetic, Montmorillonite is preferred. As commercial products, Kunipia (Kunimine Industry Co., Ltd.), Smecton (Kunimine Industry Co., Ltd.), Veegum (Vanderbilt Co., Ltd.), Laponite (Laporte Co., Ltd.), Fluorotetrasilicon mica (Topy Industry Co., Ltd.) and the like can be used. The intercalation can be performed using the metal salt of the above metal. Such metal salts include iron chloride, aluminum chloride, nickel chloride,
Zirconium chloride, zinc chloride, copper chloride, barium chloride,
Examples include titanium chloride. Water is added to the starting layered silicate mineral, for example, a metal chloride or the like is added and stirred, and intercalation is performed by a usual method. The raw lamellar silicate mineral is preferably purified from a raw ore and used. That is, after elutriating the raw ore and removing the precipitate, a metal salt is added to the supernatant and intercalation is carried out under stirring. Next, the liquid is filtered to separate the solid content, which is dried and, if necessary, pulverized to obtain the desired ultraviolet protective agent. The amount of the metal salt added is determined by the cation exchange capacity of the layered silicate mineral, and in many cases, 2 parts by weight or more, preferably 3 to 2 parts by weight based on 100 parts by weight of the layered silicate mineral.
It is 0 parts by weight, but is not limited thereto. The intercalation reaction is carried out so that the cation exchange rate of the layered silicate mineral is preferably 85% or more, particularly preferably 90% or more. The pH of the liquid used for the intercalation is preferably 10 or less, and the temperature is usually room temperature. The layered silicate mineral in which the metal ions are intercalated is used by being dried as a powder or dispersed in a predetermined amount of an aqueous medium.

【0007】[0007]

【実施例】次に、本発明を実施例に基づいてさらに詳細
に説明する。 実施例1 山形県産モンモリロナイトを主成分とするベントナイト
原鉱をクラッシングロールを用いて粗砕し、得られた粗
砕原鉱3kgを50リットルのビーカーに入れ、水を加
えて全重量を30kgとして24時間静置し、膨潤させ
た。次いでこれを撹拌機を用いて30分間撹拌した後、
20時間静置し、沈殿物をデカンテーションにより除去
した。得られた澄液を遠心分離機で分離し、固形分2.
7%を含む上澄液を得た。これを精製層状ケイ酸塩鉱物
(I)とした。(市販のクニピア(クニミネ工業社)と
同様なものが得られた。) この精製層状ケイ酸塩鉱物(I)3kgを5リットルの
ビーカーに入れ、撹拌機で撹拌しながら塩化鉄を6.3
g加えた。次にブフナーロートに入れ吸引濾過した後、
105±5℃で乾燥後、粉砕し、層間に鉄イオンをイン
ターカレーションした層状ケイ酸塩鉱物(試料No.
1)81gを得た。このものの粒径は42μmであっ
た。この試料No.1と無処理の精製層状ケイ酸塩鉱物
のそれぞれについて、濃度0.125%の懸濁液の紫外
線(波長300〜500nm)の透過率を自記分光光度
計U−3200(日立製作所製)で測定した。その結果
を表1に示す。
EXAMPLES Next, the present invention will be described in more detail based on examples. Example 1 Bentonite raw ore whose main component is montmorillonite produced in Yamagata Prefecture is crushed using a crushing roll, 3 kg of the obtained crushed raw ore is put into a 50-liter beaker, and water is added to bring the total weight to 30 kg. Was allowed to stand for 24 hours to swell. Then, after stirring this for 30 minutes using a stirrer,
After standing for 20 hours, the precipitate was removed by decantation. The resulting clear liquid was separated by a centrifuge to obtain a solid content of 2.
A supernatant containing 7% was obtained. This was designated as a purified layered silicate mineral (I). (The same thing as the commercially available Kunipia (Kunimine Industries Co., Ltd.) was obtained.) 3 kg of this purified layered silicate mineral (I) was placed in a 5 liter beaker, and iron chloride was added to 6.3 with stirring with a stirrer.
g was added. Then put it in a Buchner funnel and filter with suction,
After drying at 105 ± 5 ° C., it was pulverized, and layered silicate minerals (Sample No.
1) 81 g was obtained. The particle size of this product was 42 μm. This sample No. For each of 1 and the untreated purified layered silicate mineral, the transmittance of ultraviolet rays (wavelength 300 to 500 nm) of the suspension having a concentration of 0.125% was measured with a self-recording spectrophotometer U-3200 (manufactured by Hitachi Ltd.). did. Table 1 shows the results.

