JPH08118398A - Injection-molded product - Google Patents

Injection-molded product

Info

Publication number
JPH08118398A
JPH08118398A JP27717894A JP27717894A JPH08118398A JP H08118398 A JPH08118398 A JP H08118398A JP 27717894 A JP27717894 A JP 27717894A JP 27717894 A JP27717894 A JP 27717894A JP H08118398 A JPH08118398 A JP H08118398A
Authority
JP
Japan
Prior art keywords
liquid crystalline
injection
thermoplastic resin
crystalline polymer
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27717894A
Other languages
Japanese (ja)
Other versions
JP3170552B2 (en
Inventor
Satoyuki Akeda
智行 明田
Takayuki Ishikawa
貴之 石川
Hirotaka Miyazaki
広隆 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27717894A priority Critical patent/JP3170552B2/en
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to CNB021433151A priority patent/CN1314754C/en
Priority to EP19950934830 priority patent/EP0790280B1/en
Priority to CNB951957090A priority patent/CN1185301C/en
Priority to KR1019970701105A priority patent/KR100366341B1/en
Priority to PCT/JP1995/002133 priority patent/WO1996011985A1/en
Priority to US08/817,346 priority patent/US6010760A/en
Priority to DE1995632763 priority patent/DE69532763T2/en
Publication of JPH08118398A publication Critical patent/JPH08118398A/en
Application granted granted Critical
Publication of JP3170552B2 publication Critical patent/JP3170552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: To improve mechanical strength, by a method wherein a composition of thermoplastic resin and a liquid crystalline polymer, in which the crystalline polymer is dispersed into a matrix phase of the thermoplastic resin in a specific state is used for injection molding and the state is specified at the time of the injection molding. CONSTITUTION: An injection-molded product of a thermoplastic resin composition comprises 99-50wt.% thermoplastic resin which does not form an anisotropic molten phase and a 1-50wt.% liquid crystalline polymer which is formable of the anisotropic molten phase. The liquid crystalline polymer is dispersed into the matrix phase of the thermoplastic resin under a fibrous state of a mean aspect ratio of at least 6. When an injection-molded product is cooled by passing through melting under a temperature state of at least the melting point of the liquid crystalline polymer under no-load, the liquid crystalline polymer is within the range of weight mean particle diameter of 10-40μm and at least its 80wt.% is dispersed microscopically in an insular state into a matrix phase of the thermoplastic resin so that at least its 80wt.% is within the range of particle diameter of 0.5-60μm. Melt viscosity under a specific condition wherein the bending modulus of elasticity is at least 40000kg/cm<2> is taken as the range within 400-2500 poises.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方性溶融相を形成しな
い熱可塑性樹脂(A)と異方性溶融相を形成し得る液晶
性ポリマー(B)からなる熱可塑性樹脂組成物の射出成
形品に関する。
The present invention relates to an injection molding of a thermoplastic resin composition comprising a thermoplastic resin (A) which does not form an anisotropic melt phase and a liquid crystalline polymer (B) which can form an anisotropic melt phase. Regarding goods.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】異方性溶
融相を形成し得る液晶性ポリマーは、高強度、高剛性、
高耐熱性、溶融時の高流動性による易成形性といった数
多くの特性を有する熱可塑性樹脂であるが、分子鎖配向
方向と垂直方向では成形収縮率が機械的物性が異なり、
更に高価格といった、商業上の不利もある。一方、異方
性溶融相を形成しない熱可塑性樹脂は比較的安価である
が耐熱性、剛性等の物性が液晶性ポリエステルよりも劣
るという不利がある。特に薄肉のハウジングに使用する
には、製造時の溶融樹脂の流動性や成形品の剛性が不足
するため、どうしても設計上肉厚にせざるを得ないの
で、昨今の電気、電子、通信機器分野での小型軽量化に
対応するには限界があった。そこで、液晶性ポリマーと
熱可塑性樹脂の利点を活かし、両者の持つ欠点を補うた
めにこれらを混合して使用する試みが行われている。し
かしながら、単に両者をブレンドした熱可塑性樹脂組成
物からなる射出成形品では、液晶性ポリマーの高強度、
高剛性、耐熱性、易成形性(高流動性)といった特性が
活かされず、その機械的強度が著しく低下してしまう。
この原因は、液晶性ポリマーの高い機械的物性等の発現
の源は溶融加工時に剪断応力、伸張応力を受けることに
よる分子配向・繊維化であるにもかかわらず、熱可塑性
樹脂と液晶性ポリマーとを単にブレンドしただけの熱可
塑性樹脂組成物では、成形しても表層以外は熱可塑性樹
脂をマトリックスとしてほとんどの液晶性ポリマーが球
状に分散しただけの補強効果のない形態をしているため
である。そこで、液晶性ポリマーの割合を多くして熱可
塑性樹脂を少なくすると、今度は液晶性ポリマーがマト
リックスとなり、熱可塑性樹脂が島状に分散した形態に
なるが、これでは熱可塑性樹脂の利点を活かすことが出
来ず、利用価値が少ない。そこで、特開平5−7070
0号公報や特開平5−112709号公報に記載されて
いるように、まず液晶性ポリマーと熱可塑性樹脂が共に
溶融する温度に於いて延伸しながら押出すことによっ
て、予め液晶性ポリマーがアスペクト比(長さ/太さ)
の大きな繊維状で存在するように成形用素材を調製し、
成形品を成形する際には、その成形用素材を液晶性ポリ
マーが溶融しないで熱可塑性樹脂のみが溶融する温度で
成形することによって補強効果を持つ繊維状液晶性ポリ
マーを含有する成形品を作製する方法が考えられた。し
かし、これらに於いては、予め延伸しながら押出し、更
にローラーなどにより溶融押出物を伸張させて液晶性ポ
リマーを繊維状に配向した状態の組成物にしておき、次
いで射出成形などにより成形品を得るときは液晶性ポリ
マーの融点以下の成形温度で成形する。あるいは初めか
ら成形品を作製する場合には、型に樹脂組成物を充填す
る際にかなり大きな剪断力をかけ、液晶性ポリマーを配
向させなければならない。従って前者の場合には、流動
性が悪くなったり、成形条件が狭くなり、また剛性も十
分に満足できるものではない。後者の場合には、成形品
形状にかなり影響されると共に、場所により充分に配向
しないため強度不足となる。
2. Description of the Related Art Liquid crystalline polymers capable of forming an anisotropic molten phase have high strength, high rigidity,
Although it is a thermoplastic resin that has many characteristics such as high heat resistance and easy moldability due to high fluidity when melted, the mechanical shrinkage rate differs in the mechanical shrinkage rate in the direction perpendicular to the molecular chain orientation,
There are also commercial disadvantages such as higher prices. On the other hand, a thermoplastic resin that does not form an anisotropic molten phase is relatively inexpensive, but has the disadvantage that the physical properties such as heat resistance and rigidity are inferior to those of the liquid crystalline polyester. Especially when used for thin-walled housings, the fluidity of the molten resin at the time of manufacture and the rigidity of the molded product are insufficient, so it is unavoidable to make it thick in design, so in the field of electric, electronic, communication equipment these days. There was a limit to the reduction in size and weight. Therefore, attempts have been made to utilize the advantages of the liquid crystalline polymer and the thermoplastic resin and to mix and use them in order to compensate for the drawbacks of both. However, in an injection-molded article made of a thermoplastic resin composition obtained by simply blending the two, the high strength of the liquid crystalline polymer,
Properties such as high rigidity, heat resistance, and easy moldability (high fluidity) are not utilized, and the mechanical strength thereof is significantly reduced.
This is because the cause of the high mechanical properties of the liquid crystalline polymer is the molecular orientation and fiberization due to the shear stress and the stretching stress during the melt processing. This is because in a thermoplastic resin composition simply blended with, even if molded, most liquid crystalline polymers are spherically dispersed with the thermoplastic resin as a matrix except for the surface layer, which does not have a reinforcing effect. . Therefore, if the proportion of the liquid crystalline polymer is increased and the amount of the thermoplastic resin is reduced, then the liquid crystalline polymer becomes a matrix and the thermoplastic resin is dispersed in an island shape, but the advantage of the thermoplastic resin can be utilized. It is not possible to do so and has little utility value. Therefore, JP-A-5-7070
As described in JP-A No. 0-112709 and JP-A No. 5-112709, first, the liquid crystalline polymer is extruded while being stretched at a temperature at which the liquid crystalline polymer and the thermoplastic resin are both melted, so that the aspect ratio of the liquid crystalline polymer is previously set. (Length / thickness)
Prepare the molding material so that it exists in the form of large fibres,
When molding a molded product, a molding containing a fibrous liquid crystalline polymer having a reinforcing effect is produced by molding the molding material at a temperature at which only the thermoplastic resin melts without melting the liquid crystalline polymer. I thought of a way to do it. However, in these, extrusion is performed while stretching in advance, and the melt extrudate is further stretched by a roller or the like to form a composition in a state where the liquid crystalline polymer is oriented in a fibrous state, and then a molded product is formed by injection molding or the like. When it is obtained, it is molded at a molding temperature below the melting point of the liquid crystalline polymer. Alternatively, when a molded product is produced from the beginning, a considerably large shearing force must be applied when the resin composition is filled in the mold to orient the liquid crystalline polymer. Therefore, in the former case, the fluidity is deteriorated, the molding conditions are narrowed, and the rigidity is not sufficiently satisfactory. In the latter case, the shape of the molded product is considerably affected, and the strength is insufficient because the orientation is not sufficient depending on the place.

