JPH081175A - Water purifying apparatus - Google Patents

Water purifying apparatus

Info

Publication number
JPH081175A
JPH081175A JP6162849A JP16284994A JPH081175A JP H081175 A JPH081175 A JP H081175A JP 6162849 A JP6162849 A JP 6162849A JP 16284994 A JP16284994 A JP 16284994A JP H081175 A JPH081175 A JP H081175A
Authority
JP
Japan
Prior art keywords
water
treated
activated carbon
hollow fiber
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6162849A
Other languages
Japanese (ja)
Inventor
Tsunenori Ootani
常緑 大谷
Masumi Tsutsumi
増美 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUKAWA CONTROL KK
Original Assignee
YASUKAWA CONTROL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUKAWA CONTROL KK filed Critical YASUKAWA CONTROL KK
Priority to JP6162849A priority Critical patent/JPH081175A/en
Publication of JPH081175A publication Critical patent/JPH081175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To make water palatable by reducing a cluster size of water by successively arranging activated carbon, a hollow fiber membrane, an inorg. porous member, activated carbon and a mineral component-containing substance from an upstream side of water to be treated and injecting ozone into the area between the hollow fiber membrane and the inorg. porous member. CONSTITUTION:Front stage activated carbon 17, a hollow fiber membrane 15, an inorg. porous member, that is, a porous glass member l, rear stage activated carbon 18 and a mineral component-containing substance, that is, coral sand 10 are successively arranged from the upstream side of the water 7 to be treated stored in a tank 5a and ozone is injected into the area between the hollow membrane 15 and the porous glass member 1 from an ozone generator 9. That is, the water 7 to be treated is introduced into the porous glass member 1 while the treated water 8 exuded from the cylindrical outer peripheral wall surface of the porous glass member 1 under gravity is sampled to evaluate the effect exerted on the cluster size of water of the porous glass member 1. By this constitution, the line width of the spectrum of the treated water 8 becomes narrower than that of the water 7 to be treated and a cluster size becomes small to make water palatable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は家庭用浄水装置、集合住
宅用浄水装置、給水装置を持つ自動販売機、ウォーター
クーラー、調理用給水装置など飲料または調理用給水装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drinking water or cooking water supply device such as a household water purification device, an apartment house water purification device, a vending machine having a water supply device, a water cooler, and a cooking water supply device.

【0002】[0002]

【従来の技術】従来の技術として挙げられるものをいく
つか掲記すれば、被処理水を活性炭からさらに中空糸膜
を経るようにしたシステム(以下『従来例1』という)
から得られる処理水は、活性炭により残留塩素やトリハ
ロメタンなどの除去がなされ、さらに中空糸膜によって
固形ごみや除菌を行うもので、比較的安価で最も普及し
ているものである。また、従来例1の中空糸膜の後段に
コーラルサンドを配設し、これに通水するする方法(以
下、『従来例2』という)は、ミネラル成分を添加して
比較的おいしい水になる。さらに、セラミックス多孔体
や多孔質硝子体に被処理水を透過した場合(以下『従来
例3』という)には、水のクラスターサイズが小さくな
り、水にまろみを与えることが出来る。また、上記とは
異種の手段として塩素の入った被処理水にオゾンを注入
し、その下流側で活性炭を経由させる方法(以下『従来
例4』という)は、注入したオゾンにより脱臭・脱色・
有機物分解・殺菌の作用がなされ、後段に設けられた活
性炭にて被処理水中にある化学物質の吸着・残留塩素の
除去・残留オゾンの分解が行われる。
2. Description of the Related Art A system in which water to be treated is passed through activated carbon and further through a hollow fiber membrane, to mention some of the conventional techniques (hereinafter referred to as "conventional example 1").
The treated water obtained from (1) has residual chlorine, trihalomethane, etc. removed by activated carbon, and solid dust and sterilization by a hollow fiber membrane, and is relatively inexpensive and most popular. Further, the method of providing coral sand in the latter stage of the hollow fiber membrane of Conventional Example 1 and passing water through it (hereinafter referred to as "Conventional Example 2") is a relatively delicious water by adding a mineral component. . Further, when the water to be treated permeates through the porous ceramic body or the porous vitreous body (hereinafter referred to as "conventional example 3"), the cluster size of water becomes small and the water can be mellowed. Also, as a means different from the above, a method of injecting ozone into the water to be treated containing chlorine and passing through activated carbon at the downstream side thereof (hereinafter referred to as “conventional example 4”) is a method of deodorizing / decolorizing
The organic substances are decomposed and sterilized, and the activated carbon provided in the latter stage adsorbs chemical substances in the water to be treated, removes residual chlorine, and decomposes residual ozone.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来例1は
まずくない必要最少限度の処理水を求めるに過ぎず、水
にまろみやこくがなく必ずしもおいしい水ではない。ま
た、従来例2はミネラル成分が溶出しにくく、従ってこ
くが少ない処理水となる。また、水のクラスターが比較
的大きいままで、まろやかさが少ない処理水といえる。
さらに従来例3は、セラミックスにせよ、多孔質硝子体
にせよそれ自体が比較的高価で、簡単に使い捨てるなど
ということはその経済性から考えて不可能であるが、水
のクラスターサイズを効率よく変化させうる孔径はたか
だか20μm程度であって、極めて小さなものであり、
例えば一般の水道水などでこれらの無機多孔体をそのま
ま使用した場合には極めて短時間のうちに目詰まりを生
じ、被処理水の透過量が極端に低下し、やがてほとんど
通水できない状態となってしまう。従来例4は、一旦オ
ゾンにより分解された活性炭等では処理しにくい難分解
性の化学物質が残留塩素と反応して再び活性炭等では処
理しにくい化学物質へと戻り、オゾンによる効果を低減
することとなる。ここにおいて、本発明は、これら各従
来例の難点を全て払拭し、被処理水から理想に近い浄水
を得る簡潔な装置を提供することを目的とする。
However, Conventional Example 1 merely seeks the minimum necessary amount of treated water that is not bad, and it is not necessarily delicious water because it has no mellowness or richness. Further, in Conventional Example 2, the mineral component is less likely to elute, and therefore the treated water has less body weight. Also, it can be said that the treated water is relatively mellow because the water cluster remains relatively large.
Further, in Conventional Example 3, whether it is ceramics or a porous vitreous body is relatively expensive in itself, and it is impossible to simply dispose of it in view of its economical efficiency. The pore size that can be changed well is about 20 μm, which is extremely small.
For example, if these inorganic porous materials are used as they are in ordinary tap water, they will be clogged in an extremely short time, the permeation amount of the water to be treated will be extremely reduced, and eventually it will become almost impossible to pass water. Will end up. In Conventional Example 4, a hardly decomposable chemical substance that is difficult to treat with activated carbon or the like once decomposed by ozone reacts with residual chlorine and returns to a chemical substance that is difficult to treat with activated carbon or the like again to reduce the effect of ozone. Becomes Here, an object of the present invention is to provide a simple device that eliminates all of the disadvantages of each of these conventional examples and obtains purified water that is close to ideal from the water to be treated.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、被処理水の上流側より活性炭、中空糸
膜、無機多孔質体、活性炭、ミネラル成分含有物質を順
次配設し、中空糸膜と無機多孔体の間もしくは無機多孔
体と後方活性炭の間にオゾンを注入することとした。
In order to solve the above problems, the present invention provides activated carbon, a hollow fiber membrane, an inorganic porous material, activated carbon and a mineral component-containing substance in this order from the upstream side of the water to be treated, It was decided to inject ozone between the hollow fiber membrane and the inorganic porous material or between the inorganic porous material and the backward activated carbon.