【0008】[0008]

【表1】 [Table 1]

【0009】表1より、層間に金属イオンをインターカ
レーションすることによって、紫外線散乱効果が低く紫
外線防御剤としては利用できなかった層状ケイ酸塩鉱物
に著しい紫外線散乱効果が生じていることがわかる。
It can be seen from Table 1 that intercalation of metal ions between the layers causes a remarkable ultraviolet scattering effect on the layered silicate mineral, which has a low ultraviolet scattering effect and could not be used as an ultraviolet protective agent. .

【0010】実施例2 塩化鉄を塩化アルミニウムに変えて、5.2重量%添加
した以外は実施例1と同様の方法で、アルミニウムイオ
ンをインターカレーションした層状ケイ酸塩鉱物(試料
No.2)を作製した。 実施例3 塩化鉄を塩化ニッケルに変えて、7.6重量%添加した
以外は実施例1と同様の方法で、ニッケルイオンをイン
ターカレーションした層状ケイ酸塩鉱物(試料No.
3)を作製した。 実施例4 塩化鉄を塩化ジルコニウムに変えて、6.8重量%添加
した以外は実施例1と同様の方法で、ジルコニウムイオ
ンをインターカレーションした層状ケイ酸塩鉱物(試料
No.4)を作製した。 実施例5 塩化鉄を塩化亜鉛に変えて、7.9重量%添加した以外
は実施例1と同様の方法で、亜鉛イオンをインターカレ
ーションした層状ケイ酸塩鉱物(試料No.5)を作製
した。 実施例6 塩化鉄を塩化銅に変えて、7.8重量%添加した以外は
実施例1と同様の方法で、銅イオンをインターカレーシ
ョンした層状ケイ酸塩鉱物(試料No.6)を作製し
た。 実施例7 塩化鉄を塩化バリウムに変えて、12.1重量%添加し
た以外は実施例1と同様の方法で、バリウムイオンをイ
ンターカレーションした層状ケイ酸塩鉱物(試料No.
7)を作製した。
Example 2 An aluminum ion-intercalated layered silicate mineral (Sample No. 2) was prepared in the same manner as in Example 1 except that iron chloride was changed to aluminum chloride and 5.2% by weight was added. ) Was produced. Example 3 A layered silicate mineral intercalated with nickel ions (Sample No. 3) was prepared in the same manner as in Example 1 except that iron chloride was changed to nickel chloride and 7.6% by weight was added.
3) was produced. Example 4 A layered silicate mineral (Sample No. 4) in which zirconium ions were intercalated was prepared in the same manner as in Example 1 except that iron chloride was changed to zirconium chloride and 6.8 wt% was added. did. Example 5 A layered silicate mineral in which zinc ions were intercalated (Sample No. 5) was produced in the same manner as in Example 1 except that iron chloride was changed to zinc chloride and 7.9% by weight was added. did. Example 6 A layered silicate mineral (sample No. 6) in which copper ions were intercalated was produced in the same manner as in Example 1 except that iron chloride was changed to copper chloride and 7.8% by weight was added. did. Example 7 A layered silicate mineral in which barium ions were intercalated (Sample No. 4) was prepared in the same manner as in Example 1 except that iron chloride was changed to barium chloride and 12.1% by weight was added.
7) was produced.