【0003】[0003]

【課題を解決するための手段】本発明者等は上記問題点
に鑑み、薄肉成形材料として優れた特性を有する素材を
鋭意探索、検討を行ったところ、熱可塑性樹脂(A)と
液晶性ポリマー(B)を、液晶性ポリマー(B)が熱可
塑性樹脂(A)のマトリックス相に特定状態で分散させ
た組成物を射出成形に用いることが極めて重要であるこ
と、またその射出成形の際に条件を特定することにより
容易に液晶性ポリマー(B)が繊維化し、従来にない極
めて高い補強効果を発現すること、従って得られる成形
品の性状が特異であり、特に機械的強度に優れた薄肉成
形品となり得ることを見い出し、本発明を完成するに至
った
In view of the above problems, the inventors of the present invention have eagerly searched and studied for a material having excellent properties as a thin molding material, and found that the thermoplastic resin (A) and the liquid crystalline polymer It is extremely important to use a composition in which the liquid crystalline polymer (B) is dispersed in the matrix phase of the thermoplastic resin (A) in a specific state in injection molding, and in the injection molding By specifying the conditions, the liquid crystalline polymer (B) can easily be made into fibers, exhibiting an extremely high reinforcing effect that has never been seen, and therefore the properties of the obtained molded product are unique, and especially the thin wall with excellent mechanical strength. We found that it could be a molded product and completed the present invention.

【0004】すなわち本発明によれば、異方性溶融相を
形成しない熱可塑性樹脂(A)99〜50重量%と異方
性溶融相を形成し得る液晶性ポリマー(B)1〜50重
量%(両者の合計100重量%)からなる熱可塑性樹脂
組成物の射出成形品であって、(1)液晶性ポリマー
(B)が平均アスペクト比6以上の繊維状で熱可塑性樹
脂(A)のマトリックス相に分散し、(2)射出成形品
を無負荷で前記液晶性ポリマー(B)の融点以上の温度
条件下の溶融を経て冷却させたときに液晶性ポリマー
(B)が重量平均粒径10〜40μmの範囲にありかつ
その80重量%以上が粒径0.5〜60μmの範囲にあ
るように熱可塑性樹脂(A)のマトリックス相に島状に
ミクロ分散しており、(3)射出成形品をASTM D
790に従い測定した曲げ弾性率が40,000kg/
cm2以上であり、(4)射出成形品を再溶融させ、前
記液晶性ポリマー(B)の融点よりも20℃高い温度、
剪断速度1200sec-1の条件下で測定した溶融粘度
が400〜2500ポイズの範囲にあることを特徴とす
る射出成形品が提供される。また本発明によれば、熱可
塑性樹脂(A)がポリエステル系樹脂であることを特徴
とする前記射出成形品が提供される。また本発明によれ
ば、熱可塑性樹脂(A)がポリカーボネート樹脂である
ことを特徴とする前記射出成形品が提供される。また本
発明によれば、成形品の肉厚の50%以上が1mm以下
の薄肉成形品である前記射出成形品が提供される。また
本発明によれば、電子機器のハウジングである前記射出
成形品が提供される。更にまた本発明によれば、電子機
器がパソコン、携帯電話、コネクター、CDピックアッ
プ部品、ハードディスクまたはそれらの周辺の構成部品
のいずれかである前記射出成形品が提供される。
That is, according to the present invention, 99-50% by weight of a thermoplastic resin (A) which does not form an anisotropic molten phase and 1-50% by weight of a liquid crystalline polymer (B) which can form an anisotropic molten phase. An injection molded article of a thermoplastic resin composition comprising (both total 100% by weight), wherein (1) the liquid crystalline polymer (B) is a fibrous thermoplastic resin (A) matrix having an average aspect ratio of 6 or more. When dispersed in the phase, (2) the injection-molded product is melted under a temperature condition not lower than the melting point of the liquid crystalline polymer (B) under no load, and the liquid crystalline polymer (B) has a weight average particle diameter of 10 when cooled. To 40 μm, and 80% by weight or more of which is micro-dispersed in an island shape in the matrix phase of the thermoplastic resin (A) so that the particle size is in the range of 0.5 to 60 μm, and (3) injection molding. ASTM D
Flexural modulus measured according to 790 is 40,000 kg /
cm 2 or more, and (4) a temperature at which the injection-molded product is remelted and is 20 ° C. higher than the melting point of the liquid crystalline polymer (B),
There is provided an injection-molded article characterized in that the melt viscosity measured under a shear rate of 1200 sec -1 is in the range of 400 to 2500 poise. Further, according to the present invention, there is provided the injection-molded article, wherein the thermoplastic resin (A) is a polyester resin. Further, according to the present invention, there is provided the injection-molded article, wherein the thermoplastic resin (A) is a polycarbonate resin. Further, according to the present invention, there is provided the above-mentioned injection-molded article, which is a thin-walled article in which 50% or more of the thickness of the article is 1 mm or less. Further, according to the present invention, there is provided the injection-molded article which is a housing of an electronic device. Furthermore, according to the present invention, there is provided the injection-molded article, wherein the electronic device is any one of a personal computer, a mobile phone, a connector, a CD pickup part, a hard disk and components around them.

【0005】本発明が適用される熱可塑性樹脂(A)と
しては、例えばポリエチレン、ポリプロピレン、ポリ4
−メチル−1−ペンテン等のポリオレフィン系(共)重
合体、ポリエチレンテレフタレート、ポリブチレンテレ
フタレート、ポリカーボネート樹脂等のポリエステル系
樹脂、ポリアミド系重合体、ABS樹脂、ポリアリーレ
ンサルファイド樹脂、ポリアクリルアクリレート、ポリ
アセタール及びこれらを主体とする樹脂等が挙げられ、
一種又は二種以上用いても良い。これらの中では、ポリ
カーボネート樹脂、ポリブチレンテレフタレート、ポリ
エチレンテレフタレート等のポリエステル系樹脂が好ま
しい。
The thermoplastic resin (A) to which the present invention is applied is, for example, polyethylene, polypropylene or poly-4.
-Polyolefin-based (co) polymers such as methyl-1-pentene, polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate and polycarbonate resins, polyamide-based polymers, ABS resins, polyarylene sulfide resins, polyacryl acrylates, polyacetals and Resins and the like that are mainly composed of these,
You may use 1 type, or 2 or more types. Among these, polyester resins such as polycarbonate resin, polybutylene terephthalate and polyethylene terephthalate are preferable.

【0006】なお、熱可塑性樹脂に対し、核剤、カーボ
ンブラック等の顔料、酸化防止剤、安定剤、可塑剤、滑
剤、離型剤および難燃剤等の添加剤を添加して、所望の
特性を付与した熱可塑性樹脂も本発明でいう熱可塑性樹
脂の範囲に含まれる。
To the thermoplastic resin, additives such as a nucleating agent, a pigment such as carbon black, an antioxidant, a stabilizer, a plasticizer, a lubricant, a release agent and a flame retardant are added to obtain desired characteristics. The thermoplastic resin provided with is also included in the range of the thermoplastic resin in the present invention.

