JPH08116307A - Optical fiber transmission system - Google Patents

Optical fiber transmission system

Info

Publication number
JPH08116307A
JPH08116307A JP6252545A JP25254594A JPH08116307A JP H08116307 A JPH08116307 A JP H08116307A JP 6252545 A JP6252545 A JP 6252545A JP 25254594 A JP25254594 A JP 25254594A JP H08116307 A JPH08116307 A JP H08116307A
Authority
JP
Japan
Prior art keywords
optical fiber
intensity
light
signal light
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6252545A
Other languages
Japanese (ja)
Inventor
Masataka Shirasaki
正孝 白▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6252545A priority Critical patent/JPH08116307A/en
Publication of JPH08116307A publication Critical patent/JPH08116307A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE: To perform the long distance transmission of small waveform distortion by suppressing the influence of the wavelength dispersion and self-phase modulation effect of a transmission line. CONSTITUTION: A single mode optical fiber 2a of negative dispersion between a transmitter and a repeater, and a single mode optical fiber 2b of positive dispersion between the repeaters, and a single mode optical fiber 2c of negative dispersion between the repeater and a receiver, are connected alternately. Assuming the products of each distance and each dispersion value of the optical fibers 2a, 2b and 2c as A, B and C, the optical fibers are connected so as to set the sum of A and C equal to B, and signal light is transmitted in phase modulated light of constant light intensity. At this time, the self-phase modulation effect can be eliminated since the light intensity is constant. Actually, the small waveform dispersion occurs due to alternately appearing positive and negative dispersion, however, positive and negative dispersion areas of the waveform dispersion can be reversed in a primary range by reducing dispersion, and phase change by the self-phase modulation effect can be offset in the primary range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般的に光ファイバ伝送
システムに関し、特に信号波形の歪の小さい長距離光フ
ァイバ伝送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to an optical fiber transmission system, and more particularly to a long-distance optical fiber transmission system in which signal waveform distortion is small.

【0002】[0002]

【従来の技術】長距離のシングルモード光ファイバ伝送
路に変調光を伝搬させると、先ず、光ファイバの波長分
散によって波形の歪が生じ、そのため伝送特性が大きく
劣化する。これを防ぐため、伝送路に零分散ファイバ等
を使用することによりファイバの波長分散値を零にする
方法がある。
2. Description of the Related Art When modulated light is propagated in a long-distance single-mode optical fiber transmission line, first, chromatic dispersion of the optical fiber causes waveform distortion, which greatly deteriorates transmission characteristics. To prevent this, there is a method of making the chromatic dispersion value of the fiber zero by using a zero dispersion fiber or the like in the transmission line.

【0003】しかし、光ファイバ伝送路の波長分散が零
であると、四光子混合による伝送特性の劣化が生じるた
め、これに代わるものとして小さい負の分散を有する光
ファイバとそれを補償する正の分散を有する光ファイバ
を交互に接続し、局所的には分散が零になるのを避けな
がら全体としては分散が零となるようにする方法が知ら
れている。
However, when the chromatic dispersion in the optical fiber transmission line is zero, the transmission characteristics are deteriorated due to four-photon mixing. Therefore, as an alternative, an optical fiber having a small negative dispersion and a positive fiber for compensating for it are used. There is known a method in which optical fibers having dispersion are alternately connected to each other so that the dispersion becomes zero locally while avoiding the dispersion becoming zero locally.

【0004】この方法によって、信号光の光強度が低い
場合には、波長分散による伝送特性の劣化を防ぐことが
できる。しかし、信号光の光強度が低いので、中継器を
多く必要とし、伝送システムがコスト高になるという問
題がある。
By this method, when the light intensity of the signal light is low, it is possible to prevent the deterioration of the transmission characteristics due to wavelength dispersion. However, since the light intensity of the signal light is low, there is a problem that many repeaters are required and the cost of the transmission system becomes high.

【0005】[0005]

【発明が解決しようとする課題】正の分散を有する光フ
ァイバと負の分散を有する光ファイバとを交互に接続し
て伝送路を構成した場合にも、伝送距離が長く、光強度
が十分に低くない場合には、光ファイバ中の自己位相変
調効果によって光スペクトルが拡がり、その結果として
波長分散の影響が拡大され、伝送特性の劣化を起こすこ
とになる。
Even when an optical fiber having a positive dispersion and an optical fiber having a negative dispersion are alternately connected to form a transmission line, the transmission distance is long and the light intensity is sufficiently high. If not so low, the self-phase modulation effect in the optical fiber spreads the optical spectrum, and as a result, the influence of chromatic dispersion is expanded and the transmission characteristics deteriorate.

【0006】この問題を解決して、長距離の信号伝送を
する方法として、光ソリトン伝送と位相共役変換による
歪の相殺がある。しかし、これらはいずれも光ファイバ
伝送路の特性を非常に精密に制御することが必要で、現
在の技術で直ちに対応できるものではない。
As a method of solving this problem and transmitting a signal over a long distance, there are optical soliton transmission and cancellation of distortion by phase conjugate conversion. However, all of these require very precise control of the characteristics of the optical fiber transmission line, and the current technology cannot immediately cope with them.