【0011】これら試料No.2〜7のの懸濁液(濃度
0.125%)の紫外線透過率を実施例1と同様の方法
で測定した。その結果を表2に示す。なお、実施例1〜
7に用いた精製層状ケイ酸塩鉱物(I)の陽イオン交換
容量は117.5meq/100gであった。また、試
料No.1〜7を作製する際、固液分離によって得られ
る濾液中に含まれる塩化ナトリウムの量を分析して金属
イオンの交換率を求めたところ、表3のような値であっ
た。
These sample Nos. The ultraviolet transmittances of the suspensions 2 to 7 (concentration 0.125%) were measured by the same method as in Example 1. The results are shown in Table 2. In addition, Example 1
The cation exchange capacity of the purified layered silicate mineral (I) used in Example 7 was 117.5 meq / 100 g. In addition, the sample No. When producing 1 to 7, the amount of sodium chloride contained in the filtrate obtained by solid-liquid separation was analyzed to determine the exchange rate of metal ions, and the values were as shown in Table 3.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】表2の結果から明らかなように、各金属イ
オンをインターカレーションした層状ケイ酸塩鉱物はい
ずれも優れた紫外線散乱作用を有し、紫外線防御剤とし
て有効に利用できる。
As is clear from the results shown in Table 2, all of the layered silicate minerals in which each metal ion is intercalated have an excellent ultraviolet light scattering action and can be effectively used as an ultraviolet light protective agent.

【0015】また上記実施例1〜7で得られた試料N
o.1〜7の粒径を測定したところ次のとおりであっ
た。
Sample N obtained in Examples 1 to 7 above
o. The particle sizes of 1 to 7 were measured and were as follows.

【0016】[0016]

【表4】 [Table 4]

【0017】参考例 下記の組成物を常法によりロールミルにて練り合わせ、
実施例1で作製した試料No.1を配合した均一性状の
ファンデーションを作製した。 (重量%) 試料No.1 5.2 流動パラフィン 15.0 プロピレングリコールモノステアレート 6.0 ステアリン酸 2.5 ナトリウムラウリルサルフェート 1.1 トリエタノールアミン 1.3 顔料 11.0 精製水 53.1 ベントナイト 4.7 パラオキシ安息香酸メチル 0.1 香料 適量 得られたファンデーションを濃度0.07%及び0.1
7%の懸濁液とし、波長300nmの紫外線透過率を測
定した。その結果を表5に示す。
Reference Example The following compositions were kneaded by a roll mill by a conventional method,
Sample No. manufactured in Example 1 A uniform foundation with 1 was prepared. (Wt%) Sample No. 1 5.2 Liquid paraffin 15.0 Propylene glycol monostearate 6.0 Stearic acid 2.5 Sodium lauryl sulfate 1.1 Triethanolamine 1.3 Pigment 11.0 Purified water 53.1 Bentonite 4.7 Paraoxybenzoic acid Methyl 0.1 Fragrance Appropriate amount The foundation obtained was concentrated to 0.07% and 0.1
A 7% suspension was prepared and the ultraviolet transmittance at a wavelength of 300 nm was measured. The results are shown in Table 5.

【0018】[0018]

【表5】 [Table 5]

【0019】表5の結果から、本発明の紫外線防御剤を
配合したファンデーションは有効に紫外線防御作用を示
すことがわかる。
From the results shown in Table 5, it can be seen that the foundation containing the ultraviolet protective agent of the present invention effectively exhibits an ultraviolet protective action.