【0007】液晶性ポリマー(B)としては、光学異方
性溶融相を形成し得る性質を有する溶融加工性ポリマー
を指し、溶融状態で剪断応力を受けることによりポリマ
ー分子鎖が規則的な平行配列をとる性質を有している。
このようなポリマー分子は、一般に細長く、偏平で、分
子の長軸に沿ってかなり剛性が高く、普通は同軸または
平行のいずれかの関係にある複数の連鎖伸長結合を有し
ているようなポリマーである。異方性溶融相の性質は、
直交偏光子を利用した慣用の偏光検査法により確認する
ことが出来る。より具体的には、異方性溶融相の確認
は、Leitz偏光顕微鏡を使用し、Leitzホット
ステージに載せた溶融試料を窒素雰囲気下で40倍の倍
率で観察することにより実施できる。本発明が適用でき
る液晶性ポリマーは直交偏光子の間で検査したときに、
たとえ溶融静止状態であっても偏光は通常透過し、光学
的に異方性を示す。
The liquid crystalline polymer (B) refers to a melt-processable polymer having a property capable of forming an optically anisotropic molten phase, and polymer molecules are regularly aligned in parallel when subjected to shear stress in a molten state. It has the property of taking
Such polymer molecules are generally elongated, flattened, fairly stiff along the long axis of the molecule, and have multiple chain extension bonds, usually in either coaxial or parallel relationship. Is. The properties of the anisotropic melt phase are
It can be confirmed by a conventional polarization inspection method using a crossed polarizer. More specifically, the confirmation of the anisotropic molten phase can be performed by using a Leitz polarization microscope and observing the molten sample placed on the Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. The liquid crystalline polymer to which the present invention is applicable, when examined between orthogonal polarizers,
Polarized light is normally transmitted even if it is in a stationary state and is optically anisotropic.

【0008】前記のような液晶性ポリマー(B)として
は特に限定されないが、芳香族ポリエステルまたは芳香
族ポリエステルアミドであることが好ましく、芳香族ポ
リエステルまたは芳香族ポリエステルアミドを同一分子
鎖中に部分的に含むポリエステルもその範囲にある。こ
れらは60℃でペンタフルオロフェノールに濃度0.1
重量%で溶解したときに、好ましくは少なくとも約2.
0dl/g、さらに好ましくは2.0〜10.0dl/
gの対数粘度(I.V.)を有するものが使用される。
The liquid crystalline polymer (B) as described above is not particularly limited, but is preferably an aromatic polyester or an aromatic polyesteramide, and the aromatic polyester or the aromatic polyesteramide is partially contained in the same molecular chain. Polyesters contained in are also in that range. These have a concentration of 0.1 in pentafluorophenol at 60 ° C.
When dissolved in weight percent, preferably at least about 2.
0 dl / g, more preferably 2.0 to 10.0 dl /
Those with a logarithmic viscosity (IV) of g are used.

【0009】本発明に適用できる液晶性ポリマー(B)
としての芳香族ポリエステルまたは芳香族ポリエステル
アミドとして特に好ましくは、芳香族ヒドロキシカルボ
ン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群か
ら選ばれた少なくとも1種以上の化合物を構成成分とし
て有する芳香族ポリエステル、芳香族ポリエステルアミ
ドである。より具体的には、(1)主として芳香族ヒド
ロキシカルボン酸およびその誘導体の1種または2種以
上からなるポリエステル;(2)主として(a)芳香族ヒ
ドロキシカルボン酸およびその誘導体の1種または2種
以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸
およびその誘導体の1種または2種以上と、(c)芳香族
ジオール、脂環族ジオール、脂肪族ジオールおよびその
誘導体の少なくとも1種または2種以上、とからなるポ
リエステル;(3)主として(a)芳香族ヒドロキシカル
ボン酸およびその誘導体の1種または2種以上と、(b)
芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘
導体の1種または2種以上と、(c)芳香族ジカルボン
酸、脂環族ジカルボン酸およびその誘導体の1種または
2種以上、とからなるポリエステルアミド;(4)主と
して(a)芳香族ヒドロキシカルボン酸およびその誘導体
の1種または2種以上と、(b)芳香族ヒドロキシアミ
ン、芳香族ジアミンおよびその誘導体の1種または2種
以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸
およびその誘導体の1種または2種以上と、(d)芳香族
ジオール、脂環族ジオール、脂肪族ジオールおよびその
誘導体の少なくとも1種または2種以上、とからなるポ
リエステルアミドなどが挙げられる。さらに上記の構成
成分に必要に応じ分子量調整剤を併用してもよい。
Liquid crystalline polymer (B) applicable to the present invention
Particularly preferably as the aromatic polyester or aromatic polyester amide as, an aromatic polyester having at least one compound selected from the group of aromatic hydroxycarboxylic acid, aromatic hydroxyamine, and aromatic diamine as a constituent component, It is an aromatic polyester amide. More specifically, (1) a polyester mainly composed of one or more aromatic hydroxycarboxylic acids and their derivatives; (2) mainly (a) one or two aromatic hydroxycarboxylic acids and their derivatives. And (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and their derivatives, and (c) at least one of aromatic diols, alicyclic diols, aliphatic diols and their derivatives Or a polyester consisting of two or more kinds; (3) mainly (a) one or more kinds of aromatic hydroxycarboxylic acid and its derivative, and (b)
A polyesteramide comprising one or more aromatic hydroxyamines, aromatic diamines and their derivatives, and (c) one or more aromatic dicarboxylic acids, alicyclic dicarboxylic acids and their derivatives; (4) Mainly (a) one or more aromatic hydroxycarboxylic acids and their derivatives, (b) one or more aromatic hydroxyamines, aromatic diamines and their derivatives, and (c) One or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and their derivatives, and (d) at least one or more of aromatic diols, alicyclic diols, aliphatic diols and their derivatives, and And polyester amide. Further, if necessary, a molecular weight modifier may be used in combination with the above constituent components.

【0010】本発明に適用できる前記液晶性ポリマー
(B)を構成する具体的化合物の好ましい例としては、
p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフト
エ酸等の芳香族ヒドロキシカルボン酸、2,6−ジヒド
ロキシナフタレン、1,4−ジヒドロキシナフタレン、
4,4’−ジヒドロキシビフェニル、ハイドロキノン、
レゾルシン、下記一般式[1]および下記一般式[2]
で表される化合物等の芳香族ジオール;テレフタル酸、
イソフタル酸、4,4’−ジフェニルジカルボン酸、
2,6−ナフタレンジカルボン酸および下記一般式
[3]で表される化合物等の芳香族ジカルボン酸;p−
アミノフェノール,p−フェニレンジアミン等の芳香族
アミン類が挙げられる。
Preferable examples of specific compounds constituting the liquid crystalline polymer (B) applicable to the present invention include:
aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene,
4,4'-dihydroxybiphenyl, hydroquinone,
Resorcin, the following general formula [1] and the following general formula [2]
An aromatic diol such as a compound represented by: terephthalic acid,
Isophthalic acid, 4,4'-diphenyldicarboxylic acid,
Aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid and compounds represented by the following general formula [3]; p-
Aromatic amines such as aminophenol and p-phenylenediamine are mentioned.

【0011】[0011]

【化1】 Embedded image

【0012】本発明に適用される特に好ましい液晶性ポ
リマー(B)としては、p−ヒドロキシ安息香酸および
6−ヒドロキシ−2−ナフトエ酸を構成単位成分とする
芳香族ポリエステルである。
A particularly preferred liquid crystalline polymer (B) applicable to the present invention is an aromatic polyester containing p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as constituent units.

