JPH04191709A - Optical transmission method and its system - Google Patents

Optical transmission method and its system

Info

Publication number
JPH04191709A
JPH04191709A JP2320770A JP32077090A JPH04191709A JP H04191709 A JPH04191709 A JP H04191709A JP 2320770 A JP2320770 A JP 2320770A JP 32077090 A JP32077090 A JP 32077090A JP H04191709 A JPH04191709 A JP H04191709A
Authority
JP
Japan
Prior art keywords
optical
optical transmission
phase conjugate
wavelength
conjugate element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2320770A
Other languages
Japanese (ja)
Inventor
Masataka Shirasaki
白崎 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2320770A priority Critical patent/JPH04191709A/en
Publication of JPH04191709A publication Critical patent/JPH04191709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make a transmission speed high by regulating position of a phase conjugate element to a position where wavelength dispersion arisen at the upstream side of the phase conjugate element and wavelength dispersion arisen at the downstream side of the phase conjugate element come to be equal. CONSTITUTION:As a modulation method in an optical transmission device 2, for example, it is possible to adopt a strength modulation method. In this case, even when direct modulation of a semiconductor laser which is easy to cause wavelength charping is carried out, it is possible to carry out optical transmission without being influenced by wavelength dispersion. As an optical transmission passage 2, a single mode optical fiber of a quartz group with which propagation loss of light becomes minimum at a wavelength 1.55mum can be used. In this case, it is possible to carry out long distance transmission by way of restraining the propagation loss small by setting the wavelength of an output light from the optical transmission device 2 at 1.55mum band.

Description

【発明の詳細な説明】 概要 光伝送方法及びシステムに関し、 波長分散の悪影響が生じにくい光伝送方法及びシステム
の提供を目的とし、 方法にあっては、光伝送路の波長分散が全波長分散の2
分の1に相当する位置に位相共役素子を設)す、上記光
伝送路により光信号を伝送するようにして構成する。
[Detailed Description of the Invention] Summary An object of the present invention is to provide an optical transmission method and system in which the chromatic dispersion of the optical transmission path is less than the total chromatic dispersion. 2
A phase conjugate element is provided at a position corresponding to 1/2 of the optical transmission path, and an optical signal is transmitted through the optical transmission path.

産業上の利用分野 本発明は光伝送方法及びシステムに関する。Industrial applications The present invention relates to an optical transmission method and system.

光伝送路として一般的に使用される光ファイバは、伝送
光の波長の拡がりに応じた大きさの波長分散を生じ、こ
れにより、受信側における波形劣化等の悪影響が表れる
。波長分散の悪影響を抑えるためには、送信側において
単一に近い波長で発振する光源を用いるか、あるいは、
当該波長で波長分散が零になるような光ファイバを光伝
送路として用いることが要求されるが、これらの実現に
は困難性を伴う。このため、波長分散の悪影響が生じに
くい光伝送方法又はシステムが要望されている。
Optical fibers commonly used as optical transmission lines produce chromatic dispersion of a magnitude corresponding to the spread of the wavelength of transmitted light, which causes adverse effects such as waveform deterioration on the receiving side. In order to suppress the negative effects of chromatic dispersion, use a light source that oscillates at a nearly single wavelength on the transmitting side, or
Although it is required to use an optical fiber as an optical transmission line in which chromatic dispersion becomes zero at the relevant wavelength, it is difficult to realize this. Therefore, there is a need for an optical transmission method or system in which the adverse effects of wavelength dispersion are less likely to occur.

従来の技術及び発明が解決しようとする課題経済的な光
伝送システムには、伝送速度が高く、しかも伝送距離が
長いことが要求される。現在実用化されている一般的な
石英系のシングルモード光ファイバは、波長1,3μm
で波長分散が零となるが、光の伝搬損失が最小となる波
長155μmでは約17ps/nm  −kmの波長分
散を生ずる。
Problems to be Solved by the Prior Art and the Invention Economical optical transmission systems are required to have high transmission speeds and long transmission distances. The typical silica-based single mode optical fiber currently in practical use has a wavelength of 1.3 μm.
However, at a wavelength of 155 μm, where the optical propagation loss is minimum, a chromatic dispersion of about 17 ps/nm-km occurs.