【0005】さらにまた、被処理水の上流側から、活性
炭、中空糸膜、無機多孔体を順次配設し、活性炭と中空
糸膜の間もしくは無機多孔体の下流側にミネラル含有物
質を配設することとした。
Furthermore, activated carbon, a hollow fiber membrane, and an inorganic porous body are sequentially arranged from the upstream side of the water to be treated, and a mineral-containing substance is arranged between the activated carbon and the hollow fiber membrane or on the downstream side of the inorganic porous body. It was decided to.

【0006】また、上記無機多孔体を成形したホウケイ
酸硝子を熱処理により二酸化珪素に富んだ相と二酸酸化
ホウ素および酸化カルシウムに富んだ相とに分相させ、
酸処理により、あるいはまた必要に応じてアルカリ処理
により二酸酸化ホウ素および酸化カルシウムに富んだ相
を溶解させて形成させる二酸化珪素骨格からなる多孔質
硝子体とした。
Further, the borosilicate glass molded from the above-mentioned inorganic porous material is heat-treated to separate it into a phase rich in silicon dioxide and a phase rich in boron dioxide and calcium oxide,
A porous vitreous body having a silicon dioxide skeleton formed by dissolving a phase rich in boron dioxide dioxide and calcium oxide by acid treatment or, if necessary, alkali treatment was formed.

【0007】[0007]

【作用】本発明は以上のような構成であるから、被処理
水に含まれる残留塩素や活性炭で比較的吸着し易い化学
物質をまず前段の活性炭で吸着し、その後に配設された
中空糸膜で被処理水原水に含まれる固形物とさらには前
段の活性炭から流出する活性炭粉末ををトラップし、無
機多孔体により水のクラスターサイズを小さくして水を
まろやかにし、また添加物の被処理水への短時間溶解効
率を高め、オゾンを注入することにより殺菌・脱臭・有
機物分解を行い、後段の活性炭でオゾンにより分解され
て活性炭により吸着し易くなった被処理水中の化学物質
を吸着し、また残留オゾンを分解して、水にこくを与え
るミネラル成分を効率よく溶解して安全でこくのあるま
ろやかな水を長い期間にわたって生成することができ
る。
Since the present invention has the above-mentioned constitution, the residual chlorine contained in the water to be treated or the chemical substance which is relatively easily adsorbed by the activated carbon is first adsorbed by the activated carbon of the first stage, and then the hollow fiber disposed thereafter. Water to be treated with a membrane Traps the solids contained in the raw water and the activated carbon powder flowing out from the activated carbon in the previous stage, and reduces the cluster size of water by the inorganic porous material to make the water mellow, and the treatment of additives Improving the efficiency of dissolution in water for a short time and sterilizing, deodorizing and decomposing organic substances by injecting ozone, and adsorbing chemical substances in the water to be treated that are easily decomposed by activated carbon and decomposed by ozone by activated carbon in the latter stage. Moreover, the residual ozone can be decomposed to efficiently dissolve the mineral components that give water richness to produce safe and mellow water over a long period of time.