【0013】本発明の射出成形品を構成する熱可塑性樹
脂組成物は、前記熱可塑性樹脂(A)と液晶性ポリマー
(B)からなるものである。熱可塑性樹脂(A)と液晶
性ポリマー(B)の組成割合としては、前者が99〜5
0重量%、好ましくは90〜60重量%、後者が1〜5
0重量%、好ましくは10〜40重量%(両者の合計は
100重量%)である。液晶性ポリマー(B)の組成割
合が1〜50重量%の範囲にあれば、後記マトリックス
相が反転することが無く、また液晶性ポリマー(B)に
よる熱可塑性樹脂(A)の補強が可能となる。またその
組成物を無負荷で液晶性ポリマーの融点以上の温度条件
下で溶融させて冷却させ、得られる組成物を観察したと
きに、前記液晶性ポリマー(B)が熱可塑性樹脂(A)
のマトリックス相に島状にミクロ分散していることが必
要である。そしてその液晶性ポリマー(B)の分散状態
が、重量平均粒径10〜40μmの範囲、特に好ましく
は0.5〜60μmの範囲にあり、液晶性ポリマー
(B)の80重量%以上が5〜50μmの範囲にあるも
のである。
The thermoplastic resin composition constituting the injection-molded article of the present invention comprises the thermoplastic resin (A) and the liquid crystalline polymer (B). Regarding the composition ratio of the thermoplastic resin (A) and the liquid crystalline polymer (B), the former is 99 to 5
0% by weight, preferably 90-60% by weight, the latter 1-5
It is 0% by weight, preferably 10 to 40% by weight (the total of both is 100% by weight). When the composition ratio of the liquid crystalline polymer (B) is in the range of 1 to 50% by weight, the matrix phase described later will not be inverted, and the thermoplastic resin (A) can be reinforced by the liquid crystalline polymer (B). Become. Further, when the composition is melted and cooled under a temperature condition not lower than the melting point of the liquid crystalline polymer under no load, and the resulting composition is observed, the liquid crystalline polymer (B) is a thermoplastic resin (A).
It is necessary that they are micro-dispersed like islands in the matrix phase. The dispersion state of the liquid crystalline polymer (B) is in the range of 10 to 40 μm in weight average particle size, particularly preferably in the range of 0.5 to 60 μm, and 80% by weight or more of the liquid crystalline polymer (B) is 5 to 5 μm. It is in the range of 50 μm.

【0014】前記溶融は液晶性ポリマー(B)が球形以
外の形状で分散していても観察しやすい球形にさせるた
めの手段であり、溶融温度としては液晶性ポリマー
(B)の融点以上であればよいが、液晶性ポリマーの溶
融を完全にするため、好ましくは融点よりも10℃以上
高い温度で、かつ1分以上放置すること、特に3〜5分
放置することが好ましい。球形以外の形状の分散物が残
っている場合は、溶融保持時間を延ばしてもよいし、球
形に換算した粒径を用いてもよい。
The melting is a means for making the liquid crystalline polymer (B) into a spherical shape which is easy to observe even if the liquid crystalline polymer (B) is dispersed in a shape other than a spherical shape, and the melting temperature should be equal to or higher than the melting point of the liquid crystalline polymer (B). However, in order to completely melt the liquid crystalline polymer, it is preferable that the liquid crystalline polymer is allowed to stand at a temperature higher than the melting point by 10 ° C. or more and for 1 minute or more, particularly 3 to 5 minutes. When the dispersion having a shape other than the spherical shape remains, the melt holding time may be extended or the particle diameter converted into the spherical shape may be used.

【0015】前記の様な溶融を経て冷却したときに、液
晶性ポリマー(B)が熱可塑性樹脂(A)のマトリック
ス相に島状にミクロ分散した熱可塑性樹脂組成物を製造
するには、両者を前記組成割合で配合し、混練すればよ
い。通常、押出機で混練し、ペレット状に押し出し、次
の射出成形に用いるが、この様な押出機による混練に限
定されるものではない。前記混練方法としては、通常の
熱可塑性樹脂の混練押出に使用される一軸、二軸押出機
が使用されるが、前記した分散状態の熱可塑性樹脂組成
物を得るには、液晶性ポリマー(B)と熱可塑性樹脂
(A)との組み合わせにもよるものの、分散助剤を用
いる方法、溶融混練押出を繰り返す方法、溶融混練
の前に樹脂を粉粒化する方法等があり、適宜選択するこ
とができる。これらの中では、容易に前記のようなミク
ロ分散状熱可塑性樹脂組成物が得られる観点から、分
散助剤を使用する方法が好ましい。この様な分散助剤を
用いることが好ましい例としては、(B)液晶性ポリマ
ーとして芳香族系ポリエステルまたは芳香族系ポリエス
テルアミド、とりわけ前者を、また熱可塑性樹脂(A)
としてポリエステル系樹脂、とりわけポリカーボネート
樹脂を用いる組み合わせが挙げられる。
To produce a thermoplastic resin composition in which the liquid crystalline polymer (B) is micro-dispersed in an island shape in the matrix phase of the thermoplastic resin (A) when cooled through the above-mentioned melting, May be blended in the above composition ratio and kneaded. Usually, the mixture is kneaded by an extruder, extruded into pellets and used for the next injection molding, but the kneading by such an extruder is not limited. As the kneading method, a single-screw or twin-screw extruder used for kneading and extruding a usual thermoplastic resin is used. To obtain the above-mentioned dispersed thermoplastic resin composition, a liquid crystalline polymer (B ) And a thermoplastic resin (A), but depending on the combination, a method of using a dispersion aid, a method of repeating melt-kneading extrusion, a method of pulverizing the resin before melt-kneading, etc. are selected as appropriate. You can Among these, the method of using a dispersion aid is preferable from the viewpoint of easily obtaining the above-mentioned microdispersed thermoplastic resin composition. Preferable examples of the use of such a dispersion aid include (B) an aromatic polyester or an aromatic polyesteramide as the liquid crystalline polymer, especially the former, and the thermoplastic resin (A).
Examples of the combination include a combination using a polyester resin, particularly a polycarbonate resin.

【0016】分散助剤としては、リン化合物が好まし
く、例えばリン化物類、リン酸化合物、亜リン酸化合物
類等が挙げられ、テトラキス(2,4−ジ−t−ブチル
フェニル)−4,4’−ビフェニレンホスファイト、ビ
ス(2,4,6−ジ−t−ブチルフェニル)ペンタエリ
スリトール−ジ−ホスファイト、ビス(2,6−ジ−t
−ブチル−4−メチルフェニル)ペンタエリスリトール
−ジホスファイト、トリス(2,4−ジ−t−ブチルフ
ェニル)ホスファイト等が例示されるが、亜リン酸化合
物のものが好ましく、特にペンタエリスリトール型の亜
リン酸化合物が好ましい。
The dispersion aid is preferably a phosphorus compound, and examples thereof include phosphides, phosphoric acid compounds and phosphorous acid compounds, and tetrakis (2,4-di-t-butylphenyl) -4,4. '-Biphenylene phosphite, bis (2,4,6-di-t-butylphenyl) pentaerythritol-di-phosphite, bis (2,6-di-t
-Butyl-4-methylphenyl) pentaerythritol-diphosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are exemplified, but a phosphite compound is preferable, and a pentaerythritol type suboxide is particularly preferable. Phosphoric acid compounds are preferred.

【0017】分散助剤、特にリン化合物の配合量は、熱
可塑性樹脂(A)と液晶性ポリマー(B)の合計100
重量部に対し、0.01〜0.5重量部が好ましく、特
に0.05〜0.3重量部の範囲が好ましい。
The amount of the dispersion aid, particularly the phosphorus compound, is 100 in total of the thermoplastic resin (A) and the liquid crystalline polymer (B).
The amount is preferably 0.01 to 0.5 part by weight, more preferably 0.05 to 0.3 part by weight, based on the weight.

【0018】本発明の射出成形品の製造に使用する前記
熱可塑性樹脂組成物としては、溶融を経て冷却したとき
に、前記のような程度に液晶性ポリマー(B)がミクロ
分散されていることが必要であり、前記特開平5−11
2709号公報や特開平5−70700号公報に開示さ
れているように組成物の中で液晶性ポリマー(B)が繊
維化されていても差し支えはないが、そのような繊維化
は必要ではない。従って、前記公報にあるような、押出
機の後の溶融時に施されるロール伸張による配向繊維化
は不要である。本発明においては、液晶性ポリマー
(B)が前記分散状態にある熱可塑性樹脂組成物を後記
条件で射出成形することにより、ミクロ分散されている
各液晶性ポリマー(B)の粒子が容易にアスペクト比が
大きい状態で繊維化するため、射出成形品の内部に均一
に繊維が形成され、同一液晶性ポリマー(B)の組成割
合で公知方法により得られる成形品と比べて、特に薄肉
射出成形品にしても、高強度、高剛性を発現することと
なる。
In the thermoplastic resin composition used for producing the injection-molded article of the present invention, the liquid crystalline polymer (B) is micro-dispersed to the extent as described above when melted and cooled. The above-mentioned JP-A-5-11
The liquid crystalline polymer (B) may be fiberized in the composition as disclosed in JP-A No. 2709 and JP-A No. 5-70700, but such fiberization is not necessary. . Therefore, it is not necessary to form oriented fibers by stretching the roll, which is performed at the time of melting after the extruder as described in the above publication. In the present invention, the thermoplastic resin composition in which the liquid crystalline polymer (B) is in the above-mentioned dispersed state is injection-molded under the conditions described below, so that the particles of each microdispersed liquid crystalline polymer (B) can be easily Since fibers are formed in a state where the ratio is large, fibers are uniformly formed inside the injection-molded product, and particularly thin-walled injection-molded products compared with molded products obtained by a known method with the composition ratio of the same liquid crystalline polymer (B). Even so, high strength and high rigidity are exhibited.