この光ファイバを用いて10Gb/sて1100kの伝
送を行うと、少なくとも1oops程度の群遅延が生じ
、伝送は事実上不可能になる。これを解決するために、
波長分散が零になる波長を1.55μmに合わせた分散
シフトファイバを用し)ることが提案されているが、こ
の場合、光源の波長と分散が零になる波長とを精度良く
合わせなければ一二ろないという困難が生じると共に、
現在広範囲に敷設されている一般的な光ファイバが使用
てき一ン、)と−)う産業経済上の多大−;る損失が生
じる。さろに、変調方法を最適化する等により変調光の
スペクトルの拡がりをできるだけ抑えて、波長分散の悪
影響を最小限にしようとする試みにおし1ては、変調器
O駆動電圧が高く実用性に乏しい等の問題がある。
When transmitting 1100k at 10 Gb/s using this optical fiber, a group delay of at least 1 oops occurs, making transmission virtually impossible. To solve this,
It has been proposed to use a dispersion-shifted fiber whose wavelength at which chromatic dispersion becomes zero is set to 1.55 μm, but in this case, the wavelength of the light source and the wavelength at which dispersion becomes zero must be precisely matched. Along with the difficulty of not having one or two people,
The use of conventional optical fibers, which are currently widely installed, results in considerable industrial and economic losses. Furthermore, in an attempt to minimize the negative effects of chromatic dispersion by optimizing the modulation method, etc. by suppressing the spread of the spectrum of modulated light as much as possible, the modulator O drive voltage is high enough to be practical. There are problems such as a lack of

本発明はこのような技術的課題に鑑みて創作されたしの
であり、さほどの困難性を伴うことなしに波長分散の悪
影響が生じに<−)光伝送方法及びシステムを提供する
ことを目的としている。
The present invention was created in view of such technical problems, and aims to provide an optical transmission method and system that can overcome the adverse effects of chromatic dispersion without any great difficulty. There is.

課題を解決するための手段 本発明の光伝送方法は、光伝送路の波長分散が全波長分
散の2分の1に相当する位置に位相共役素子を設け、上
記光伝送路により光信号を伝送するようにしたものであ
る。
Means for Solving the Problems The optical transmission method of the present invention provides a phase conjugate element at a position where the wavelength dispersion of the optical transmission line corresponds to one half of the total wavelength dispersion, and transmits an optical signal through the optical transmission line. It was designed to do so.

本発明の光伝送システムは、そのブロック図を第1図に
示すように、光信号を送出する光送信装置1と、該光信
号を伝送する光伝送路2と、光伝送路2の波長分散が全
波長分散の2分の1に相当する位置に設けられた位相共
役素子3と、光伝送路2により伝送された光信号を受信
する光受信装置4とを備えて構成される。
As the block diagram of the optical transmission system of the present invention is shown in FIG. The optical receiver 4 includes a phase conjugate element 3 provided at a position corresponding to one-half of the total chromatic dispersion, and an optical receiver 4 that receives an optical signal transmitted through an optical transmission line 2.

作   用 本発明においては、光伝送路の途中に位相共役素子を設
け、この位相共役素子の位置を、位相共役素子の上流側
において生じる波長分散と位相共役素子の下流側におい
て生じる波長分散とが等しくなるような位置に規制して
いるので、受信側で受信する受信光信号の電界は、波長
分散が生じているにもかかわらず、送信側において送信
する送信光信号の電界の複素共役となる。従って、光信
号の強度の時間変化はそのまま保存され、強度変調/直
接検波方式が採用されている場合には、送信光信号と受
信光信号が複素共役になっていることを全く考慮するこ
となく、波長分散の悪影響を受けずに光伝送を実施する
ことができる。また、光の電界の振幅、周波数、位相等
に変調をかけるコヒーレント光伝送方式等の方式が採用
されている場合でも、複素共役になっていることを考慮
しさえすれば、波長分散の悪影響を受けずに光伝送を実
施することができる。
In the present invention, a phase conjugate element is provided in the middle of an optical transmission path, and the position of this phase conjugate element is determined so that wavelength dispersion occurring upstream of the phase conjugate element and wavelength dispersion occurring downstream of the phase conjugate element are different from each other. Since the positions are regulated to be equal, the electric field of the received optical signal received on the receiving side becomes the complex conjugate of the electric field of the transmitted optical signal transmitted on the transmitting side, despite the chromatic dispersion. . Therefore, the temporal change in the intensity of the optical signal is preserved as is, and when the intensity modulation/direct detection method is adopted, there is no consideration at all that the transmitted optical signal and the received optical signal are complex conjugates. , optical transmission can be carried out without being adversely affected by wavelength dispersion. Furthermore, even if a method such as a coherent optical transmission method that modulates the amplitude, frequency, phase, etc. of the electric field of light is adopted, the negative effects of chromatic dispersion can be avoided as long as the complex conjugate is taken into consideration. Optical transmission can be carried out without receiving any signal.