【0008】さらに、オゾンを注入しない場合において
も、活性炭で被処理水に含まれる残留塩素や化学物質を
吸着し、その後に配設された中空糸膜にて被処理水原水
に含まれる固形物とさらには前段の活性炭から流出する
活性炭粉末ををトラップし、無機多孔体により水のクラ
スターサイズを小さくして水をまろやかにし、水にこく
を与えるミネラル成分を効率よく溶解して安全でこくの
あるまろやかな水を長い期間にわたって生成することが
できる。
Further, even when ozone is not injected, the residual chlorine and chemical substances contained in the water to be treated are adsorbed by the activated carbon, and the solid matter contained in the raw water of the water to be treated is adsorbed by the hollow fiber membrane arranged thereafter. In addition, the activated carbon powder flowing out from the activated carbon in the previous stage is trapped, the cluster size of water is reduced by the inorganic porous body to make the water mellow, and the mineral components that give water a richness are efficiently dissolved and safe Some mellow water can be produced over a long period of time.

【0009】また、上記無機多孔体に成形したホウケイ
酸硝子を熱処理により二酸化珪素に富んだ相と二酸酸化
ホウ素および酸化カルシウムに富んだ相とに分相させ、
酸処理により、あるいはまた必要に応じてアルカリ処理
により二酸酸化ホウ素および酸化カルシウムに富んだ相
を溶解させて形成させる二酸化珪素骨格からなる多孔質
硝子体を用いた場合には、その孔径分布が極めてシャー
プであるという特徴有しているため、より効率よくシス
テムを作用させることができる。
Further, the borosilicate glass molded into the above inorganic porous material is heat-treated to separate it into a phase rich in silicon dioxide and a phase rich in boron dioxide and calcium oxide,
When a porous vitreous body composed of a silicon dioxide skeleton formed by dissolving a phase rich in boron dioxide and calcium oxide by acid treatment or, if necessary, alkali treatment is formed, its pore size distribution is Since it is extremely sharp, the system can operate more efficiently.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。先ず、本発明における、無機多孔体の一種である
成形したホウケイ酸硝子を熱処理により二酸化珪素に富
んだ相と二酸酸化ホウ素および酸化カルシウムに富んだ
相とに分相させ、酸処理により、あるいはまた必要に応
じてアルカリ処理により二酸酸化ホウ素および酸化カル
シウムに富んだ相を溶解させて形成させる二酸化珪素骨
格からなる多孔質硝子体を、以下『該多孔質硝子体』と
定義する。
Embodiments of the present invention will be described below with reference to the drawings. First, in the present invention, a shaped borosilicate glass, which is a type of inorganic porous material, is heat-treated to separate it into a phase rich in silicon dioxide and a phase rich in boron dioxide and calcium oxide, or by acid treatment, or In addition, a porous vitreous body having a silicon dioxide skeleton formed by dissolving a phase rich in boron dioxide and calcium oxide by alkali treatment as necessary is hereinafter referred to as "the porous vitreous body".

【0011】 [実施例1]図2は、該多孔質硝子体1
の水のクラスターサイズに与える影響を評価した装置の
構成概要図である。筒状の該多孔質硝子体1の内側に被
処理水7を入れ、重力等により筒状外周壁面から滲み出
す処理水8を採水した。このときの核磁気共鳴法(以
下、これを『NMR法』という)によりO−17核を測
定分析した結果を図3に示す。すなわち、図3は図2の
構成により、該多孔質硝子体1(孔径2.35μm)に
て透過採水された処理水8のO−17核NMRスペクト
ルである。また、図4は該多孔質硝子体1に透過しない
状態で採水された原水(被処理水)7のO−17核NM
Rスペクトルである。核磁気共鳴装置を用いた測定で
は、水のクラスターサイズの絶対値は測定できないもの
の、同一測定条件では相対比較は可能であり、水のクラ
スターサイズはそのスペクトルの線幅の広さとして表さ
れる。すなわち、スペクトルの線幅が広いものは水のク
ラスターサイズが大きく、逆にスペクトルの線幅が狭い
ものは水のクラスターサイズが小さいことを表してい
る。図3の結果より、該多孔質硝子体1を透過させた水
のスペクトルの線幅の半値幅は89[Hz]であり、図
4の結果より、これを透過させる前の原水(被処理水)
7のスペクトルの線幅の半値幅は104[Hz]である
ことがわかる。この結果より該多孔質硝子体1を透過し
た水は、これを透過させる前の原水(被処理水)7と比
較してスペクトルの線幅が明らかに狭くなっており、水
のクラスタが小さくなって水がおいしくなっていること
がわかる。
Example 1 FIG. 2 shows the porous vitreous body 1.
FIG. 3 is a schematic configuration diagram of an apparatus in which the influence of water on the cluster size is evaluated. Water to be treated 7 was put inside the cylindrical porous vitreous body 1, and treated water 8 exuding from the cylindrical outer peripheral wall surface by gravity or the like was collected. FIG. 3 shows the result of measurement and analysis of O-17 nuclei by the nuclear magnetic resonance method (hereinafter referred to as “NMR method”) at this time. That is, FIG. 3 is an O-17 nuclear NMR spectrum of the treated water 8 permeated and collected by the porous vitreous body 1 (pore size 2.35 μm) having the configuration of FIG. In addition, FIG. 4 shows the O-17 nucleus NM of the raw water (water to be treated) 7 sampled without permeating the porous vitreous body 1.
It is an R spectrum. Although the absolute value of the water cluster size cannot be measured by a nuclear magnetic resonance apparatus, relative comparison is possible under the same measurement conditions, and the water cluster size is expressed as the broad line width of the spectrum. . That is, a spectrum having a broad line width has a large water cluster size, and a spectrum having a narrow spectrum line width has a small water cluster size. From the result of FIG. 3, the half width of the line width of the spectrum of the water that has permeated the porous vitreous body 1 is 89 [Hz], and from the result of FIG. )
It can be seen that the line width at half maximum of the spectrum of No. 7 is 104 [Hz]. From this result, the water permeated through the porous vitreous body 1 has a clearly narrower spectrum line width than the raw water (water to be treated) 7 before permeation thereof, and the water clusters are reduced. You can see that the water is delicious.

【0012】 [実施例2]図5は、該多孔質硝子体1
を透過した処理水8(500CC)と原水7(500C
C)をタンク5b、タンク5cにそれぞれ溜め、さらに
オゾン発生器9からオゾンを両方のタンク5b、5cに
いわゆるバブリング(bubling)により注入して
その溶解能を評価したシステムの構成の概要図である。
この結果を表1に示す。
Example 2 FIG. 5 shows the porous vitreous body 1.
Processed water 8 (500CC) and raw water 7 (500C)
FIG. 3 is a schematic diagram of a configuration of a system in which C) is stored in tanks 5b and 5c, respectively, and ozone is injected from both of the ozone generator 9 into both tanks 5b and 5c by so-called bubbling to evaluate its dissolving ability. .
Table 1 shows the results.

【表1】 この場合、オゾン発生システムとバブリングシステムは
タンク5b、タンク5cとも同一の物を用い、測定の態
様は同一日に両者合わせて約2時間をかけて連続的に実
施し、その実験手順は、 第1回目 処理水8(500CC)→原水7(500CC) 第2回目 処理水8(500CC)→原水7(500CC) 第3回目 処理水8(500CC)→原水7(500CC) という順序で交互に3回ずつの測定を行った。また、被
処理水7は本実験すべてに使用する分量を予めポリタン
ク(タンク5a)に溜め、同一の被処理水7を用いて行
った。尚、オゾン濃度の測定は、インディゴ法を用いて
行った。
[Table 1] In this case, the ozone generation system and the bubbling system use the same thing for the tank 5b and the tank 5c, and the measurement mode is continuously carried out for about 2 hours in total on the same day, and the experimental procedure is as follows. 1st treatment water 8 (500CC) → raw water 7 (500CC) 2nd treatment water 8 (500CC) → raw water 7 (500CC) 3rd treatment water 8 (500CC) → raw water 7 (500CC) The measurement was performed once. In addition, the amount of the treated water 7 used for all of the experiments was previously stored in the poly tank (tank 5a), and the same treated water 7 was used. The ozone concentration was measured by the indigo method.

【0013】表1のオゾン水濃度の1分の欄に着目すれ
ば、該多孔質硝子体1を透過した処理水8のオゾン水濃
度はその平均値で0.02mg/リットルであり、該多
孔質硝子体1を透過しない原水7の平均値0.00mg
/リットルと比較して明らかに高くなっていることがわ
かる。しかしながら、10分の欄に着目した場合には処
理水8のオゾン水濃度も原水7のオゾン水濃度も0.8
mg/リットルと同じ値となっている。以上の結果よ
り、飽和領域におけるオゾンの溶解効率に対して処理水
8、原水7のオゾンの溶解効率の差は認められないが、
溶解初期の時点においては処理水8の溶解効率が優れて
いることがわかる。この理由は現時点では判然としない
が、前述のごとく該多孔質硝子体1を透過した水はその
クラスターサイズが小さくなっていることが判明してお
り、水のクラスターサイズと初期溶解効率に何らかの関
係があると推察される。一般の浄水装置においては、処
理流量が大きいことが要求され、本実験結果が示す様に
該多孔質硝子体1を透過した処理水8に有用な物質を溶
解させることはその処理効率向上の観点から極めて有効
である。
Focusing on the column of 1 minute of ozone water concentration in Table 1, the ozone water concentration of the treated water 8 that has permeated the porous vitreous body 1 is 0.02 mg / liter on average, and Average value of raw water 7 that does not pass through the vitreous body 0.00 mg
It can be seen that it is clearly higher than that of liter / liter. However, when focusing on the column of 10 minutes, both the ozone water concentration of the treated water 8 and the ozone water concentration of the raw water 7 are 0.8.
It has the same value as mg / liter. From the above results, no difference in the ozone dissolution efficiency between the treated water 8 and the raw water 7 is observed with respect to the ozone dissolution efficiency in the saturated region,
It can be seen that the dissolution efficiency of the treated water 8 is excellent at the initial stage of dissolution. The reason for this is not clear at this point in time, but as described above, it has been found that the water that has permeated the porous vitreous body 1 has a small cluster size, and there is some relationship between the water cluster size and the initial dissolution efficiency. It is speculated that there is. In a general water purifier, a large treatment flow rate is required, and as shown by the results of this experiment, dissolving a useful substance in the treated water 8 that has permeated the porous vitreous body 1 is effective in improving the treatment efficiency. Very effective from.

【0014】 [実施例3]図6は、活性炭を透過させ
た活性炭処理後の水7aを該多孔質硝子体1を透過させ
てコーラルサンド10によりミネラルを添加した処理水
11と該多孔質硝子体1を透過させない原水7a にコー
ラルサンド10によりミネラルを添加した処理水12を
比較したシステムの構成概要図である。実験は、流量計
2の出口に2方向切替弁13を設け、活性炭処理後の原
水7aを2方向弁13で切り替えて通水させ、コーラル
サンド10は同じものを交互に使用して、該多孔質硝子
体1を透過した処理水8にコーラルサンド10を経由さ
せた処理水11と活性炭処理後の原水7aにコーラルサ
ンド10を経由させた原水12とをそれぞれ採水し、人
的感覚[例えば味覚、臭覚、まろやかさ等]を成年社会
人層である会社内部の10名が両者を試飲した上で相対
比較して行った。質問は、『どちらが異味、異臭がない
ですか』、『どちらがまろやかさがありますか』、『ど
ちらがこくがありますか』および『どちらがしぶみがあ
りますか』で、その回答結果が表2記載の通りである。
Example 3 FIG. 6 shows treated water 11 in which activated carbon-treated water 7a after treatment with activated carbon is passed through the porous vitreous body 1 and mineral is added by coral sand 10 and the porous glass. FIG. 2 is a schematic configuration diagram of a system in which raw water 7a that does not pass through the body 1 is compared with treated water 12 in which minerals are added by coral sand 10. In the experiment, a two-way switching valve 13 was provided at the outlet of the flow meter 2, and the raw water 7a after the activated carbon treatment was switched by the two-way valve 13 to allow water to pass through. The treated water 8 that has passed through the vitreous body 1 is treated water 11 that is passed through the coral sand 10 and the raw water 7a that has been treated with activated carbon is the raw water 12 that is passed through the coral sand 10. [Taste, smell, mellowness, etc.] were compared by 10 people inside the company, who are adults and adults, tasting both. The questions are "Which has no taste or smell?", "Which is mellow?", "Which is rich?" And "Which is swelling?" Is.

【表2】 この試飲結果からもわかるように、該多孔質硝子体1を
透過し、さらにコーラルサンド10を経由した処理水1
1は、おおよそ過半数の者がまろやかさとこくがあるこ
とを感じ、該多孔質硝子体1を透過せずにコーラルサン
ド10のみを経由させた原水7aでは、まろやかさとこ
くがあるではほとんどの者が不感である。なお、渋味に
関しては(C)処理水11で1名が感じているが、おお
よそが渋味はわからないという回答結果からすれば、渋
味の個人差でとるに足らない。
[Table 2] As can be seen from the tasting results, the treated water 1 that permeates the porous vitreous body 1 and further passes through the coral sand 10
1 is that the majority of people feel mellow and deep, and in raw water 7a that does not pass through the porous vitreous body 1 and only passes through the coral sand 10, most people have mellow and deep. I don't feel it. Regarding the astringency, one person feels with (C) treated water 11, but from the reply result that the astringency is not generally known, it is insignificant due to individual differences in the astringency.

【0015】本実験結果により、該多孔質硝子体1を透
過した処理水11には該多孔質硝子体1を透過しない原
水7a に比べてコーラルサンド10より多くのミネラル
分が溶出していると推察され、また、該多孔質硝子体1
自身が持つ水のクラスターサイズを小さくする効果と相
まってまろやかでおいしい水を作ることができると考え
られる。
From the results of this experiment, it is found that the treated water 11 that has permeated the porous vitreous body 1 has a greater amount of minerals eluted from the coral sand 10 than the raw water 7a that does not permeate the porous vitreous body 1. Inferred and the porous vitreous body 1
It is thought that it is possible to make mellow and delicious water in combination with the effect of reducing the cluster size of own water.

【0016】 [実施例4]図7は、中空糸膜15を該
多孔質硝子体1の上流側に配した場合の効果確認実験の
システムの概要図である。本実験は、タンク5aに貯蔵
された水道水16を導管6を通してポンプ4で汲み上
げ、このポンプ4とバルブ3にて導管6の中を流通する
水道水16の流量を初期において2リットル/分に調整
し、流量計2を経て0.3μmの孔径を持つ中空糸膜1
5で濾過させてから2.35μmの孔径を持つ該多孔質
硝子体1を透過させた場合と、中空糸膜15で濾過する
ことなく直接2.35μmの孔径を持つ該多孔質硝子体
1を透過させた場合の時間経過に対する流量の変化を測
定した。このシステムにおいて測定した時間経過に対す
る通水量の変化を図8に示す。図8より明らかなよう
に、中空糸膜15で濾過した場合には15分間の連続通
水に対してもその流量変化は認められず初期流量と同じ
2リットル/分を保っているが、中空糸膜15にて濾過
しないで通水した場合には通水直後からその流量は低下
を始め、15分経過後には初期値の半分以下の0.9リ
ットル/分まで低下している。この実験結果より、中空
糸膜15で濾過した場合には中空糸膜15にて濾過しな
い場合に比べて該多孔質硝子体1の寿命が極めて長くな
ることがわかる。尚、本実施例において吸光光度法によ
り水道水16及び水道水16を中空糸膜15で濾過した
後の水の濁度を測定したところ、前者は1[FTU]で
あり、後者は0[FTU]であった。
[Embodiment 4] FIG. 7 is a schematic diagram of a system of an effect confirmation experiment when the hollow fiber membrane 15 is arranged on the upstream side of the porous vitreous body 1. In this experiment, tap water 16 stored in the tank 5a is pumped up by the pump 4 through the conduit 6, and the flow rate of the tap water 16 flowing through the conduit 6 by the pump 4 and the valve 3 is initially set to 2 liters / minute. Adjusted and passed through flow meter 2 hollow fiber membrane 1 with a pore size of 0.3 μm
When the porous vitreous body 1 having a pore diameter of 2.35 μm is permeated after being filtered with 5, and when the porous vitreous body 1 having a pore diameter of 2.35 μm is directly filtered without being filtered by the hollow fiber membrane 15. The change in the flow rate with the passage of time when the light was transmitted was measured. FIG. 8 shows the change in the water flow rate over time measured in this system. As is clear from FIG. 8, when filtered through the hollow fiber membrane 15, no change in the flow rate was observed even after continuous water flow for 15 minutes, and the same 2 liter / minute as the initial flow rate was maintained. When water is passed through the thread membrane 15 without being filtered, the flow rate starts to decrease immediately after passing water, and after 15 minutes, it has decreased to 0.9 liter / min, which is less than half the initial value. From this experimental result, it can be seen that the life of the porous vitreous body 1 is extremely long when the filtration is performed with the hollow fiber membrane 15 as compared with when the filtration is not performed with the hollow fiber membrane 15. In the present example, tap water 16 and tap water 16 after being filtered through the hollow fiber membrane 15 were measured for turbidity by absorptiometry. The former was 1 [FTU] and the latter was 0 [FTU. ]Met.

【0017】 [実施例5]図1は本発明のシステムの
一例の概要図である。水道水など被処理水7を上流側か
ら前段活性炭17、中空糸膜15、該多孔質硝子体1、
後段活性炭18、コーラルサンド10を順次通水させ、
中空糸膜15と該多孔質硝子体1の間にオゾン発生器9
より被処理水7中へオゾンガス19を注入している。前
段活性炭17は、被処理水7に含まれる残留塩素や活性
炭で比較的吸着し易い化学物質を吸着し、中空糸膜15
は被処理水7に含まれる赤錆など水をまずくする成分や
さらには前段活性炭17から流出する活性炭粉末ををト
ラップして被処理水7の味覚を向上させるとともに実施
例4にて述べたように下流側に配される該多孔質硝子体
1の寿命を延ばし、該多孔質硝子体1は実施例1で述べ
たように被処理水7のクラスターサイズを小さくして実
施例2及び3で述べたように被処理水7中へ添加する物
質の短時間溶解効率を向上させるとともにまろみを与
え、注入されたオゾンは被処理水7中に含まれるバクテ
リアに対する殺菌と活性炭では吸着しにくい化学物質を
分解して活性炭にて吸着しやすくし、後段活性炭18は
上流側にて注入されたオゾンにより吸着しやすくなった
化学物質を吸着するとともに残留オゾンを分解し、コー
ラルサンド10は被処理水7中にこくのある水にするミ
ネラル分を溶出させるので、安全で、こくのあるまろや
かな水を提供することができる。本システムにて水道水
16を浄化した処理水8と浄化する前の水道水16を実
施例3と同様に会社内部の10名が試飲して評価したと
ころ、10名中10名が本システムにて浄化した処理水
8の方が明らかにおいしいという評価を下した。尚、本
実施例においてはオゾンガス19の注入を中空糸膜15
と該多孔質硝子体1の間で行っているが、オゾンガス1
9等の注入は該多孔質硝子体1と後段活性炭18との間
で行ってもよい。
[Embodiment 5] FIG. 1 is a schematic view of an example of a system of the present invention. The treated water 7 such as tap water is supplied from the upstream side to the upstream activated carbon 17, the hollow fiber membrane 15, the porous vitreous body 1,
The latter stage activated carbon 18 and coral sand 10 are sequentially passed through,
An ozone generator 9 is provided between the hollow fiber membrane 15 and the porous vitreous body 1.
Further, ozone gas 19 is injected into the water 7 to be treated. The first-stage activated carbon 17 adsorbs residual chlorine contained in the water to be treated 7 or a chemical substance that is relatively easily adsorbed by the activated carbon, and the hollow fiber membrane 15
Is to improve the taste of the water to be treated 7 by trapping the water-poor components such as red rust contained in the water to be treated 7 and the activated carbon powder flowing out from the preceding stage activated carbon 17 and improving the taste of the water to be treated 7 as described in Example 4. As described in Examples 2 and 3, the lifetime of the porous vitreous body 1 disposed on the downstream side is extended, and the porous vitreous body 1 has a smaller cluster size of the water 7 to be treated as described in Example 1. As described above, it improves the short-term dissolution efficiency of the substance to be added to the water to be treated 7 and gives a mellowness, and the injected ozone is a chemical substance that is sterilized against bacteria contained in the water to be treated 7 and is difficult to be adsorbed by activated carbon. Is decomposed to be easily adsorbed by activated carbon, and the post-stage activated carbon 18 adsorbs chemical substances that are easily adsorbed by ozone injected on the upstream side and decomposes residual ozone, so that the coral sand 10 is not covered. Since eluting minerals to bodied there water in Risui 7, safe, it is possible to provide a mellow water with rich. As in Example 3, 10 people inside the company tasted and evaluated the treated water 8 that had purified the tap water 16 with this system and the tap water 16 before having purified it. It was evaluated that the treated water 8 that was purified by the above method was obviously tastier. In this embodiment, the ozone gas 19 is injected into the hollow fiber membrane 15
And ozone gas 1
The injection of 9 or the like may be performed between the porous vitreous body 1 and the post-stage activated carbon 18.

【0018】 [実施例6]図9は、本発明のシステム
の他の一例の構成概要図である。水道水など被処理水7
を上流側から活性炭20、中空糸膜15、該多孔質硝子
体1、コーラルサンド10を順次通水させている。活性
炭20は、被処理水7に含まれる残留塩素や化学物質を
吸着し、中空糸膜15は被処理水7に含まれる赤錆など
水をまずくする成分やさらには上流側に配設された活性
炭20から流出する活性炭粉末ををトラップして被処理
水7の味覚を向上させるとともに実施例4にて述べたよ
うに下流側に配される該多孔質硝子体1の寿命を延ば
し、該多孔質硝子体1は実施例1で述べたように被処理
水7のクラスターサイズを小さくして実施例2及び3で
述べたように被処理水7中へ添加する物質の短時間溶解
効率を向上させるとともにまろみを与え、コーラルサン
ド10は被処理水7中にこくのある水にするミネラル分
を溶出させるので、安全で、こくのあるまろやかな水を
提供することができる。ここで、コーラルサンド10の
配置は必ずしも該多孔質硝子体1の下流側にある必要は
なく、活性炭20と中空糸膜15の間にあってもよい
が、望むべくは該多孔質硝子体1の下流側にある方が効
果的である。
[Sixth Embodiment] FIG. 9 is a schematic view of the configuration of another example of the system of the present invention. Treated water such as tap water 7
The activated carbon 20, the hollow fiber membrane 15, the porous vitreous body 1, and the coral sand 10 are successively passed through the above from the upstream side. The activated carbon 20 adsorbs residual chlorine and chemical substances contained in the water 7 to be treated, and the hollow fiber membrane 15 is a water-poor component such as red rust contained in the water 7 to be treated, and further activated carbon disposed upstream. 20 to improve the taste of the water to be treated 7 by trapping the activated carbon powder flowing out of the porous body 20 and to extend the life of the porous vitreous body 1 disposed on the downstream side as described in Example 4 to obtain the porous body. As described in Example 1, the vitreous body 1 reduces the cluster size of the water to be treated 7 to improve the short-term dissolution efficiency of the substance added to the water to be treated 7 as described in Examples 2 and 3. At the same time, it gives a mellowness, and the coral sand 10 elutes the mineral content that makes the water 7 rich in the water to be treated, so that safe and mellow water can be provided. Here, the disposition of the coral sand 10 does not necessarily have to be on the downstream side of the porous vitreous body 1 and may be between the activated carbon 20 and the hollow fiber membrane 15, but if desired, it may be downstream of the porous vitreous body 1. It is more effective to be on the side.

【0019】[0019]

【発明の効果】以上述べたように、本発明の方法によれ
ば、安全でまろやかでこくがあるおいしい水を長期間に
わたって提供することができる。
Industrial Applicability As described above, according to the method of the present invention, safe, mellow and rich delicious water can be provided for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシステムの一例である。FIG. 1 is an example of a system of the present invention.

【図2】該多孔質硝子体の水のクラスターサイズに与え
る影響を評価した装置の構成概要図である。
FIG. 2 is a schematic configuration diagram of an apparatus for evaluating the influence of the porous vitreous body on water cluster size.

【図3】該多孔質硝子体に水を透過させたときの磁気共
鳴法によるO−17核測定スペクトルである。
FIG. 3 is an O-17 nuclear measurement spectrum by a magnetic resonance method when water is allowed to permeate the porous vitreous body.

【図4】該多孔質硝子体に水を透過させない原水の磁気
共鳴法によるO−17核測定スペクトルである。
FIG. 4 is an O-17 nuclear measurement spectrum by magnetic resonance method of raw water that does not allow water to pass through the porous vitreous body.

【図5】該多孔質硝子体を透過した処理水と原水の溶解
能を評価したシステムの構成概要図である。
FIG. 5 is a schematic configuration diagram of a system for evaluating the dissolving ability of treated water and raw water that have permeated the porous vitreous body.

【図6】該多孔質硝子体を透過させてコーラルサンドに
よりミネラルを添加した処理水と該多孔質硝子体を透過
させない原水にコーラルサンドによりミネラルを添加し
た処理水を比較したシステムの構成概要図である。
FIG. 6 is a schematic configuration diagram of a system comparing treated water in which minerals are added by coral sand through the porous vitreous body and treated water in which minerals are added by coral sand in raw water that does not pass through the porous vitreous body. Is.

【図7】中空糸膜を該多孔質硝子体の上流側に配した場
合の効果確認実験のシステムの概要図である。
FIG. 7 is a schematic diagram of a system of an effect confirmation experiment when a hollow fiber membrane is arranged on the upstream side of the porous vitreous body.

【図8】中空糸膜を該多孔質硝子体の上流側に配した場
合の効果確認実験の結果である。
FIG. 8 is a result of an effect confirmation experiment when a hollow fiber membrane is arranged on the upstream side of the porous vitreous body.

【図9】本発明のシステムの他の一例の構成概要図であ
る。
FIG. 9 is a schematic configuration diagram of another example of the system of the present invention.

【符号の説明】[Explanation of symbols]

1 該多孔質硝子体 2 流量計 3 バルブ 4 ポンプ 5a タンク 5b タンク 5c タンク 6 導管 7 被処理水(原水) 7a 活性炭処理後の水 8 処理水 9 オゾン発生器 10 コーラルサンド 11 ミネラルを添加した処理水 12 ミネラルを添加した原水 13 2方向切替弁 14 ロート 15 中空糸膜 16 水道水 17 前段活性炭 18 後段活性炭 19 オゾンガス 20 活性炭 1 Porous vitreous body 2 Flowmeter 3 Valve 4 Pump 5a Tank 5b Tank 5c Tank 6 Conduit 7 Water to be treated (raw water) 7a Water after activated carbon treatment 8 Treated water 9 Ozone generator 10 Coral sand 11 Treatment with mineral addition Water 12 Raw water containing minerals 13 Two-way switching valve 14 Funnel 15 Hollow fiber membrane 16 Tap water 17 First stage activated carbon 18 Second stage activated carbon 19 Ozone gas 20 Activated carbon

【手続補正書】[Procedure amendment]

【提出日】平成6年8月4日[Submission date] August 4, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 531 R 540 A 550 C 560 B E Z 1/68 510 B 520 M 530 B 540 A G H D 9/00 502 R H E D 503 A 504 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 1/50 531 R 540 A 550 C 560 B E Z 1/68 510 B 520 M 530 B 540 A GH D 9/00 502 RH ED 503 A 504 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理水の上流側より活性炭、中空糸
膜、無機多孔質体、活性炭、ミネラル成分含有物質を順
次配設し、中空糸膜と無機多孔体の間もしくは無機多孔
体と後方活性炭の間にオゾンを注入することを特徴とす
る浄水装置。
1. Activated carbon, a hollow fiber membrane, an inorganic porous material, an activated carbon and a substance containing a mineral component are sequentially arranged from the upstream side of the water to be treated, and the space between the hollow fiber membrane and the inorganic porous material or between the inorganic porous material and the rear is provided. A water purifier characterized by injecting ozone between activated carbons.
【請求項2】 請求項1の無機多孔体として成形したホ
ウケイ酸硝子を熱処理により二酸化珪素に富んだ相と二
酸酸化ホウ素および酸化カルシウムに富んだ相とに分相
させ、酸処理により、あるいはまた必要に応じてアルカ
リ処理により二酸酸化ホウ素および酸化カルシウムに富
んだ相を溶解させて形成させる二酸化珪素骨格からなる
多孔質硝子体を用いる浄水装置。
2. The borosilicate glass molded as the inorganic porous material according to claim 1 is heat-treated to separate it into a phase rich in silicon dioxide and a phase rich in boron dioxide and calcium oxide, or by an acid treatment, or A water purifier using a porous vitreous body composed of a silicon dioxide skeleton formed by dissolving a phase rich in boron dioxide and calcium oxide by alkali treatment if necessary.
【請求項3】 被処理水の上流側から、活性炭、中空糸
膜、無機多孔体を順次配設し、活性炭と中空糸膜の間も
しくは無機多孔体の下流側にミネラル含有物質を配設す
ることを特徴とする浄水装置。
3. An activated carbon, a hollow fiber membrane and an inorganic porous body are sequentially arranged from the upstream side of the water to be treated, and a mineral-containing substance is arranged between the activated carbon and the hollow fiber membrane or on the downstream side of the inorganic porous body. A water purification device characterized by that.
【請求項4】 請求項3の無機多孔体として成形したホ
ウケイ酸硝子を熱処理により二酸化珪素に富んだ相と二
酸酸化ホウ素および酸化カルシウムに富んだ相とに分相
させ、酸処理により、あるいはまた必要に応じてアルカ
リ処理により二酸酸化ホウ素および酸化カルシウムに富
んだ相を溶解させて形成させる二酸化珪素骨格からなる
多孔質硝子体を用いる浄水装置。
4. A borosilicate glass molded as the inorganic porous material according to claim 3 is heat treated to separate it into a phase rich in silicon dioxide and a phase rich in boron dioxide and calcium oxide, or by acid treatment, or A water purifier using a porous vitreous body composed of a silicon dioxide skeleton formed by dissolving a phase rich in boron dioxide and calcium oxide by alkali treatment if necessary.
JP6162849A 1994-06-20 1994-06-20 Water purifying apparatus Pending JPH081175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162849A JPH081175A (en) 1994-06-20 1994-06-20 Water purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162849A JPH081175A (en) 1994-06-20 1994-06-20 Water purifying apparatus

Publications (1)

Publication Number Publication Date
JPH081175A true JPH081175A (en) 1996-01-09

Family

ID=15762415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162849A Pending JPH081175A (en) 1994-06-20 1994-06-20 Water purifying apparatus

Country Status (1)

Country Link
JP (1) JPH081175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013553A (en) * 2010-09-23 2016-01-28 タタ グローバル ビバレッジ リミテッド Process for preparation of treated water fortified with micronutrients

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013553A (en) * 2010-09-23 2016-01-28 タタ グローバル ビバレッジ リミテッド Process for preparation of treated water fortified with micronutrients

Similar Documents

Publication Publication Date Title
US6146524A (en) Multi-stage ozone injection water treatment system
WO2007010549A1 (en) A household reverse osmosis based drinking water purifier
WO2020244353A1 (en) Non-electrolytic slightly acidic hypochlorous water generation apparatus, and generation method
US5389254A (en) Water treatment system
CN101987757B (en) Method and system for removing high-concentration ammonia nitrogen from drinking water
Mavrov et al. Treatment of low-contaminated waste water from the food industry to produce water of drinking quality for reuse
JP4132874B2 (en) Mineral water generation and distribution system
JPH081175A (en) Water purifying apparatus
CN1099385C (en) Group type integrated water purification equipment
JPH0351033Y2 (en)
RU2471723C2 (en) Method of obtaining decontaminated with ozone bottled water, and decontaminated bottled water
JP3308183B2 (en) Water purification device and purification method
JPS63123493A (en) Purifying method for water and apparatus therefor
KR20020093663A (en) Reverse osmosis water purifier
JP3370351B2 (en) Water purifier
JP3069019U (en) Activated ordinary water production equipment
RU2281256C1 (en) Method of fine cleaning of water
JP2911779B2 (en) Sterile water purification equipment
US6056275A (en) Device for introducing gas into liquids
CN2491442Y (en) Ozone-biological active carbon water purifier
JPH0592194A (en) Treatment of sewage
JPH10192893A (en) Method and apparatus for central water-purifying and controlling system for water purification
JPH04298289A (en) Ozone water purifying device
RU2060974C1 (en) Drinking water treatment method
JP2004016893A (en) Water purifying method and water purifying apparatus