【0019】次に本発明の射出成形品を得るための射出
成形方法について説明する。前記のような液晶性ポリマ
ー(B)が熱可塑性樹脂(A)のマトリックス相にミク
ロ分散された熱可塑性樹脂組成物を用いて、以下に説明
する射出成形条件を採用することが、本発明にかかる射
出成形品を得るためには必要である。射出成形条件の第
一は、射出時の熱可塑性樹脂組成物の温度(樹脂温)を
液晶性ポリマー(B)の融点以上、好ましくは融点より
10℃高い温度以上とすることである。この温度条件に
より、射出成形時に、溶融状態にある熱可塑性樹脂組成
物が射出成形機の金型キャビティに通じるゲートを通過
する際、島状にミクロ分散している液晶性ポリマー
(B)が熱可塑性樹脂(A)のマトリックス相中で延伸
され、十分繊維化される。すなわち、この繊維化によ
り、前記分散状態が十分機能を発揮し、高剛性、高強度
を有する射出成形品が得られるのである。島状にミクロ
分散している液晶性ポリマー(B)が熱可塑性樹脂
(A)のマトリックス相中で延伸され、十分繊維化され
る。すなわち、この繊維化により、前記分散状態が十分
機能を発揮し、高剛性、高強度を有する射出成形体が得
られるのである。島状に分散している液晶性ポリマー
(B)がミクロ分散していない場合、繊維化される液晶
状ポリマー(B)の数が少なくなり、高剛性、高強度を
有する射出成形体が得られないことがあり、液晶性ポリ
マー(B)が島状にミクロ分散していることは重要な要
件である。前記温度の上限は、省エネルギーおよび熱可
塑性樹脂組成物の熱分解を防ぐ観点から、好ましくは液
晶性ポリマー(B)の熱分解温度以下、特に好ましくは
液晶性ポリマー(B)の融点プラス50℃以下に抑え
る。
Next, the injection molding method for obtaining the injection molded article of the present invention will be described. In the present invention, it is preferable to use the thermoplastic resin composition in which the liquid crystalline polymer (B) as described above is micro-dispersed in the matrix phase of the thermoplastic resin (A) and to use the injection molding conditions described below. It is necessary to obtain such an injection molded product. The first injection molding condition is to set the temperature (resin temperature) of the thermoplastic resin composition at the time of injection to the melting point of the liquid crystalline polymer (B) or higher, preferably 10 ° C. higher than the melting point. Due to this temperature condition, during injection molding, when the molten thermoplastic resin composition passes through the gate leading to the mold cavity of the injection molding machine, the liquid crystalline polymer (B) micro-dispersed in an island shape is heated. It is stretched in the matrix phase of the plastic resin (A) and sufficiently fiberized. That is, by this fiberization, the dispersion state sufficiently exhibits the function, and an injection molded product having high rigidity and high strength can be obtained. The liquid crystalline polymer (B) micro-dispersed in the form of islands is stretched in the matrix phase of the thermoplastic resin (A) to be sufficiently fiberized. That is, this fiberization makes it possible to obtain an injection-molded article having a sufficiently high function in the dispersed state and having high rigidity and high strength. When the liquid crystalline polymer (B) dispersed in an island shape is not micro-dispersed, the number of the liquid crystalline polymer (B) formed into fibers becomes small, and an injection molded article having high rigidity and high strength is obtained. In some cases, it is an important requirement that the liquid crystalline polymer (B) be micro-dispersed in an island shape. From the viewpoint of energy saving and prevention of thermal decomposition of the thermoplastic resin composition, the upper limit of the temperature is preferably the thermal decomposition temperature of the liquid crystalline polymer (B) or less, particularly preferably the melting point of the liquid crystalline polymer (B) plus 50 ° C. or less. Hold down.

【0020】射出成形条件の第二は、前記ゲートを通過
する溶融熱可塑性樹脂組成物の速度である。このゲート
の通過速度が500m/分以上、好ましくは1,000
m/分以上、さらに好ましくは3,000m/分以上で
ある。この条件を満たして射出成形することにより、前
記温度条件と相俟って、前記通過時の延伸による液晶性
ポリマー(B)の繊維化が十分達成されることとなる。
ゲートの通過速度は大きいほど好ましいが、上限として
は通常の成形機の性能等から100,000m/分以下
であることが好ましいが、高速射出成形機を用いれば1
00,000m/分以上でも可能である。
The second injection molding condition is the speed of the molten thermoplastic resin composition passing through the gate. The passing speed of this gate is 500 m / min or more, preferably 1,000
m / min or more, more preferably 3,000 m / min or more. By satisfying this condition and performing injection molding, in combination with the temperature condition, the fiberization of the liquid crystalline polymer (B) by the stretching during the passage can be sufficiently achieved.
The higher the passage speed of the gate is, the more preferable. However, the upper limit is preferably 100,000 m / min or less in view of the performance of an ordinary molding machine.
It is also possible to use it at a rate of more than 100,000 m / min.

【0021】なお、前記射出成形に用いる金型として
は、ゲートの断面積SGに対するランナーの断面積SR
比SR/SGが3〜150の範囲、特に6〜120の範囲
にあることが液晶性ポリマー(B)の繊維化を促進し、
マトリックス相中に生じる繊維のアスペクト比を上げる
ことができるので、特に好ましい。なお、ゲートおよび
ランナーの断面積とは、ゲートの種類により図2に示す
ようにそれぞれ定義される。図にない形状のゲートも、
同様に定義できる。図2(a)のサイドゲートおよびフ
ィルムゲート、図2(b)のオーバーラップゲートの場
合は、断面積SX>SYのときはSG=SYであり、SX
YのときはSG=SXであり、SX=SYのときはSG=S
X=SYである。図2(c)のピンゲートの場合は、断面
積SX>SYのときはSR=SXであり、SX<SYのときは
R=SYであり、SX=SYのときはSR=SX=SYであ
る。図2(d)のダイレクトゲートの場合は、円錐型ラ
ンナーの円錐底面の面積をSRと、また円錐底面の真下
に形成される仮想の円柱外周面の面積をSGとする。さ
らに図2(e)のディスクゲートの場合は、図の円錐底
面の面積をSRと、またダイレクトゲートの場合と同様
に図のゲートに形成される仮想円柱の外周面の面積をS
Gとする。
The mold used for the injection molding has a ratio S R / S G of the cross-sectional area S R of the runner to the cross-sectional area S G of the gate in the range of 3 to 150, particularly 6 to 120. That promotes fiberization of the liquid crystalline polymer (B),
It is particularly preferable because the aspect ratio of the fibers generated in the matrix phase can be increased. The gate and runner cross-sectional areas are defined as shown in FIG. 2 depending on the type of gate. A gate with a shape not shown in the figure
It can be defined similarly. In the case of the side gate and the film gate of FIG. 2A and the overlap gate of FIG. 2B, S G = S Y when S X > S Y and S X <
When S Y , S G = S X , and when S X = S Y , S G = S
X = S Y. For pin gate in FIG. 2 (c), when the cross-sectional area S X> S Y is S R = S X, if the S X <S Y is S R = S Y, S X = S Y Then S R = S X = S Y. In the case of the direct gate of FIG. 2D, the area of the conical bottom surface of the conical runner is S R, and the area of the virtual outer peripheral surface of the cylinder formed immediately below the conical bottom surface is S G. Further, in the case of the disc gate of FIG. 2E, the area of the conical bottom surface in the figure is S R , and similarly to the case of the direct gate, the area of the outer peripheral surface of the virtual cylinder formed in the gate of the figure is S R.
Let G.

【0022】射出成形時の樹脂圧は前記ゲートを通過す
る溶融熱可塑性樹脂組成物の速度条件を満たすように適
宜設定されるが、通常300〜2,000kg/c
2、好ましくは500〜1,500kg/cm2の範囲
である。
The resin pressure at the time of injection molding is appropriately set so as to satisfy the speed condition of the molten thermoplastic resin composition passing through the gate, but usually 300 to 2,000 kg / c.
m 2 , preferably in the range of 500 to 1,500 kg / cm 2 .