【0007】本発明はこのような点に鑑みて成されたも
のであり、その目的とするところは、長距離の光ファイ
バ伝送路において、伝送路の波長分散及び自己位相変調
効果の影響を抑制して、伝送特性の劣化の小さい信号の
伝送が可能な光ファイバ伝送システムを提供することで
ある。
The present invention has been made in view of the above circumstances, and an object thereof is to suppress the influence of chromatic dispersion and self-phase modulation effect of a transmission line in a long-distance optical fiber transmission line. Then, it is an object of the present invention to provide an optical fiber transmission system capable of transmitting a signal with little deterioration in transmission characteristics.

【0008】[0008]

【課題を解決するための手段】本発明は、伝送路を構成
するシングルモード光ファイバの両端に送信機と受信機
を接続し、信号光を該光ファイバを介して伝送する光フ
ァイバ伝送システムにおいて、正の分散を有する光ファ
イバと負の分散を有する光ファイバとを全体の分散が零
で、且つ自己位相変調効果が零分散光ファイバで起こる
自己位相変調効果と概略同一となるように接続して伝送
路を構成したことを特徴とする光ファイバ伝送システム
を提供する。
The present invention provides an optical fiber transmission system in which a transmitter and a receiver are connected to both ends of a single mode optical fiber which constitutes a transmission line, and a signal light is transmitted through the optical fiber. , An optical fiber having positive dispersion and an optical fiber having negative dispersion are connected so that the total dispersion is zero and the self-phase modulation effect is approximately the same as the self-phase modulation effect that occurs in the zero-dispersion optical fiber. Provided is an optical fiber transmission system characterized by comprising a transmission line.

【0009】好ましくは、信号光として一定強度の位相
変調光を伝送する。信号光の光強度の変動がないため、
基本的には自己位相変調効果を除去することができる。
この場合にも、長距離伝送の場合には波形歪が現れるの
で、伝送路に透過率制御手段を挿入して、透過後の光強
度を一定にするように制御する。
Preferably, the phase-modulated light having a constant intensity is transmitted as the signal light. Since there is no fluctuation in the light intensity of the signal light,
Basically, the self-phase modulation effect can be eliminated.
Also in this case, since waveform distortion appears in the case of long-distance transmission, transmittance control means is inserted in the transmission line to control the light intensity after transmission to be constant.

【0010】信号光として強度変調光を伝送する場合に
は、位相変調器を伝送路に挿入し、自己位相変調効果に
よる積算位相量と大きさが等しく向きが反対の位相変調
を信号光にかけるように位相変調器を駆動する。
In the case of transmitting intensity-modulated light as signal light, a phase modulator is inserted in the transmission line, and the signal light is subjected to phase modulation whose magnitude is equal and opposite to the integrated phase amount due to the self-phase modulation effect. To drive the phase modulator.

【0011】[0011]

【作用】本発明は、正の分散を有する光ファイバと負の
分散を有する光ファイバとを上述したように接続したの
で、分散は完全に相殺され、且つ自己位相変調効果の影
響を零分散ファイバの自己位相変調効果に近づけること
ができるので、伝送特性の劣化を有効に防止することが
できる。
According to the present invention, since the optical fiber having positive dispersion and the optical fiber having negative dispersion are connected as described above, the dispersion is completely canceled and the influence of the self-phase modulation effect is eliminated. Since it is possible to approach the self-phase modulation effect of, the deterioration of the transmission characteristics can be effectively prevented.

【0012】信号光として一定強度の位相変調光を伝送
する場合には、基本的に自己位相変調効果を除去するこ
とができる。また、長距離伝送の場合には、伝送路に透
過率制御手段を挿入して透過後の光強度が一定となるよ
うに制御することにより、伝送特性の劣化を有効に防止
することができる。
When transmitting the phase-modulated light having a constant intensity as the signal light, the self-phase modulation effect can be basically removed. Further, in the case of long-distance transmission, deterioration of transmission characteristics can be effectively prevented by inserting a transmittance control means into the transmission path and controlling the light intensity after transmission to be constant.

【0013】信号光として強度変調光を伝送する場合に
は、伝送路に位相変調器を挿入し、、自己位相変調効果
による積算位相量と大きさが等しく向きが反対の位相変
調を信号光にかけることにより、自己位相変調効果の影
響を除去することができ、伝送特性の劣化を有効に防止
することができる。
When transmitting intensity-modulated light as signal light, a phase modulator is inserted in the transmission line, and phase modulation is performed on the signal light in the same direction and opposite direction as the integrated phase amount due to the self-phase modulation effect. By applying it, the influence of the self-phase modulation effect can be removed, and the deterioration of the transmission characteristics can be effectively prevented.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明が適用される光ファイバ伝送
路の構成を示している。シングルモード光ファイバ伝送
路2の両端に信号光を送信する送信機4と、この信号光
を受信する受信機6が接続されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows the configuration of an optical fiber transmission line to which the present invention is applied. A transmitter 4 for transmitting signal light and a receiver 6 for receiving the signal light are connected to both ends of the single mode optical fiber transmission line 2.