実  施  例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.

第1図に示されたシステムを実施する場合、光送信装置
lにおける変調方式としては、例えば強度変調方式を採
用する二とができる。この場合、波長チャーピンクが生
じ易い半導体レーザの直接変調を行ったとしても、波長
分散の影響を受けることなく光伝送を行うことができる
。コヒーレント光伝送システムを構築する場合には、変
調方式としては、ASK、FSK (例えばCPFSK
)。
When implementing the system shown in FIG. 1, the modulation method in the optical transmitter l can be, for example, an intensity modulation method. In this case, even if a semiconductor laser, which is prone to wavelength chirping, is directly modulated, optical transmission can be performed without being affected by wavelength dispersion. When constructing a coherent optical transmission system, modulation methods such as ASK, FSK (for example, CPFSK
).

PSK (例えばDPSK)等を採用可能である。PSK (for example, DPSK) etc. can be adopted.

伝送情報はデジタル信号に限定されず、アナログ信号で
もよい。
Transmission information is not limited to digital signals, but may also be analog signals.

光伝送路2としては、波長1,55μmで光の伝搬損失
が最小になる石英系のシングルモード光ファイバを用い
ることができる。この場合、光送信装置1からの出力光
の波長を1.55μm帯に設定しておくことによって、
伝搬損失を小さく抑えて長距離伝送が可能になる。
As the optical transmission line 2, a quartz-based single mode optical fiber can be used, which has a minimum optical propagation loss at a wavelength of 1.55 μm. In this case, by setting the wavelength of the output light from the optical transmitter 1 to the 1.55 μm band,
Long-distance transmission becomes possible by minimizing propagation loss.

位相共役素子3は、光信号を一定周波数のポンプ光の位
相を基準として位相共役変換するものが実現し易い。位
相共役素子3としては、ポンプ光を用いないものも使用
可能である。
The phase conjugate element 3 can easily be implemented as one that performs phase conjugate conversion on an optical signal based on the phase of pump light having a constant frequency. As the phase conjugate element 3, one that does not use pump light can also be used.

ポンプ光を用いた位相共役素子の構成例として、四光波
混合を利用した非線形対称マツハツエンダ干渉計を備え
たものを第2図に示す。同図において、11,12,1
3.14,15.16は分岐比が50%の光カブラてあ
り、17.18,19゜20は三次の非線形媒質である
。光信号は光カブラ11で分岐され、分岐された一方の
光は、光カブラ12によりポンプ光とカップリングされ
ると共に分岐される。この分岐された光はそれぞれ非線
形媒質17.18を透過した後、光カブラ13によりカ
ップリングされると共に分岐される。光カブラ13で分
岐された一方の光は、光カブラ11で分岐された他方の
光と光カブラ14でカップリングされると共に分岐され
る。光カプラ14で分岐された光は、それぞれ非線形媒
質19.20を透過した後、光カプラ15でカップリン
グされると共に分岐される。光カプラ13で分岐された
他方の光は、光カブラ15で分岐された一方の光と光カ
プラ16でカップリングされ、この光が光受信装置4側
の光伝送路2に送出される。尚、光カブラ11から光カ
ブラ16に至る全ての光路における光路長は一致してお
り、また、光カブラ12から光カブラ15に至る全ての
光路における光路長も一致している。
As a configuration example of a phase conjugate element using pump light, one equipped with a nonlinear symmetric Matsuhatsu Ender interferometer using four-wave mixing is shown in FIG. In the same figure, 11, 12, 1
3.14 and 15.16 are optical couplers with a branching ratio of 50%, and 17.18 and 19°20 are third-order nonlinear media. The optical signal is branched by an optical coupler 11, and one of the branched lights is coupled with the pump light by an optical coupler 12 and is branched. After each of the branched lights passes through nonlinear media 17 and 18, they are coupled and branched by the optical coupler 13. One light branched by the optical coupler 13 is coupled with the other light branched by the optical coupler 11 and branched by the optical coupler 14. The light branched by the optical coupler 14 passes through the nonlinear medium 19 and 20, and then is coupled and branched by the optical coupler 15. The other light branched by the optical coupler 13 is coupled with the one light branched by the optical coupler 15 by the optical coupler 16, and this light is sent to the optical transmission line 2 on the optical receiver 4 side. The optical path lengths of all the optical paths from the optical coupler 11 to the optical coupler 16 are the same, and the optical path lengths of all the optical paths from the optical coupler 12 to the optical coupler 15 are also the same.

この構成によると、入力した光信号を、一定周波数のポ
ンプ光の位相を基準として位相共役変換して出力するこ
とができる。
According to this configuration, the input optical signal can be phase conjugate-transformed using the phase of the pump light having a constant frequency as a reference, and then output.

以下、ポンプ光を用いる位相共役素子が採用されている
場合について、光送信装置1から光受信装置4に至るま
での光信号電界の変化の様子を概念的に説明する。尚、
光信号を一定周波数のポンプ光の位相を基準として位相
共役変換するというのは、ポンプ光の周波数、位相を基
準としてみたとき、このポンプ光に対して入射光を位相
共役な光に変換することを意味する。
Hereinafter, the state of change in the optical signal electric field from the optical transmitter 1 to the optical receiver 4 will be conceptually explained in the case where a phase conjugate element using pump light is employed. still,
Phase conjugate conversion of an optical signal using the phase of a pump light of a constant frequency as a reference means converting the incident light into light that is phase conjugate to the pump light when the frequency and phase of the pump light are taken as a reference. means.

いま、ポンプ光をexp〔iの。t〕とし、送信光信号
E。(1)の周波数ω0−△ωのフーリエ成分E o 
(Δω)を考えると、光信号電界は次のように変化する
。光信号E o (Δω)exp[:i(ω。−△ω)
t〕には、位相共役素子の上流側の光伝送路における分
散により、位相項exp Ci D(Δω)2〕が付加
され、位相共役素子に入射する直前には、E o (Δ
ω)ey、p Ci D(Δω)’士i(a+o+ムω
) t 〕となる。これが位相共役変換により、 E、(Δωビexp C−i D(△ω)”=i(ω。
Now, the pump light is exp [i. t] and the transmitted optical signal E. (1) Fourier component E o of frequency ω0−△ω
(Δω), the optical signal electric field changes as follows. Optical signal E o (Δω)exp[:i(ω.−△ω)
t] is added with a phase term exp Ci D(Δω)2] due to dispersion in the optical transmission path upstream of the phase conjugate element, and immediately before entering the phase conjugate element, E o (Δ
ω)ey, p Ci D(Δω)'shii(a+o+muω
) t ]. This is caused by phase conjugate transformation, E, (Δω biexp C−i D(Δω)”=i(ω.

−Δの)tEとなり、次に位相共役素子の下流側の光伝
送路における分散により、再度位相項exp L ] 
D(Δω)2〕が付加されるので、E、(Δω)”ex
p [i (ω0−Δω)t〕となり、exp31cI
Jot〕のまわりでのフーリエ成分としては、Eo”(
−△ω)となる。これは受信光信号E。。(1)となり
、波長分散とは関係なく送信光信号EO(t)の複素共
役となる。
−Δ)tE, and then due to dispersion in the optical transmission path downstream of the phase conjugate element, the phase term exp L ]
D(Δω)2] is added, so E,(Δω)”ex
p [i (ω0−Δω)t], and exp31cI
The Fourier component around Eo” (
−△ω). This is the received optical signal E. . (1), which is the complex conjugate of the transmitted optical signal EO(t), regardless of wavelength dispersion.

尚、上述の説明において、ω。はポンプ光の角周波数、
△ωはポンプ光と光信号の角周波数差、Dは分散係数(
単位は例えばps/nm )であり、*は複素共役記号
である。
In addition, in the above explanation, ω. is the angular frequency of the pump light,
△ω is the angular frequency difference between the pump light and the optical signal, and D is the dispersion coefficient (
The unit is, for example, ps/nm), and * is a complex conjugate symbol.

位相共役素子としては、ブIJ IJアン光増幅器を用
いることもできる。ブリリアン光増幅器においては、光
信号とポンプ光とを光ファイバの一端側から人射し、後
方散乱する光を出力光として取り出すが、このとき、人
力した光信号と散乱光とが互いに位相共役となる。位相
共役素子の他の例としては、ラマン光増幅器、四光波混
合光増幅器、パラメトリック光増幅器等がある。
As the phase conjugate element, an optical amplifier can also be used. In a Brilliant optical amplifier, an optical signal and pump light are emitted from one end of an optical fiber, and the backscattered light is extracted as output light. Become. Other examples of phase conjugate elements include Raman optical amplifiers, four-wave mixing optical amplifiers, and parametric optical amplifiers.

本発明を実施する場合、更に伝送距離を長くすることを
目的として、位相共役変換の作用がない通常の光増幅器
を光伝送路中に挿入することができる。この種の光増幅
器の例としては、コアにEr等の希土類元素をドープし
てなる光ファイバを用いた光フアイバ増幅器、半導体レ
ーザ型光増幅器等がある。
When carrying out the present invention, an ordinary optical amplifier that does not perform phase conjugate conversion can be inserted into the optical transmission line for the purpose of further increasing the transmission distance. Examples of this type of optical amplifier include an optical fiber amplifier using an optical fiber whose core is doped with a rare earth element such as Er, and a semiconductor laser type optical amplifier.

発明の詳細 な説明したように、本発明によると、波長分散の悪影響
が生じにくい光伝送方法及び光伝送システムの提供が可
能になるという効果を奏する。
As described in detail, the present invention has the advantage that it is possible to provide an optical transmission method and an optical transmission system in which the adverse effects of chromatic dispersion are less likely to occur.

その結果、波長分散が大きい光ファイバの使用が可能に
なり、あるいは、半導体レーザの直接強度変調光のよう
に波長チャーピングが大きい光でも伝送することができ
るようになる。従って、本発明は、光伝送システムにお
ける伝送速度の高速度化及び伝送距離の長距離化に寄与
するところが大きい。
As a result, it becomes possible to use an optical fiber with large wavelength dispersion, or it becomes possible to transmit even light with large wavelength chirping, such as direct intensity modulation light from a semiconductor laser. Therefore, the present invention greatly contributes to increasing the transmission speed and increasing the transmission distance in optical transmission systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光伝送ンステムのブロック図、第2図
は位相共役素子の構成例を示す図である。 1・・・光送信装置、 2・・・光伝送路、 3・・・位相共役素子、 4・・・光受信装置。
FIG. 1 is a block diagram of the optical transmission system of the present invention, and FIG. 2 is a diagram showing an example of the configuration of a phase conjugate element. DESCRIPTION OF SYMBOLS 1... Optical transmitter, 2... Optical transmission line, 3... Phase conjugate element, 4... Optical receiver.

Claims (1)

【特許請求の範囲】 1、光伝送路(2)の波長分散が全波長分散の2分の1
に相当する位置に位相共役素子(3)を設け、上記光伝
送路(2)により光信号を伝送する方法。 2、光信号を送出する光送信装置(1)と、該光信号を
伝送する光伝送路(2)と、 該光伝送路(2)の波長分散が全波長分散の2分の1に
相当する位置に設けられた位相共役素子(3)と、上記
光伝送路(2)により伝送された光信号を受信する光受
信装置(4)とを備えたことを特徴とする光伝送システ
ム。 3、上記位相共役素子(3)は光信号を一定周波数のポ
ンプ光の位相を基準として位相共役変換するものである
ことを特徴とする請求項2に記載の光伝送システム。
[Claims] 1. The wavelength dispersion of the optical transmission line (2) is one-half of the total wavelength dispersion
A method in which a phase conjugate element (3) is provided at a position corresponding to , and an optical signal is transmitted through the optical transmission line (2). 2. An optical transmission device (1) that sends out an optical signal, an optical transmission line (2) that transmits the optical signal, and a chromatic dispersion of the optical transmission line (2) that is equivalent to one half of the total chromatic dispersion. 1. An optical transmission system comprising: a phase conjugate element (3) provided at a position where the optical transmission path is a phase conjugate element; and an optical receiver (4) that receives an optical signal transmitted through the optical transmission line (2). 3. The optical transmission system according to claim 2, wherein the phase conjugate element (3) performs phase conjugate conversion on the optical signal based on the phase of pump light having a constant frequency.
JP2320770A 1990-11-27 1990-11-27 Optical transmission method and its system Pending JPH04191709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320770A JPH04191709A (en) 1990-11-27 1990-11-27 Optical transmission method and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320770A JPH04191709A (en) 1990-11-27 1990-11-27 Optical transmission method and its system

Publications (1)

Publication Number Publication Date
JPH04191709A true JPH04191709A (en) 1992-07-10

Family

ID=18125064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320770A Pending JPH04191709A (en) 1990-11-27 1990-11-27 Optical transmission method and its system

Country Status (1)

Country Link
JP (1) JPH04191709A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009403A1 (en) * 1992-10-20 1994-04-28 Fujitsu Limited Application of optical system to phase conjugate optics
EP0703680A2 (en) * 1994-09-23 1996-03-27 AT&T Corp. Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
US5798853A (en) * 1992-10-16 1998-08-25 Fujitsu, Limited Optical communication system compensating for chromatic dispersion and phase conjugate light generator for use therewith
EP0887956A1 (en) * 1997-06-23 1998-12-30 PIRELLI CAVI E SISTEMI S.p.A. Optical telecommunications system with chromatic dispersion compensator
JP2011034022A (en) * 2009-08-06 2011-02-17 Nippon Telegr & Teleph Corp <Ntt> Variable delay generator for signal light

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798853A (en) * 1992-10-16 1998-08-25 Fujitsu, Limited Optical communication system compensating for chromatic dispersion and phase conjugate light generator for use therewith
WO1994009403A1 (en) * 1992-10-20 1994-04-28 Fujitsu Limited Application of optical system to phase conjugate optics
US5596667A (en) * 1992-10-20 1997-01-21 Fujitsu Limited Application of phase conjugate optics to optical systems
EP0703680A2 (en) * 1994-09-23 1996-03-27 AT&T Corp. Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
EP0703680A3 (en) * 1994-09-23 1999-06-30 AT&T Corp. Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
EP0887956A1 (en) * 1997-06-23 1998-12-30 PIRELLI CAVI E SISTEMI S.p.A. Optical telecommunications system with chromatic dispersion compensator
JP2011034022A (en) * 2009-08-06 2011-02-17 Nippon Telegr & Teleph Corp <Ntt> Variable delay generator for signal light

Similar Documents

Publication Publication Date Title
US6043927A (en) Modulation instability wavelength converter
US6175435B1 (en) Optical communication system using optical phase conjugation to suppress waveform distortion caused by chromatic dispersion and optical kerr effect
US6424773B1 (en) Optical gate device, manufacturing method for the device, and system including the device
JP3200386B2 (en) Symmetric optical fiber cable with controlled dispersion characteristics and optical transmission system using the same
JPH0799478A (en) Apparatus and method for distributed compensation of fiber optic transmission system
Gnauck et al. 10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion
EP0987583A2 (en) Polarisation-independent phase-conjugation apparatus and system comprising this apparatus
JP2003107542A (en) Device and method for optical signal conversion
CA2229516C (en) Compensation of dispersion
JPH04191709A (en) Optical transmission method and its system
CN102811096B (en) Electric-domain chromatic dispersion pre-compensation method in noncoherent detection optical-fiber communication access network
JPH04335619A (en) Optical soliton transmitting method
US20090290827A1 (en) Nonlinear optical loop mirrors
JPH09275375A (en) Optical communication equipment
JPH03171036A (en) Optical fiber communicating method and system
KR100363849B1 (en) Method and apparatus for chromatic dispersion compensator using a poled fiber
JP3250586B2 (en) Chromatic dispersion measurement device
KR0168911B1 (en) Long distance optical transmission link using spectrum conversion
JPH088821A (en) Method for transmitting dark optical solution
JPH04299622A (en) Dispersion equalizing optical transmission system and dispersion equalization optical repeater
JPH05183511A (en) Optical transmitter
Stephan et al. Nonlinear phase shift compensation with a NOLM-based regenerator in DPSK transmission systems
Doran Nonlinear Phenomena in Optical Fibres
Skarmoutsos et al. A new high bit rate orthogonal IM/FSK scheme based on an all fiber realization, for AOLS applications
Roethlingshoefer et al. Optimization of dispersion-imbalanced loop mirror for phase-preserving amplitude regeneration