【0023】前記射出成形方法により得られる本発明の
射出成形品は、液晶性ポリマー(B)が平均アスペクト
比6以上、好ましくは8以上の繊維状で熱可塑性樹脂
(A)のマトリックス相に分散している。またこの繊維
状に分散している成形品を無負荷で前記液晶性ポリマー
(B)の融点以上の温度条件下の溶融を経て繊維状液晶
性ポリマー(B)を緩和させ、冷却させたときに液晶性
ポリマー(B)が重量平均粒径10〜40μmの範囲に
ありかつその80重量%以上が粒径0.5〜60μmの
範囲にあるように熱可塑性樹脂(A)のマトリックス相
に島状にミクロ分散していることが大きな特徴である。
この場合の溶融温度や保持時間も原料の熱可塑性樹脂組
成物の場合と同様である。先に説明した本発明に使用す
る熱可塑性樹脂組成物を無負荷で前記液晶性ポリマー
(B)の融点以上の温度条件下の溶融を経て冷却させた
ときに観察される液晶性ポリマー(B)の分散状態自体
は、前記射出成形条件下で再混練しゲートを通過させて
も、通常殆ど変化しないので、射出成形品を前記の様に
溶融させて液晶性ポリマー(B)の分散状態を観察して
もその原料としての前記熱可塑性樹脂組成物と同様の分
散状態が得られる。
In the injection-molded article of the present invention obtained by the above-mentioned injection molding method, the liquid crystalline polymer (B) is dispersed in the matrix phase of the thermoplastic resin (A) in a fibrous form having an average aspect ratio of 6 or more, preferably 8 or more. are doing. Further, when the molded article dispersed in the fibrous state is melted under a temperature condition of the melting point of the liquid crystalline polymer (B) or higher without any load, the fibrous liquid crystalline polymer (B) is relaxed and cooled. The liquid crystalline polymer (B) has an island-like shape in the matrix phase of the thermoplastic resin (A) such that the weight average particle diameter is in the range of 10 to 40 μm and 80% by weight or more thereof is in the particle diameter in the range of 0.5 to 60 μm. A major feature is that they are micro-dispersed.
The melting temperature and holding time in this case are also the same as in the case of the raw material thermoplastic resin composition. Liquid crystalline polymer (B) observed when the above-described thermoplastic resin composition used in the present invention is melted under a temperature condition equal to or higher than the melting point of the liquid crystalline polymer (B) without any load and then cooled. The dispersion itself of (1) usually hardly changes even when it is re-kneaded and passed through the gate under the above injection molding conditions, so the injection molded product is melted as described above and the dispersion of the liquid crystalline polymer (B) is observed. However, the same dispersed state as that of the thermoplastic resin composition as the raw material can be obtained.

【0024】また本発明にかかる射出成形品は、AST
M D790に従い測定した曲げ弾性率が40,000
kg/cm2以上である。この値が前記範囲にあること
は、液晶性ポリマー(B)のミクロ分散状態と繊維化に
よる補強効果の程度を反映するものであり、この程度の
曲げ弾性率がないと、ハウジング用として使用すること
が不可能となる。上限は特に限定されないが、通常15
0,000kg/cm2以下である。
The injection-molded article according to the present invention is AST
Flexural modulus of 40,000 measured according to MD 790
It is at least kg / cm 2 . The fact that this value is in the above range reflects the degree of microdispersion of the liquid crystalline polymer (B) and the degree of reinforcing effect by fiberization, and if there is no bending elastic modulus of this degree, it is used for a housing. Is impossible. The upper limit is not particularly limited, but usually 15
It is less than 50,000 kg / cm 2 .

【0025】さらに本発明の射出成形品は、それを射出
成形して製造する際に流動性がよいため成形しやすい
が、これは射出成形品を再溶融させ、液晶性ポリマー
(B)の融点プラス10℃の温度、剪断速度1200s
ec-1の条件下で測定した溶融粘度が400〜2,50
0ポイズ、特には500〜1,500ポイズの範囲にあ
ることに特徴づけられる。従って、射出成形品を効率よ
く製造するためには、製品を再溶融させた際の前記粘度
が前記範囲内にあることが必要である。
Furthermore, the injection-molded product of the present invention is easy to mold because it has good fluidity when it is manufactured by injection molding. This is because the injection-molded product is remelted and the melting point of the liquid crystalline polymer (B) is increased. Plus 10 ℃ temperature, shear rate 1200s
Melt viscosity measured under the condition of ec -1 is 400 to 2,50
It is characterized by being in the range of 0 poise, in particular 500-1,500 poise. Therefore, in order to efficiently manufacture an injection-molded product, it is necessary that the viscosity at the time of remelting the product is within the above range.

【0026】このような性状を有する本発明にかかる射
出成形品は、熱可塑性樹脂(A)のマトリックス相中に
液晶性ポリマー(B)が非常によく分散され、それらが
大きなアスペクト比で繊維化されているので、高剛性、
高強度を最大限に発揮することができ、特に薄肉成形品
の機械的物性の向上に適している。
In the injection-molded article according to the present invention having such properties, the liquid crystalline polymer (B) is very well dispersed in the matrix phase of the thermoplastic resin (A), and they are formed into fibers with a large aspect ratio. It has high rigidity,
It can maximize its high strength and is especially suitable for improving the mechanical properties of thin-walled molded products.

【0027】前記のように本発明の射出成形体は、それ
に含まれる液晶性ポリマー(B)が繊維状で含まれ補強
作用を有することとなるため、補強のために通常配合さ
れる充填剤は必要ないが、用途によっては本発明の効果
を阻害しない範囲で、公知の繊維状、粉粒状、板状又は
中空状の充填剤を配合してもよい。
As described above, the injection-molded article of the present invention contains the liquid crystalline polymer (B) contained therein in a fibrous form and has a reinforcing action. Therefore, the filler usually blended for reinforcement is Although not required, known fibrous, powdery, plate-like or hollow fillers may be blended within a range that does not impair the effects of the present invention depending on the application.

【0028】本発明の射出成形品としては、薄肉として
も機械的物性に優れている。従って、本発明の射出成形
品が特に肉厚の50%以上、更には70%以上が1mm
以下の薄肉成形品であるときに、その効果を最大限に発
揮することとなる。このような薄肉射出成形品として
は、電子機器のハウジングが挙げられ、特には、パソコ
ン、携帯電話、コネクター、CDピックアップ部品、ハ
ードディスクまたはそれらの周辺の構成部品のいずれか
であることが好ましい。
The injection-molded article of the present invention is excellent in mechanical properties even if it is thin. Therefore, in the injection-molded article of the present invention, 50% or more of the wall thickness, more preferably 70% or more, is 1 mm.
The effect is maximized when the following thin-walled molded product is used. Examples of such a thin-walled injection-molded article include a housing of an electronic device, and it is particularly preferable that it is any one of a personal computer, a mobile phone, a connector, a CD pickup part, a hard disk, and components around them.

【0029】[0029]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。な
お、射出成形品の評価方法などは以下の通りである。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. The method of evaluating the injection-molded product is as follows.