【0015】そして、複数の中継器8を所定距離ごとに
伝送路2に挿入することにより、光ファイバ伝送システ
ムが構成される。本発明が適用される光ファイバ伝送路
2の距離は、例えば5,000km以上の長距離で、各中
継器の間隔は例えば約100kmである。
Then, an optical fiber transmission system is constructed by inserting a plurality of repeaters 8 into the transmission path 2 at predetermined intervals. The distance of the optical fiber transmission line 2 to which the present invention is applied is, for example, a long distance of 5,000 km or more, and the distance between the repeaters is, for example, about 100 km.

【0016】図2を参照すると、零分散光ファイバで信
号光を伝送したときの1つの中継器間の信号波形図が示
されている。ここで、x=0は中継器間の始まりであ
る。光ファイバ伝送路の分散が常に零の場合、光ファイ
バの伝送損失によるx=0から伝送距離xまでの減衰を
T(x) とすると、時刻tにおける光の強度I(x,t) は伝
送距離xに応じてT(x) I(0,t) のように変わり、光の
位相φ(x,t) は、x=Lの点においてx=0の初期に比
べて自己位相変調効果によって
Referring to FIG. 2, there is shown a signal waveform diagram between one repeater when the signal light is transmitted through the zero dispersion optical fiber. Here, x = 0 is the start between repeaters. When the dispersion of the optical fiber transmission line is always zero, and the attenuation from x = 0 to the transmission distance x due to the transmission loss of the optical fiber is T (x), the light intensity I (x, t) at time t is transmitted. It changes like T (x) I (0, t) according to the distance x, and the phase of light φ (x, t) is at the point of x = L by the self-phase modulation effect compared to the initial stage of x = 0.

【0017】[0017]

【数1】 [Equation 1]

【0018】だけ変化する。但しKは自己位相変調効果
の係数である。一方、 光ファイバ伝送路に小さい分散
がD(x) として存在するとき、距離xでの波形I(x,t)
はI(0,t) に比べて歪むが、自己位相変調効果が小さい
としてこれを無視すると、その歪みは信号光が受けた分
散の量
Only changes. However, K is a coefficient of the self-phase modulation effect. On the other hand, when there is a small dispersion D (x) in the optical fiber transmission line, the waveform I (x, t) at the distance x
Is distorted compared to I (0, t), but if this is ignored because the self-phase modulation effect is small, the distortion is the amount of dispersion received by the signal light.

【0019】[0019]

【数2】 [Equation 2]

【0020】により決まる。この歪が小さいと考え、歪
を分散の一次の近似で表すと、歪は
It is determined by If we think that this distortion is small and express it with a first-order approximation of variance, the distortion is

【0021】[0021]

【数3】 (Equation 3)

【0022】となる。ここで、C(t) は比例係数であ
る。従って、xにおける光強度は、
It becomes Here, C (t) is a proportional coefficient. Therefore, the light intensity at x is

【0023】[0023]

【数4】 [Equation 4]

【0024】である。この光強度のため、自己位相変調
効果により信号光の位相φ(x,t) はxにおいてKI(x,
t) だけ変化する。従って、位相変化は加算されてx=
Lの点において、
It is Due to this light intensity, the phase φ (x, t) of the signal light is KI (x,
t) changes. Therefore, the phase changes are added and x =
At the point of L,

【0025】[0025]

【数5】 (Equation 5)

【0026】となり、分散が常に零のときの値And the value when the variance is always zero

【0027】[0027]

【数6】 (Equation 6)

【0028】に比べて、Compared with

【0029】[0029]

【数7】 (Equation 7)

【0030】の位相ずれとなる。従って、伝送路として
There is a phase shift of. Therefore, as a transmission line

【0031】[0031]

【数8】 (Equation 8)

【0032】を小さく押さえ、次の中継器でこの値が零
となるように設計する。このように、設計することによ
り、自己位相変調効果による位相ずれを零分散ファイバ
を採用した場合と同一とすることができ、伝送特性の劣
化を防止することができる。
It is designed so that this value becomes zero in the next repeater while keeping the value of [S] small. By designing in this way, the phase shift due to the self-phase modulation effect can be made the same as in the case of using the zero-dispersion fiber, and the deterioration of the transmission characteristics can be prevented.

【0033】次に図3を参照して、このような伝送路の
例を説明する。本発明では、各中継器間、すなわち図1
の中継器8と中継器8の間、或いは送受信機4,6と中
継器8の間に図3に示すように、例えば負の分散を有す
るシングルモード光ファイバ2a、正の分散を有するシ
ングルモード光ファイバ2b及び負の分散を有するシン
グルモード光ファイバ2cを交互に接続する。
Next, an example of such a transmission line will be described with reference to FIG. In the present invention, between the repeaters, that is, FIG.
3 between the repeaters 8 or between the transmitters / receivers 4, 6 and the repeater 8, as shown in FIG. 3, for example, a single mode optical fiber 2a having a negative dispersion, a single mode having a positive dispersion. The optical fiber 2b and the single mode optical fiber 2c having negative dispersion are alternately connected.

【0034】光ファイバ2aの距離と分散値の積をA、
光ファイバ2bの距離と分散値の積をB、光ファイバ2
cの距離と分散値の積をCとすると、A+C=Bの関係
を満たすように各光ファイバを接続する。
The product of the distance and the dispersion value of the optical fiber 2a is A,
The product of the distance and the dispersion value of the optical fiber 2b is B, and the optical fiber 2
When the product of the distance of c and the dispersion value is C, the optical fibers are connected so as to satisfy the relationship of A + C = B.

【0035】図3において、光ファイバ伝送路の始点を
a、光ファイバ2aと光ファイバ2bとの接続点をb、
光ファイバ2bと光ファイバ2cとの接続点をc、光フ
ァイバ伝送路の終点をdとすると、分散の積算量および
光強度(即ちx=0からの光透過率)と伝送距離との関
係は図4に示すようになる。図4において、a〜dは図
3のa〜dに対応している。
In FIG. 3, the starting point of the optical fiber transmission line is a, the connecting point of the optical fibers 2a and 2b is b,
Assuming that the connection point between the optical fibers 2b and 2c is c and the end point of the optical fiber transmission line is d, the relationship between the integrated amount of dispersion and the light intensity (that is, the light transmittance from x = 0) and the transmission distance is As shown in FIG. 4, a to d correspond to a to d in FIG.

【0036】図3に示した光ファイバ伝送路において、
光ファイバの損失を0.21dB/kmとすると、負の
分散値−0.5ps/nm・kmを有する長さ32km
の光ファイバ2aと、正の分散値16.8ps/nm・
kmを有する長さ3kmの光ファイバ2bと、負の分散
値−0.5ps/nm・kmを有する長さ69kmの光
ファイバ2cとを接続したとき、上述した式(8)を零
にすることができ、自己位相変調効果を零分散ファイバ
を採用した場合と同一とすることができた。
In the optical fiber transmission line shown in FIG.
Assuming that the loss of the optical fiber is 0.21 dB / km, the length is 32 km having a negative dispersion value of −0.5 ps / nm · km.
Optical fiber 2a with a positive dispersion value of 16.8 ps / nm
When the optical fiber 2b having a length of 3 km having a km of 3 km and the optical fiber 2c having a length of 69 km having a negative dispersion value of −0.5 ps / nm · km are connected, the above equation (8) is set to zero. Therefore, the self-phase modulation effect can be made the same as when the zero dispersion fiber is adopted.

【0037】好ましくは、伝送する信号光として光強度
が一定の位相変調光を使用する。光強度が一定のため、
基本的には自己位相変調効果を除去することができる。
実際には、交互に存在する正と負の分散によって小さい
波形歪が起こるが、分散の大きさを小さいとすると、こ
の波形歪は一次の範囲で正の分散領域と負の分散領域で
逆となり、一次の範囲では自己位相変調効果による位相
変化が相殺されることになる。
Preferably, the signal light to be transmitted is phase-modulated light having a constant light intensity. Since the light intensity is constant,
Basically, the self-phase modulation effect can be eliminated.
In fact, alternating positive and negative dispersion causes a small waveform distortion, but if the dispersion is small, this distortion becomes opposite in the positive dispersion region and the negative dispersion region in the first-order range. , In the first order range, the phase change due to the self-phase modulation effect is canceled.

【0038】しかし、光強度が一定の位相変調光を信号
光とした場合にも、実際には自己位相変調効果と結合し
た高次の効果のため及びファイバの分散値の設計値から
のずれのために波形歪が少しずつ増大し、長距離伝送を
する際には障害となる。
However, even when the phase-modulated light having a constant light intensity is used as the signal light, in reality, due to the higher-order effect combined with the self-phase modulation effect and the deviation of the dispersion value of the fiber from the design value. Therefore, the waveform distortion increases little by little, which becomes an obstacle in long-distance transmission.

【0039】そこで、一定距離進んで波形歪が現れた段
階で、その歪を除去するように、例えば光強度変調器等
の透過率制御手段を通す。光強度変調器は図1に示した
中継器8中に設けることができる。
Therefore, when waveform distortion appears after a certain distance, a transmittance control means such as a light intensity modulator is passed through so as to remove the distortion. The light intensity modulator can be provided in the repeater 8 shown in FIG.

【0040】図5を参照して、光強度変調器の駆動方法
を説明する。光ファイバ伝送路2中にビームスプリッタ
10と、光強度変調器12を挿入する。ビームスプリッ
タ10で分岐した信号光の強度を光検出器14で測定
し、電気信号に変換する。
A method of driving the light intensity modulator will be described with reference to FIG. A beam splitter 10 and a light intensity modulator 12 are inserted in the optical fiber transmission line 2. The intensity of the signal light split by the beam splitter 10 is measured by the photodetector 14 and converted into an electric signal.

【0041】この電気信号をコンデンサ等のハイパスフ
ィルタ16を通すことにより低周波成分を除去し、この
信号に基づき光強度変調器12を駆動する。即ち、光強
度の強い部分では光強度変調器12の透過率を低くする
ように駆動して、光強度変調器12透過後の信号光の強
度が概略一定となるように駆動する。これにより、強度
歪(波形歪)を補正することができ、自己位相変調効果
が累積して影響を及ぼすのを防ぐことができる。
A low frequency component is removed by passing this electric signal through a high-pass filter 16 such as a capacitor, and the light intensity modulator 12 is driven based on this signal. That is, in the portion where the light intensity is strong, the light intensity modulator 12 is driven so as to have a low transmittance, and the signal light after passing through the light intensity modulator 12 is driven so that the intensity thereof is substantially constant. This makes it possible to correct intensity distortion (waveform distortion) and prevent self-phase modulation effects from accumulating and affecting.

【0042】この場合、光強度歪を補正する前に少量の
歪があるということは、その強度歪に応じて既に位相が
変調されていることを示唆しているので、歪補正後の伝
送路でその位相変調を相殺するために強度歪の補正を過
剰にするのが望ましい場合もある。
In this case, the fact that there is a small amount of distortion before correcting the optical intensity distortion implies that the phase has already been modulated in accordance with the intensity distortion, so the transmission line after distortion correction is In some cases, it may be desirable to overcorrect the intensity distortion in order to cancel the phase modulation.

【0043】即ち、入力強度と出力強度が負の相関を持
つように光強度変調器12を駆動する。換言すれば、あ
る標準強度に対して入力強度が高い場合には出力強度が
低くなり、入力強度が低い場合には出力強度が高くなる
ように光強度変調器12を駆動する。
That is, the light intensity modulator 12 is driven so that the input intensity and the output intensity have a negative correlation. In other words, the light intensity modulator 12 is driven so that the output intensity is low when the input intensity is high with respect to a certain standard intensity, and the output intensity is high when the input intensity is low.

【0044】尚、自己位相変調効果を考慮しない線型伝
送路の場合には、伝送路全体の分散値のみを零にすれば
よかったが、自己位相変調効果は非線形な現象であるの
で、伝送中の各所での歪を小さく押さえることが必要と
なる。
In the case of a linear transmission line that does not consider the self-phase modulation effect, it suffices to set only the dispersion value of the entire transmission line to zero, but the self-phase modulation effect is a non-linear phenomenon, so It is necessary to keep the distortion at each place small.

【0045】各所での歪量は歪が零の点からその場所ま
での分散値の積分に比例し、その地点での自己位相変調
効果による位相変化は、その歪量とその地点での平均光
強度と自己位相変調の係数の積である自己位相変調効果
との積となる。
The amount of distortion at each place is proportional to the integral of the dispersion value from the point where the strain is zero to that place, and the phase change due to the self-phase modulation effect at that point is the amount of distortion and the average light at that point. It is the product of the intensity and the self-phase modulation effect, which is the product of the self-phase modulation coefficient.

【0046】そこで、位相変化を歪が零の地点から積分
したものがその地点での変調された位相となるので、そ
の位相変化が大きくならないように、零を中心とした変
動となるようにする。光ファイバ伝送路をこのように構
成することにより、波形歪の小さい信号光の長距離伝送
が可能となる。
Therefore, the integrated phase change from the point where the distortion is zero becomes the modulated phase at that point, so that the phase change does not become large, so that the change is centered around zero. . By configuring the optical fiber transmission line in this way, it becomes possible to transmit the signal light with a small waveform distortion over a long distance.

【0047】次に図6を参照して、位相変調光の1ビッ
ト遅延復調方法について説明する。信号光は位相変調器
で位相0とπの間で変調されているものとする。伝送路
2を伝搬してきた信号光をハーフミラー18で分岐し、
分岐光を迂回伝送路19を伝搬させて1ビット遅延させ
てからハーフミラー20に入力する。
Next, a 1-bit delay demodulation method of phase-modulated light will be described with reference to FIG. It is assumed that the signal light is modulated by the phase modulator between phases 0 and π. The signal light propagating through the transmission path 2 is split by the half mirror 18,
The branched light is propagated through the detour transmission path 19 and delayed by 1 bit before being input to the half mirror 20.

【0048】直進光と分岐光との位相差がπのときには
ハーフミラー20で干渉して光が全て下方に進み光検出
器24で検出される。一方、直進光と分岐光との位相差
が無い場合には、直進光はハーフミラー20を透過し分
岐光はハーフミラー20で反射されて、全ての光が光検
出器22で検出される。
When the phase difference between the straight light and the branched light is π, the half mirror 20 interferes with each other and all the light travels downward and is detected by the photodetector 24. On the other hand, when there is no phase difference between the straight traveling light and the branched light, the straight traveling light passes through the half mirror 20, the branched light is reflected by the half mirror 20, and all the light is detected by the photodetector 22.

【0049】よって、光検出器22の出力から光検出器
24の出力を減算器26で減算することにより、減算器
26からは直進光と分岐光との位相差に応じて信号Iま
たは−Iが出力され、信号光を復調することができる。
Therefore, by subtracting the output of the photodetector 24 from the output of the photodetector 22 by the subtractor 26, the signal I or -I is output from the subtractor 26 according to the phase difference between the straight light and the branched light. Is output, and the signal light can be demodulated.

【0050】代案としては、1ビットに相当する光路差
を持ったマッハツェンダ型干渉計により、位相変調光を
復調することができる。次に図3の構成を有する光ファ
イバ伝送路に、信号光として強度変調光を伝搬させた場
合について説明する。この場合には、伝送路を伝搬する
信号光は強度変調光であるので、受信側では伝送路の自
己位相変調効果により光パルス内で大きな位相変化が生
じることになる。
As an alternative, the phase modulated light can be demodulated by a Mach-Zehnder interferometer having an optical path difference corresponding to 1 bit. Next, a case where intensity-modulated light as signal light is propagated through the optical fiber transmission line having the configuration of FIG. 3 will be described. In this case, since the signal light propagating through the transmission line is intensity modulated light, a large phase change occurs in the optical pulse on the receiving side due to the self-phase modulation effect of the transmission line.

【0051】よって、図7に示すように伝送路2にビー
ムスプリッタ10と、位相変調器28を挿入し、ビーム
スプリッタ10で分岐した光を光検出器14で検出して
電気信号に変換する。
Therefore, as shown in FIG. 7, the beam splitter 10 and the phase modulator 28 are inserted in the transmission line 2, and the light branched by the beam splitter 10 is detected by the photodetector 14 and converted into an electric signal.

【0052】この信号を位相変調器28に入力して、自
己位相変調効果の積算位相量と大きさが等しく向きが反
対の位相変調を信号光にかけるように位相変調器28を
駆動する。
This signal is input to the phase modulator 28, and the phase modulator 28 is driven so that the signal light is subjected to phase modulation whose magnitude is equal to and the opposite direction to the integrated phase amount of the self-phase modulation effect.

【0053】即ち、信号光の強度が大きくて位相が相対
的に遅れた場合には、位相を進めるように位相変調器2
8を駆動し、信号光の強度が小さくて位相が相対的に進
んだ場合には、位相を遅らせるように位相変調器28を
駆動する。信号光にこのような位相変調をかけることに
より、強度変調光の位相変化を相殺することができる。
That is, when the intensity of the signal light is large and the phase is relatively delayed, the phase modulator 2 advances the phase.
8 is driven, and when the intensity of the signal light is low and the phase advances relatively, the phase modulator 28 is driven so as to delay the phase. By applying such phase modulation to the signal light, it is possible to cancel the phase change of the intensity modulated light.

【0054】[0054]

【発明の効果】本発明によると、長距離の光ファイバ伝
送路において、伝送路の波長分散及び自己位相変調効果
の影響を抑制して、波形歪の小さい長距離伝送が可能に
なるという効果を奏する。
According to the present invention, in a long-distance optical fiber transmission line, the effects of chromatic dispersion and self-phase modulation effect of the transmission line can be suppressed and long-distance transmission with small waveform distortion can be achieved. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】光ファイバ伝送路の構成を示す図である。FIG. 1 is a diagram showing a configuration of an optical fiber transmission line.

【図2】零分散ファイバでの信号波形図である。FIG. 2 is a signal waveform diagram in a zero dispersion fiber.

【図3】本発明の原理説明図である。FIG. 3 is a diagram illustrating the principle of the present invention.

【図4】分散の積算量と伝送距離との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between an integrated amount of dispersion and a transmission distance.

【図5】透過率制御手段の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of a transmittance control unit.

【図6】1ビット遅延復調器の概略構成図である。FIG. 6 is a schematic configuration diagram of a 1-bit delay demodulator.

【図7】位相補償手段の概略構成図である。FIG. 7 is a schematic configuration diagram of phase compensation means.

【符号の説明】[Explanation of symbols]

2 光ファイバ伝送路 4 送信機 6 受信機 8 中継器 10 ビームスプリッタ 12 光強度変調器 14,22,24 光検出器 28 位相変調器 2 optical fiber transmission path 4 transmitter 6 receiver 8 repeater 10 beam splitter 12 light intensity modulator 14, 22, 24 photodetector 28 phase modulator

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 伝送路を構成するシングルモード光ファ
イバの両端に送信機と受信機を接続し、信号光を該光フ
ァイバを介して伝送する光ファイバ伝送システムにおい
て、 該光ファイバを各中継器間等の複数の区間に分割した各
々の区間について、正の分散を有する光ファイバと負の
分散を有する光ファイバとを、全体の分散が零で、且つ
自己位相変調効果が該区間全体が零分散光ファイバより
成ると仮定した場合に起こる自己位相変調効果と概略同
一となるように接続して伝送路を構成したことを特徴と
する光ファイバ伝送システム。
1. An optical fiber transmission system in which a transmitter and a receiver are connected to both ends of a single-mode optical fiber forming a transmission line, and a signal light is transmitted through the optical fiber, wherein each optical fiber is a repeater. For each section divided into a plurality of sections, such as an interval, an optical fiber having a positive dispersion and an optical fiber having a negative dispersion have an overall dispersion of zero and an overall self-phase modulation effect of zero. An optical fiber transmission system characterized in that a transmission line is configured so that the transmission line is configured to be approximately the same as the self-phase modulation effect that occurs when it is assumed to be composed of a distributed optical fiber.
【請求項2】 該区間の始点から光の進行方向に向かっ
てある地点まで分散値を積分した値と、始点からその地
点までの光透過率との積が、零を中心として変化するよ
うにし、この積を始点から該区間の終点まで積分したも
のが零となるように、ファイバの分散を分布させたこと
を特徴とする請求項1記載の光ファイバ伝送システム。
2. The product of a value obtained by integrating the dispersion value from the start point of the section to a certain point in the traveling direction of light and the light transmittance from the start point to the point changes around zero. 2. The optical fiber transmission system according to claim 1, wherein the dispersion of the fibers is distributed so that the product of the product from the start point to the end point of the section is zero.
【請求項3】 前記信号光は位相変調光又は周波数変調
光であることを特徴とする請求項1又は2記載の光ファ
イバ伝送システム。
3. The optical fiber transmission system according to claim 1, wherein the signal light is phase modulated light or frequency modulated light.
【請求項4】 前記伝送路の各区間の始点に透過後の光
強度を一定に保つ透過率制御手段を設けたことを特徴と
する請求項3記載の光ファイバ伝送システム。
4. The optical fiber transmission system according to claim 3, wherein a transmission rate control means for keeping the light intensity after transmission constant is provided at the starting point of each section of the transmission line.
【請求項5】 前記透過率制御手段は信号光を分岐する
分岐手段と、分岐された信号光の強度を測定する強度測
定手段と、測定された強度に基づいて透過率を制御する
光強度変調器から構成されることを特徴とする請求項4
記載の光ファイバ伝送システム。
5. The transmittance control means comprises a branching means for branching the signal light, an intensity measuring means for measuring the intensity of the branched signal light, and a light intensity modulation for controlling the transmittance based on the measured intensity. 5. It is comprised from the container.
The optical fiber transmission system described.
【請求項6】 前記光強度変調器を、入力強度と出力強
度が負の相関を持つように、測定された強度に基づいて
制御することを特徴とする請求項5記載の光ファイバ伝
送システム。
6. The optical fiber transmission system according to claim 5, wherein the optical intensity modulator is controlled based on the measured intensity so that the input intensity and the output intensity have a negative correlation.
【請求項7】 前記信号光は強度変調光であり、前記伝
送路に位相変調器を挿入し、信号光の強度に応じて自己
位相変調効果の積算位相量と大きさが等しく向きが反対
の位相変調を信号光にかけるように、前記位相変調器を
駆動することを特徴とする請求項1又は2記載の光ファ
イバ伝送システム。
7. The signal light is intensity-modulated light, a phase modulator is inserted in the transmission line, and the integrated phase amount of the self-phase modulation effect is equal to the magnitude of the self-phase modulation effect according to the intensity of the signal light. The optical fiber transmission system according to claim 1 or 2, wherein the phase modulator is driven so as to apply phase modulation to the signal light.
【請求項8】 前記伝送路に挿入された信号光の一部を
分岐する分岐手段と、該分岐手段で分岐された信号光の
強度を測定する測定手段とを更に具備したことを特徴と
する請求項7記載の光ファイバ伝送システム。
8. The apparatus further comprises: a branching unit for branching a part of the signal light inserted into the transmission line, and a measuring unit for measuring the intensity of the signal light branched by the branching unit. The optical fiber transmission system according to claim 7.
【請求項9】 伝送路を構成するシングルモード光ファ
イバの両端に送信機と受信機を接続し、強度変調信号光
を該光ファイバを介して伝送する光ファイバ伝送システ
ムにおいて、 前記伝送路に信号光の一部を分岐する分岐手段と、位相
変調器を挿入し、該分岐手段で分岐された信号光の強度
を測定する測定手段を設け、該測定手段で測定された信
号光の強度に基づいて、自己位相変調効果の積算位相量
と大きさが等しく向きが反対の位相変調を伝送路を伝搬
する信号光にかけるように、前記位相変調器を駆動する
ことを特徴とする光ファイバ伝送システム。
9. An optical fiber transmission system in which a transmitter and a receiver are connected to both ends of a single-mode optical fiber forming a transmission line, and an intensity-modulated signal light is transmitted through the optical fiber. Based on the intensity of the signal light measured by the measuring means, a branching means for branching a part of the light and a phase modulator are inserted, and a measuring means for measuring the intensity of the signal light branched by the branching means is provided. The optical fiber transmission system is characterized in that the phase modulator is driven so as to apply the phase modulation whose magnitude is equal to and the opposite direction to the integrated phase amount of the self-phase modulation effect to the signal light propagating through the transmission line. .
【請求項10】 伝送路を構成するシングルモード光フ
ァイバの両端に送信機と受信機を接続し、位相変調信号
光を該光ファイバを介して伝送する光ファイバ伝送シス
テムにおいて、 前記伝送路に信号光の一部を分岐する分岐手段と、強度
変調器を挿入し、該分岐手段で分岐された信号光の強度
を測定する測定手段を設け、該測定手段で測定された信
号光の強度に基づいて、変調器の出力強度を一定にする
ように前記強度変調器を駆動することを特徴とする光フ
ァイバ伝送システム。
10. An optical fiber transmission system in which a transmitter and a receiver are connected to both ends of a single-mode optical fiber forming a transmission line, and phase-modulated signal light is transmitted through the optical fiber. A branching means for branching a part of the light and an intensity modulator are inserted, and a measuring means for measuring the intensity of the signal light branched by the branching means is provided, and based on the intensity of the signal light measured by the measuring means. The optical fiber transmission system is characterized in that the intensity modulator is driven so that the output intensity of the modulator is constant.
JP6252545A 1994-10-18 1994-10-18 Optical fiber transmission system Withdrawn JPH08116307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252545A JPH08116307A (en) 1994-10-18 1994-10-18 Optical fiber transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252545A JPH08116307A (en) 1994-10-18 1994-10-18 Optical fiber transmission system

Publications (1)

Publication Number Publication Date
JPH08116307A true JPH08116307A (en) 1996-05-07

Family

ID=17238870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252545A Withdrawn JPH08116307A (en) 1994-10-18 1994-10-18 Optical fiber transmission system

Country Status (1)

Country Link
JP (1) JPH08116307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985285B2 (en) 2002-03-12 2006-01-10 Fujitsu Limited Optical transmission system using Raman amplification
WO2014141973A1 (en) * 2013-03-13 2014-09-18 株式会社ニコン Pulse laser device
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985285B2 (en) 2002-03-12 2006-01-10 Fujitsu Limited Optical transmission system using Raman amplification
WO2014141973A1 (en) * 2013-03-13 2014-09-18 株式会社ニコン Pulse laser device
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11303091B2 (en) 2016-05-26 2022-04-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11757247B2 (en) 2016-05-26 2023-09-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device

Similar Documents

Publication Publication Date Title
JP3522044B2 (en) Optical transmission system
US5778128A (en) Symmetric, dispersion-managed fiber optic cable and system
US5373382A (en) System of long-distance digital transmission by optical fiber with compensation for distortions at source of transmission
JP2711200B2 (en) Optical communication link and optical signal processing method for correcting nonlinear effects
US8131157B2 (en) Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
EP0703680A2 (en) Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
US20020114040A1 (en) Optical communication system using optical phase conjugation to suppress waveform distortion caused by chromatic dispersion and optical kerr effect
EP1443689A2 (en) Minimizing dispersion in optical-fiber transmission lines
EP1378789A2 (en) Method and device for generating a spectrally broadened optical signal
EP2403168A1 (en) Communication transmission system with optically aided digital signal processing dispersion compensation
JP3886147B2 (en) Dispersion compensation
JP2006106743A (en) Duobinary optical transmitter tolerant to chromatic dispersion
US20060067700A1 (en) Wavelength division multiplexing optical transmission system and wavelength division multiplexing optical transmission method
JP2000022640A (en) Optical transmitter and optical transmission system
US7187868B2 (en) Wavelength division multiplexing optical transmission system using a spectral inversion device
JPH08116307A (en) Optical fiber transmission system
JP3262444B2 (en) Automatic equalizer
JPH08125605A (en) Optical signal transmitter and optical communication system using it
JPH04191709A (en) Optical transmission method and its system
JP3250586B2 (en) Chromatic dispersion measurement device
JPH0758699A (en) Waveform shaping device and optical relay transmission system using the waveform shaping device
JPH09275375A (en) Optical communication equipment
JPH08237222A (en) Optical transmission system
JP3497598B2 (en) Optical fiber transmission line
JPH04299622A (en) Dispersion equalizing optical transmission system and dispersion equalization optical repeater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115