【0020】[0020]

【発明の効果】以上の結果から明らかなように、本発明
の紫外線防御剤は、紫外線遮断効果に優れ、微粒子で、
分散安定性に優れ、化学的に安定で変質しにくいという
性質を有する。この紫外線防御剤は化粧料、樹脂、塗
料、繊維などさまざまな用途に使用が可能である。
As is clear from the above results, the UV protective agent of the present invention is excellent in UV blocking effect and is fine particles,
It has excellent dispersion stability, is chemically stable and does not easily deteriorate. This UV protection agent can be used in various applications such as cosmetics, resins, paints and fibers.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 層間に金属イオンをインターカレーショ
ンさせた層状ケイ酸塩鉱物を有してなる紫外線防御剤。
1. An ultraviolet protective agent having a layered silicate mineral in which metal ions are intercalated between layers.
【請求項2】 金属イオンが鉄族、アルミニウム族、チ
タン族、亜鉛族、銅族、アルカリ土金属またはクロム族
から選ばれた金属である請求項1に記載の紫外線防御
剤。
2. The ultraviolet protection agent according to claim 1, wherein the metal ion is a metal selected from the group consisting of iron group, aluminum group, titanium group, zinc group, copper group, alkaline earth metal and chromium group.
【請求項3】 金属イオンが鉄、アルミニウム、ニッケ
ル、ジルコニウム、亜鉛、銅、バリウムまたはチタンで
ある請求項1に記載の紫外線防御剤。
3. The ultraviolet protection agent according to claim 1, wherein the metal ion is iron, aluminum, nickel, zirconium, zinc, copper, barium or titanium.
JP27866394A 1994-10-19 1994-10-19 Ultraviolet-intercepting agent Pending JPH08120256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27866394A JPH08120256A (en) 1994-10-19 1994-10-19 Ultraviolet-intercepting agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27866394A JPH08120256A (en) 1994-10-19 1994-10-19 Ultraviolet-intercepting agent

Publications (1)

Publication Number Publication Date
JPH08120256A true JPH08120256A (en) 1996-05-14

Family

ID=17600428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27866394A Pending JPH08120256A (en) 1994-10-19 1994-10-19 Ultraviolet-intercepting agent

Country Status (1)

Country Link
JP (1) JPH08120256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017019A (en) * 2003-10-16 2011-01-27 Procter & Gamble Co Composition for protecting glassware from surface corrosion in automatic dishwasher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017019A (en) * 2003-10-16 2011-01-27 Procter & Gamble Co Composition for protecting glassware from surface corrosion in automatic dishwasher

Similar Documents

Publication Publication Date Title
Dardir et al. Cosmetic and pharmaceutical qualifications of Egyptian bentonite and its suitability as drug carrier for Praziquantel drug
DE3941543B4 (en) dispersions
CA1308330C (en) Dispersions
US6172121B1 (en) Process for preparing organoclays for aqueous and polar-organic systems
EP0596442B1 (en) Ultraviolet-shielding agent, method for the preparation thereof and cosmetic composition compounded therewith
WO1995016637A1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
DE4302896A1 (en) Iron oxide-containing titanium dioxide powder
DE3914850A1 (en) THERMAL INSULATING MATERIAL BASED ON PIGMENT-BASED SILICONE ACULATE ARRAY
EP0054701B1 (en) Abrasive agents and their use
CA2312606A1 (en) Surface-modified titanium dioxide
DE112011103630T5 (en) Synthesis of sodium titanate
EP0000130B1 (en) Silicate-type complexing agent for alkaline-earth ions and process for its preparation
EP1904588B1 (en) Layered silicate slurries having a high solids content
JPH08120256A (en) Ultraviolet-intercepting agent
JP3427195B2 (en) Composite mica powder with ultraviolet blocking action
JP2717904B2 (en) Iron-containing ultrafine rutile titanium dioxide and method for producing the same
DE1592409C2 (en) Process for hydrocassing titanium dioxide pigments in aqueous suspension
EP1749065A2 (en) Mineral layered silicate in the form of a nanopowder
JPH08119844A (en) Cosmetic containing phyllosilicate mineral
JPS636486B2 (en)
JP3998748B2 (en) Synthetic layered silicate
JP2974266B2 (en) UV absorber
US20030223942A1 (en) Aqueous composition containing high purity iron oxide
JPH0662290B2 (en) Method for producing swellable silicate
JP2931180B2 (en) Method for producing iron-containing ultrafine titanium dioxide