【0030】(曲げ弾性率)図1のような携帯電話型成
形品を成形し、斜線部分を切り出して、ASTMD79
0に従い、曲げ弾性率(kg/cm2)を測定した。 (繊維状液晶性ポリマーの平均アスペクト比)図1のよ
うな携帯電話型成形品を成形し、その成形品を流動方向
に平行な面が出るように切削した後、断面を鏡面研磨
し、その表面を電子顕微鏡により観察して評価した。任
意に選んだ繊維化している液晶性ポリマー50本の太さ
と長さを測定した。なお、長さについては、表面上で観
察できる部分の長さを繊維の長さとした。結果は、平均
アスペクト比8以上のものを○で、平均アスペクト比8
〜6のものを△、平均アスペクト比6未満のものを×で
表した。 (液晶性ポリマー(B)の分散粒子径)成形後の試験片
の一部を窒素気流中で液晶性ポリマーの融点より10℃
高い温度まで加熱し、3分間その温度で保持し、その後
冷却した。その加熱後のサンプルの切断面を電子顕微鏡
により観察して評価した。任意に選んだ液晶性ポリマー
の粒子50個の径を測定し、重量平均粒子径を求めた。 (溶融粘度)携帯電話型成形品を粉砕し、東洋精機製キ
ャピログラフを用い、1200sec-1のせん断応力下
での溶融粘度を液晶性ポリエステルの融点より20℃高
い温度にて測定した。
(Flexural Modulus) A mobile phone type molded product as shown in FIG. 1 is molded, and a shaded portion is cut out to obtain ASTM D79.
The flexural elastic modulus (kg / cm 2 ) was measured according to 0. (Average Aspect Ratio of Fibrous Liquid Crystalline Polymer) A mobile phone type molded product as shown in FIG. 1 was molded, the molded product was cut so that a plane parallel to the flow direction was exposed, and the cross section was mirror-polished. The surface was observed by an electron microscope and evaluated. The thickness and length of 50 arbitrarily selected fibrous liquid crystalline polymers were measured. Regarding the length, the length of the portion that can be observed on the surface was defined as the length of the fiber. The result is that the average aspect ratio is 8 or more, and the average aspect ratio is 8
Those having an average aspect ratio of less than 6 are represented by Δ and those having an average aspect ratio of less than 6 are represented by x. (Dispersion particle diameter of liquid crystalline polymer (B)) A part of the molded test piece was heated to 10 ° C from the melting point of the liquid crystalline polymer in a nitrogen stream.
Heat to high temperature, hold at that temperature for 3 minutes, then cool. The cut surface of the sample after heating was observed and evaluated by an electron microscope. The diameter of 50 particles of the liquid crystalline polymer arbitrarily selected was measured, and the weight average particle diameter was obtained. (Melt Viscosity) A mobile phone type molded product was crushed and the melt viscosity under a shear stress of 1200 sec −1 was measured at a temperature 20 ° C. higher than the melting point of the liquid crystalline polyester using a Capillograph manufactured by Toyo Seiki.

【0031】(実施例1)ポリカーボネート樹脂(三菱
ガス化学(株)製、ユーピロンS3000)と液晶性ポ
リエステル{p−ヒドロキシ安息香酸および6−ヒドロ
キシ−2−ナフトエ酸(モル比70:30)を構成モノ
マーとする融点280℃、対数粘度5.7(dl/g)
の液晶性ポリエステルを示す。以下、同様である。}と
の混合比が6:4の樹脂成分100重量部に、亜リン酸
エステルとしてビス(2,6−ジ−t−ブチル−4−メ
チルフェニル)ペンタエリスリトール−ジホスファイト
0.3重量部を配合し、30mmの2軸押出機にて樹脂
温度300℃で溶融混練し、ペレット化した。次いで、
該ペレットを射出成形機(ゲートサイズ:0.5×40
mm;ランナー断面積:60mm2)にて成形温度30
0℃で図1に示す携帯電話型成形品を成形し、機械的物
性、溶融粘度、液晶性ポリエステルの平均アスペクト比
および重量平均粒径を評価した。結果を表−1に示す。
Example 1 A polycarbonate resin (manufactured by Mitsubishi Gas Chemical Co., Inc., Iupilon S3000) and a liquid crystalline polyester {p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio 70:30) are constituted. Melting point of monomer 280 ° C, logarithmic viscosity 5.7 (dl / g)
Shows the liquid crystalline polyester of. The same applies hereinafter. } And a resin component having a mixing ratio of 6: 4 with 0.3 part by weight of bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-diphosphite as a phosphite. Then, the mixture was melt-kneaded at a resin temperature of 300 ° C. with a 30 mm twin-screw extruder and pelletized. Then
Injection molding machine (gate size: 0.5 x 40)
mm; Runner cross-sectional area: 60 mm 2 ) molding temperature 30
The mobile phone type molded product shown in FIG. 1 was molded at 0 ° C., and the mechanical properties, melt viscosity, average aspect ratio of liquid crystalline polyester, and weight average particle size were evaluated. The results are shown in Table 1.

【0032】(実施例2)ポリカーボネート樹脂(三菱
ガス化学(株)製、ユーピロンS3000)と液晶性ポ
リエステルとの混合比が8:2の樹脂成分100重量部
に、亜リン酸エステルとしてビス(2,6−ジ−t−ブ
チル−4−メチルフェニル)ペンタエリスリトール−ジ
ホスファイト0.3重量部を配合し、30mmの2軸押
出機にて樹脂温度300℃で溶融混練し、ペレット化し
た。次いで、該ペレットを射出成形機(ゲートサイズ:
0.5×40mm;ランナー断面積:60mm2)にて
成形温度300℃で図1に示す携帯電話型成形品を成形
し、機械的物性、溶融粘度、液晶性ポリエステルの平均
アスペクト比および重量平均粒径を評価した。結果を表
−1に示す。
Example 2 100 parts by weight of a resin component having a mixing ratio of 8: 2 of a polycarbonate resin (Iupilon S3000 manufactured by Mitsubishi Gas Chemical Co., Inc.) and a liquid crystalline polyester was mixed with bis (2) as a phosphite ester. 0.3 parts by weight of 6,6-di-t-butyl-4-methylphenyl) pentaerythritol-diphosphite were blended and melt-kneaded at a resin temperature of 300 ° C. with a 30 mm twin-screw extruder to form pellets. Then, the pellets are injection molded (gate size:
0.5 × 40 mm; runner cross-sectional area: 60 mm 2 ) at a molding temperature of 300 ° C. to mold the mobile phone type molded product shown in FIG. 1, and then mechanical properties, melt viscosity, average aspect ratio of liquid crystalline polyester, and weight average. The particle size was evaluated. The results are shown in Table 1.

【0033】(比較例2)ポリカーボネート樹脂(三菱
ガス化学(株)製、ユーピロンS3000)と液晶性ポ
リエステルとの混合比が6:4になるように配合し、3
0mmの2軸押出機にて樹脂温度300℃で溶融混練
し、ペレット化した。次いで、該ペレットを射出成形機
(ゲートサイズ:0.5×40mm;ランナー断面積:
60mm2)にて成形温度300℃で図1に示す携帯電
話型成形品を成形し、機械的物性、溶融粘度、液晶性ポ
リエステルの平均アスペクト比および重量平均粒径を評
価した。結果を表−1に示す。
(Comparative Example 2) Polycarbonate resin (manufactured by Mitsubishi Gas Chemical Co., Inc., Iupilon S3000) and liquid crystalline polyester were blended in a mixing ratio of 6: 4 and 3
It was melt-kneaded at a resin temperature of 300 ° C. with a 0 mm twin-screw extruder and pelletized. Then, the pellets are injection-molded (gate size: 0.5 × 40 mm; runner cross-sectional area:
The cell phone type molded product shown in FIG. 1 was molded at 60 mm 2 ) at a molding temperature of 300 ° C., and the mechanical properties, melt viscosity, average aspect ratio of liquid crystalline polyester and weight average particle size were evaluated. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上、詳細に説明したように特定の熱可
塑性樹脂組成物を使用し、特定の成形条件で射出成形す
ることにより得られる本発明の射出成形品は、従来同種
の技術では得られなかった分散された繊維状液晶性ポリ
マーを含むものであり、極めて高剛性、高強度であると
いう特徴を有し、特に薄肉成形品、とりわけ電子機器の
ハウジングに応用することが好ましい。
INDUSTRIAL APPLICABILITY As described in detail above, the injection-molded article of the present invention obtained by injection-molding under a specific molding condition using a specific thermoplastic resin composition can be obtained by a conventional technique of the same kind. It contains a dispersed fibrous liquid crystalline polymer which has not been obtained, has a feature of extremely high rigidity and high strength, and is particularly preferably applied to a thin-walled molded product, particularly to a housing of an electronic device.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で成形した携帯電話型成形品の説明図で
ある。
FIG. 1 is an explanatory diagram of a mobile phone type molded product molded in an example.

【図2】ゲートとランナーの断面積の説明図である。FIG. 2 is an explanatory diagram of cross-sectional areas of a gate and a runner.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 69:00 B29L 31:34 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B29K 69:00 B29L 31:34

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 異方性溶融相を形成しない熱可塑性樹脂
(A)99〜50重量%と異方性溶融相を形成し得る液
晶性ポリマー(B)1〜50重量%(両者の合計100
重量%)からなる熱可塑性樹脂組成物の射出成形品であ
って、 (1)液晶性ポリマー(B)が平均アスペクト比6以上
の繊維状で熱可塑性樹脂(A)のマトリックス相に分散
し、 (2)射出成形品を無負荷で前記液晶性ポリマー(B)
の融点以上の温度条件下の溶融を経て冷却させたときに
液晶性ポリマー(B)が重量平均粒径10〜40μmの
範囲にありかつその80重量%以上が粒径0.5〜60
μmの範囲にあるように熱可塑性樹脂(A)のマトリッ
クス相に島状にミクロ分散しており、 (3)射出成形品をASTM D790に従い測定した
曲げ弾性率が40,000kg/cm2以上であり、 (4)射出成形品を再溶融させ、前記液晶性ポリマー
(B)の融点よりも20℃高い温度、剪断速度1200
sec-1の条件下で測定した溶融粘度が400〜2,5
00ポイズの範囲にあることを特徴とする射出成形品。
1. A thermoplastic resin (A) that does not form an anisotropic melt phase (99 to 50% by weight) and a liquid crystalline polymer (B) that can form an anisotropic melt phase (1) to 50% by weight (total of 100 of both).
%)), Which is an injection-molded article of a thermoplastic resin composition comprising (1) a liquid crystalline polymer (B) dispersed in a matrix phase of a thermoplastic resin (A) in a fibrous form having an average aspect ratio of 6 or more, (2) The injection-molded article is loaded with the above liquid crystal polymer (B)
The liquid crystalline polymer (B) has a weight average particle diameter in the range of 10 to 40 μm and is 80% by weight or more of the particle diameter in the range of 0.5 to 60 when the liquid crystalline polymer (B) is cooled through melting under a temperature condition of not less than the melting point of
The thermoplastic resin (A) is micro-dispersed in the matrix phase of the thermoplastic resin (A) so as to be in the range of (3), and (3) the flexural modulus of the injection-molded product measured according to ASTM D790 is 40,000 kg / cm 2 or more. Yes, (4) re-melting the injection-molded article, and the temperature is 20 ° C. higher than the melting point of the liquid crystalline polymer (B), and the shear rate is 1200.
Melt viscosity measured under the condition of sec -1 is 400 to 2.5
An injection-molded product characterized by being in the range of 00 poise.
【請求項2】 熱可塑性樹脂(A)がポリエステル系樹
脂であることを特徴とする請求項1記載の射出成形品。
2. The injection-molded article according to claim 1, wherein the thermoplastic resin (A) is a polyester resin.
【請求項3】 熱可塑性樹脂(A)がポリカーボネート
樹脂であることを特徴とする請求項1記載の射出成形
品。
3. The injection-molded article according to claim 1, wherein the thermoplastic resin (A) is a polycarbonate resin.
【請求項4】 成形品の肉厚の50%以上が1mm以下
の薄肉成形品である請求項1〜3のいずれかに記載の射
出成形品。
4. The injection-molded article according to claim 1, wherein 50% or more of the thickness of the molded article is a thin-walled article having a thickness of 1 mm or less.
【請求項5】 電子機器のハウジングである請求項1〜
4のいずれかに記載の射出成形品。
5. The housing of an electronic device according to claim 1.
The injection-molded article according to any one of 4 above.
【請求項6】 電子機器がパソコン、携帯電話、コネク
ター、CDピックアップ部品、ハードディスクまたはそ
れらの周辺の構成部品のいずれかである請求項5記載の
射出成形品。
6. The injection-molded article according to claim 5, wherein the electronic device is any one of a personal computer, a mobile phone, a connector, a CD pickup part, a hard disk and components around them.
JP27717894A 1994-10-18 1994-10-18 Injection molding Expired - Fee Related JP3170552B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP27717894A JP3170552B2 (en) 1994-10-18 1994-10-18 Injection molding
EP19950934830 EP0790280B1 (en) 1994-10-18 1995-10-18 Thermoplastic resin composition, injection molding method thereof and injection molded article
CNB951957090A CN1185301C (en) 1994-10-18 1995-10-18 Thermoplastic resin composition, injection molding method thereof and injection molded article
KR1019970701105A KR100366341B1 (en) 1994-10-18 1995-10-18 Thermoplastic composition, injection molding method and injection molding
CNB021433151A CN1314754C (en) 1994-10-18 1995-10-18 Injection molding body
PCT/JP1995/002133 WO1996011985A1 (en) 1994-10-18 1995-10-18 Thermoplastic resin composition, injection molding method thereof and injection molded article
US08/817,346 US6010760A (en) 1994-10-18 1995-10-18 Thermoplastic resin composition, injection molding method thereof, and injection molded article
DE1995632763 DE69532763T2 (en) 1994-10-18 1995-10-18 THERMOPLASTIC RESIN COMPOSITION, INJECTION MOLDING AND INJECTION MOLDING BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27717894A JP3170552B2 (en) 1994-10-18 1994-10-18 Injection molding

Publications (2)

Publication Number Publication Date
JPH08118398A true JPH08118398A (en) 1996-05-14
JP3170552B2 JP3170552B2 (en) 2001-05-28

Family

ID=17579902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27717894A Expired - Fee Related JP3170552B2 (en) 1994-10-18 1994-10-18 Injection molding

Country Status (1)

Country Link
JP (1) JP3170552B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098146A (en) * 1999-09-30 2001-04-10 Polyplastics Co Thermoplastic resin composition and its molding product
JP2002036315A (en) * 2000-07-25 2002-02-05 Oshimo Sangyo Kk Method for producing material having high mechanical strength
JP2005008664A (en) * 2003-06-16 2005-01-13 Japan Polyolefins Co Ltd Composite molded article and its manufacturing method
JP2010012770A (en) * 2008-06-02 2010-01-21 Panasonic Electric Works Co Ltd Resin molded article and method for manufacturing the same
JP2012233092A (en) * 2011-05-02 2012-11-29 Teijin Chem Ltd Polycarbonate resin composition
WO2021010329A1 (en) * 2019-07-12 2021-01-21 住友化学株式会社 Motor cover and motor cover production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098146A (en) * 1999-09-30 2001-04-10 Polyplastics Co Thermoplastic resin composition and its molding product
JP2002036315A (en) * 2000-07-25 2002-02-05 Oshimo Sangyo Kk Method for producing material having high mechanical strength
JP2005008664A (en) * 2003-06-16 2005-01-13 Japan Polyolefins Co Ltd Composite molded article and its manufacturing method
JP2010012770A (en) * 2008-06-02 2010-01-21 Panasonic Electric Works Co Ltd Resin molded article and method for manufacturing the same
JP2012233092A (en) * 2011-05-02 2012-11-29 Teijin Chem Ltd Polycarbonate resin composition
WO2021010329A1 (en) * 2019-07-12 2021-01-21 住友化学株式会社 Motor cover and motor cover production method

Also Published As

Publication number Publication date
JP3170552B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR100366341B1 (en) Thermoplastic composition, injection molding method and injection molding
JP2862303B2 (en) Polymer blend molding method
KR20080098031A (en) Thermoplastic resin composition and liquid crystal display part or information recording medium part using the composition
WO1997024404A1 (en) Liquid crystalline polymer composition and moldings
EP0653460B1 (en) Synthetic resin composition and product of molding thereof
JPH01301749A (en) Self-reinforcing polymer composite and production thereof
JPH01158074A (en) Production of composite resin
JP3384808B2 (en) Synthetic resin composition and molded article thereof
JPH07196895A (en) Liquid-crystal polyester resin composition
JP3170552B2 (en) Injection molding
JPH03281656A (en) Liquid crystalline polyester resin composition
JP3227729B2 (en) Method for producing resin composition molded article
JP2007091790A (en) Organic fiber-reinforced polylactic acid resin composition and molded article
JP3355061B2 (en) Thermoplastic resin composition, injection molding method and injection molded article thereof
JP3415346B2 (en) Injection molding method
JP5063901B2 (en) Thermoplastic resin composition
JP5063903B2 (en) Information recording medium parts
JP3170555B2 (en) Injection molding
JP2919885B2 (en) Vibration-damping polyalkylene terephthalate resin composition and molded article thereof
JPH09227695A (en) Sliding resin molding
JPH07188569A (en) Composite material using liquid crystal polymer fibril and its production
JPH0651827B2 (en) Thermo-tropic liquid crystal polymer composition and method for producing the same
JP3582321B2 (en)   Liquid crystalline resin pellet, method for producing the same, thermoplastic resin composition using the same, and method for producing the same
JP3285485B2 (en) Tooth wheel
TW379242B (en) Thermoplastic resin composition, process for injection molding thereof and an injection molding

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees