JPH08116128A - Semiconductor quantum well optical element - Google Patents

Semiconductor quantum well optical element

Info

Publication number
JPH08116128A
JPH08116128A JP25031994A JP25031994A JPH08116128A JP H08116128 A JPH08116128 A JP H08116128A JP 25031994 A JP25031994 A JP 25031994A JP 25031994 A JP25031994 A JP 25031994A JP H08116128 A JPH08116128 A JP H08116128A
Authority
JP
Japan
Prior art keywords
quantum well
layer
band
energy
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25031994A
Other languages
Japanese (ja)
Inventor
Mitsuru Sugawara
充 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25031994A priority Critical patent/JPH08116128A/en
Publication of JPH08116128A publication Critical patent/JPH08116128A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a semiconductor quantum well optical element which uses a nitrogen compound semiconductor and in which the probability of an optical transition is high regarding the semiconductor quantum well optical element such as a semiconductor laser or the like. CONSTITUTION: A semiconductor quantum well optical element uses a structure wherein a semiconductor quantum well structure composed of an In0.3 Ga0.7 N quantum well layer and of an In0.1 Al0.9 N barrier layer which sandwiches the In0.3 Ga0.7 N quantum well layer and whose band gap is higher than that of the In0.3 Ga0.7 N quantum well layer is provided as an active layer. The quantum well structure can be sandwiched by the In0.3 Ga0.7 N quantum well layer or by an AlN clad layer whose band gap is larger than that of the In0.1 Al0.9 N barrier layer. The quantum well layer can be constituted of InN, and the barrier layer can be constituted of A GaN, InAlN, AlGaInN, AlN or the like having a composition whose band gap is larger than that of the quantum well layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素化合物を用いた半
導体量子井戸光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor quantum well optical device using a nitrogen compound.

【0002】[0002]

【従来の技術】可視光領域で発光する窒素化合物Al
N,GaN,InNを用いた半導体レーザ等の半導体光
素子は、次世代の高密度光磁気ディスク用光源として期
待され、既に、InGaNを活性層とし、波長450n
mで発光するダイオードが開発されている。そして、他
の半導体材料を用いた光素子と同様に、今後はAlN,
GaN,InN等の窒素化合物を用いたレーザの開発、
特に量子井戸レーザ等の光素子の開発が急ピッチで進め
られるものと予想される。
2. Description of the Related Art Nitrogen compound Al that emits light in the visible light region
Semiconductor optical devices such as semiconductor lasers using N, GaN, and InN are expected as a light source for the next-generation high-density magneto-optical disk, and already have InGaN as an active layer and have a wavelength of 450 n.
Diodes emitting light at m have been developed. And, like optical devices using other semiconductor materials, AlN,
Development of lasers using nitrogen compounds such as GaN and InN
In particular, it is expected that the development of optical devices such as quantum well lasers will proceed at a rapid pace.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現在の
ところ、これらの窒素化合物については物性パラメータ
の蓄積が乏しく、特に、半導体の伝導帯と価電子帯のエ
ネルギー位置は、レーザの特性を決定する最も重要なパ
ラメータであるが、全く知られていない。したがって、
窒素化合物材料をどのように組み合わせれば特性の優れ
た光素子が得られるか分かっていなかった。本発明は、
窒素化合物半導体を用いた光学遷移の確率が高い量子井
戸光素子を提供することを目的とする。
However, at present, these nitrogen compounds have a poor accumulation of physical property parameters, and in particular, the energy positions of the conduction band and valence band of the semiconductor determine the characteristics of the laser. It is an important parameter, but unknown at all. Therefore,
It was not known how to combine the nitrogen compound materials to obtain an optical device having excellent characteristics. The present invention
An object of the present invention is to provide a quantum well optical device using a nitrogen compound semiconductor and having a high probability of optical transition.

【0004】[0004]

【課題を解決するための手段】本発明にかかる半導体量
子井戸光素子においては、InN量子井戸層と、該In
N量子井戸層を挟みInNよりも禁制帯幅が大きいIn
AlN障壁層からなる半導体量子井戸構造を活性層とし
て具える構成を採用した。
In a semiconductor quantum well optical device according to the present invention, an InN quantum well layer and an InN quantum well layer are provided.
In having a forbidden band width larger than InN with N quantum well layers sandwiched therebetween
A structure including a semiconductor quantum well structure including an AlN barrier layer as an active layer is adopted.

【0005】本発明にかかる他の半導体量子井戸光素子
においては、InGaN井戸層と、該InGaN井戸層
を挟みInGaNよりも禁制帯幅が大きいAlGaIn
N障壁層からなる半導体量子井戸構造を活性層として具
える構成を採用した。この場合、量子井戸層および障壁
層を挟み、該量子井戸層および障壁層よりも禁制帯幅が
大きいAlGaNクラッド層からなる多層構造を活性層
として具える構成とすることができる。
In another semiconductor quantum well optical device according to the present invention, an InGaN well layer and AlGaIn having a band gap larger than that of InGaN sandwiching the InGaN well layer are provided.
A structure including a semiconductor quantum well structure including an N barrier layer as an active layer is adopted. In this case, the active layer may have a multi-layer structure composed of an AlGaN cladding layer sandwiching the quantum well layer and the barrier layer and having a band gap larger than those of the quantum well layer and the barrier layer.

【0006】また、本発明にかかる他の半導体量子井戸
光素子においては、InGaN井戸層と、該InGaN
井戸層を挟みInGaNよりも禁制帯幅が大きいAlG
aN障壁層からなる半導体量子井戸構造を活性層として
具える構成を採用した。この場合、量子井戸層および障
壁層を、該量子井戸層および障壁層よりも禁制帯幅が大
きいAlGaNクラッド層によって挟んだ構造を具える
構成とすることができる。
Further, in another semiconductor quantum well optical device according to the present invention, an InGaN well layer and the InGaN well layer are provided.
AlG having a forbidden band width wider than that of InGaN sandwiching the well layer
A structure including a semiconductor quantum well structure including an aN barrier layer as an active layer is adopted. In this case, the quantum well layer and the barrier layer may have a structure in which they are sandwiched by AlGaN cladding layers having a band gap larger than those of the quantum well layer and the barrier layer.

【0007】また、本発明にかかる他の半導体量子井戸
光素子においては、InGaN井戸層と、該InGaN
井戸層を挟みInGaNよりも禁制帯幅が大きいInA
lN障壁層からなる半導体量子井戸構造を活性層として
具える構成を採用した。この場合、量子井戸層および障
壁層を、該量子井戸層および障壁層よりも禁制帯幅が大
きいAlGaNクラッド層によって挟んだ構造を具える
構成とすることができる。
Further, in another semiconductor quantum well optical device according to the present invention, an InGaN well layer and the InGaN well layer are provided.
InA with a forbidden band width wider than that of InGaN sandwiching the well layer
A structure including a semiconductor quantum well structure including an IN barrier layer as an active layer is adopted. In this case, the quantum well layer and the barrier layer may have a structure in which they are sandwiched by AlGaN cladding layers having a band gap larger than those of the quantum well layer and the barrier layer.

【0008】また、本発明にかかる他の半導体量子井戸
光素子においては、InGaN井戸層と、該InGaN
井戸層を挟みInGaNよりも禁制帯幅が大きいAlN
障壁層からなる半導体量子井戸構造を活性層として具え
る構成を採用した。
Further, in another semiconductor quantum well optical device according to the present invention, an InGaN well layer and the InGaN well layer are provided.
AlN having a forbidden band width wider than that of InGaN sandwiching the well layer
A structure including a semiconductor quantum well structure including a barrier layer as an active layer is adopted.

【0009】[0009]

【作用】本発明の半導体量子井戸光素子においては、本
発明の発明者らが先に提案した「陽イオンd軌道を含む
強結合近似モデル」を用いて、窒素化合物半導体の伝導
帯と価電子帯エネルギーを決定した。このモデルは、既
に公表されており(Phys.Rev.B47,758
8(1993)参照)、化合物半導体の伝導帯と価電子
帯エネルギーを極めて正確に推計できるものである。計
算に必要なパラメータは以下の通りである。
In the semiconductor quantum well optical device of the present invention, the conduction band and valence electrons of the nitrogen compound semiconductor are calculated by using the "strong coupling approximation model including the cation d orbital" previously proposed by the inventors of the present invention. Determined the energy band. This model has already been published (Phys. Rev. B47,758.
8 (1993)), the conduction band and valence band energy of the compound semiconductor can be estimated very accurately. The parameters required for the calculation are as follows.

【0010】電子間距離(a) a=0.3197nm(GaN) a=0.3115nm(AlN) a=0.3508nm(InN) 禁制帯幅(Eg) Eg=3.393eV(GaN) Eg=6.171eV(AlN) Eg=1.975eV(InN)Distance between electrons (a) a = 0.3197 nm (GaN) a = 0.3115 nm (AlN) a = 0.3508 nm (InN) Forbidden band width (Eg) Eg = 3.393 eV (GaN) Eg = 6 .171 eV (AlN) Eg = 1.975 eV (InN)

【0011】図6は、窒素化合物の伝導帯と価電子帯の
エネルギー説明図である。この図は、窒素化合物である
AlN,GaN,InNの伝導帯と価電子帯のエネルギ
ーを、発明者らが先に提案した陽イオンd軌道を含む強
結合近似モデルによって計算した結果を示している。
FIG. 6 is a diagram for explaining the energy of the conduction band and the valence band of the nitrogen compound. This figure shows the results of calculation of the conduction band and valence band energies of AlN, GaN, and InN, which are nitrogen compounds, by the strong coupling approximation model including the cation d orbital previously proposed by the inventors. .

【0012】本発明の対象である窒素化合物AlN,G
aN,InNの窒素(N)が砒素(As)である、従来
から知られているAlAs,GaAs,InAs系の化
合物半導体では、禁制帯幅が小さくなるにつれて伝導帯
のエネルギーが順に低下し、、価電子帯のエネルギーが
順に上昇する。しかし、窒素化合物においては、中間の
禁制帯幅をもつGaNのエネルギー位置が、AlN,I
nNに比べて伝導体、価電子帯とも上に出っ張ったよう
になっている。
Nitrogen compound AlN, G which is the object of the present invention
In a conventionally known AlAs, GaAs, InAs-based compound semiconductor in which nitrogen (N) of aN, InN is arsenic (As), the energy of the conduction band gradually decreases as the forbidden band width decreases, The valence band energy increases in sequence. However, in the nitrogen compound, the energy position of GaN having an intermediate band gap is AlN, I
Compared to nN, both the conductor and the valence band are projected above.

【0013】図7は、本発明の前提となるGaN/In
N/GaN量子井戸構造のエネルギーバンド図である。
このGaN/InN/GaN構造の量子井戸構造は、禁
制帯幅が小さいInNを禁制帯幅が大きいGaNで挟ん
だ構造を有しているが、前記のように、GaNのエネル
ギー位置がInNのエネルギーレベルから上に出っ張っ
たようになっているため、伝導帯にはInNにポテンシ
ャル井戸ができるものの、価電子帯では両側のGaN側
に井戸ができる。
FIG. 7 shows GaN / In which is the premise of the present invention.
It is an energy band diagram of a N / GaN quantum well structure.
The quantum well structure of the GaN / InN / GaN structure has a structure in which InN having a small forbidden band is sandwiched by GaN having a large forbidden band. As described above, the energy position of GaN is the energy of InN. Since it protrudes above the level, a potential well is formed in InN in the conduction band, but wells are formed on both sides of the GaN in the valence band.

【0014】この形はヘテロ接合のTypeIIと呼ば
れ、発光確率が小さいために光素子としては充分に動作
しない。上記のことから、窒素化合物半導体によって光
素子を製造する場合には、窒素化合物自体を直接積層す
ることなく、窒素化合物半導体の材料組成をうまく調整
する必要があることがわかる。
This type is called a heterojunction Type II, and it does not operate sufficiently as an optical element because of its small emission probability. From the above, it is understood that when manufacturing an optical device using a nitrogen compound semiconductor, the material composition of the nitrogen compound semiconductor needs to be well adjusted without directly laminating the nitrogen compound itself.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。 (第1実施例)図1は、第1実施例のInAlN/In
N/InAlN量子井戸構造のエネルギーバンド図であ
る。この実施例の量子井戸構造においては、伝導帯の基
底のエネルギーが−10.14eV、価電子帯の頂上の
エネルギーが−12.11eVで、禁制帯幅が1.97
eVのInNからなる井戸層を、伝導帯の基底のエネル
ギーが−8.97eV、価電子帯の頂上のエネルギーが
−14.72eVで、禁制帯幅が5.75eVのIn
0.1 Al0.9 Nからなる障壁層によって挟んでおり、先
に図7によって示したGaN/InN/GaN構造の量
子井戸とは異なり、伝導帯も価電子帯もInNが井戸層
になっている。このため、光学遷移の確率が高まり、光
素子として極めて有効である。
Embodiments of the present invention will be described below. (First Embodiment) FIG. 1 shows InAlN / In of the first embodiment.
It is an energy band figure of a N / InAlN quantum well structure. In the quantum well structure of this example, the energy at the base of the conduction band is −10.14 eV, the energy at the top of the valence band is −12.11 eV, and the band gap is 1.97.
In the well layer made of InV of eV, the energy of the base of the conduction band is −8.97 eV, the energy of the top of the valence band is −14.72 eV, and the band gap is 5.75 eV.
It is sandwiched between barrier layers made of 0.1 Al 0.9 N, and unlike the quantum well of the GaN / InN / GaN structure shown in FIG. 7 above, InN is a well layer in both the conduction band and the valence band. Therefore, the probability of optical transition is increased, which is extremely effective as an optical element.

【0016】この量子井戸構造を、InN井戸層、In
0.1 Al0.9 N障壁層よりも禁制帯幅が大きいAlN
(伝導帯の基底のエネルギーが−8.84eV、価電子
帯の頂上のエネルギーが−15.01eVで、禁制帯幅
が3.67eV)からなるクラッド層によって挟むこと
ができる。
This quantum well structure is used as an InN well layer, In
AlN with a forbidden band width larger than 0.1 Al 0.9 N barrier layer
(The energy of the conduction band is −8.84 eV, the energy of the top of the valence band is −15.01 eV, and the band gap is 3.67 eV).

【0017】(第2実施例)図2は、第2実施例のIn
AlN/InGaN/InAlN量子井戸構造のエネル
ギーバンド図である。この実施例の量子井戸構造におい
ては、伝導帯の基底のエネルギーが−9.09eV、価
電子帯の頂上のエネルギーが−12.05eVで、禁制
帯幅が2.96eVのIn0.3 Ga0.7 Nからなる井戸
層を、伝導帯の基底のエネルギーが−8.97eV、価
電子帯の頂上のエネルギーが−14.72eVで、禁制
帯幅が5.75eVのIn0.1 Al0.9 Nからなる障壁
層によって挟んでおり、先に図7によって示したGaN
/InN/GaN構造の量子井戸とは異なり、伝導帯も
価電子帯もInNが井戸層になっている。このため、光
学遷移の確率が高まり、光素子として極めて有効であ
る。
(Second Embodiment) FIG. 2 shows In of the second embodiment.
FIG. 3 is an energy band diagram of an AlN / InGaN / InAlN quantum well structure. In the quantum well structure of this example, the energy of the ground of the conduction band is −9.09 eV, the energy of the top of the valence band is −12.05 eV, and the forbidden band width is 2.96 eV from In 0.3 Ga 0.7 N. Is sandwiched by barrier layers made of In 0.1 Al 0.9 N having a conduction band ground energy of −8.97 eV, a valence band top energy of −14.72 eV, and a forbidden band width of 5.75 eV. And the GaN previously shown in FIG.
Unlike the quantum well having the / InN / GaN structure, InN is a well layer in both the conduction band and the valence band. Therefore, the probability of optical transition is increased, which is extremely effective as an optical element.

【0018】この量子井戸構造を、In0.3 Ga0.7
井戸層、In0.1 Al0.9 N障壁層よりも禁制帯幅が大
きいAlN(伝導帯の基底のエネルギーが−8.84e
V、価電子帯の頂上のエネルギーが−15.01eV
で、禁制帯幅が3.67eV)からなるクラッド層によ
って挟むことができる。
This quantum well structure is used as In 0.3 Ga 0.7 N
AlN having a forbidden band width larger than that of the well layer and the In 0.1 Al 0.9 N barrier layer (the energy of the base of the conduction band is −8.84e
V, the energy at the top of the valence band is -15.01 eV
And can be sandwiched between clad layers having a forbidden band width of 3.67 eV).

【0019】このレーザ構造においては、前述のよう
に、伝導帯も価電子帯もInNが井戸層になっているた
め、光学遷移の確率が高く、In0.1 Al0.9 Nからな
る障壁層が光閉じ込め層として働き、量子井戸レーザの
標準的構造(SCH構造 Separate Conf
inement Heterostructure L
asers)が得られる。
In this laser structure, as described above, InN is a well layer in both the conduction band and the valence band, so that the probability of optical transition is high, and the barrier layer made of In 0.1 Al 0.9 N has optical confinement. It acts as a layer and serves as a standard structure of a quantum well laser (SCH structure Separate Conf
element Heterostructure L
asers) are obtained.

【0020】(第3実施例)図3は、第3実施例のAl
GaInN/InGaN/AlGaInN量子井戸構造
のエネルギーバンド図である。この実施例の量子井戸構
造においては、伝導帯の基底のエネルギーが−9.09
eV、価電子帯の頂上のエネルギーが−12.05eV
で、禁制帯幅が2.96eVのIn0.3 Ga0.7 Nから
なる井戸層を、伝導帯の基底のエネルギーが−9.28
eV、価電子帯の頂上のエネルギーが−12.66eV
で、禁制帯幅が3.38eVのAl0.2 Ga0.4 In
0.4 Nからなる障壁層によって挟んでおり、先に図7に
よって示したGaN/InN/GaN構造の量子井戸と
は異なり、伝導帯も価電子帯もIn0.3 Ga0.7 Nが井
戸層になっている。このため、光学遷移の確率が高ま
り、光素子として極めて有効である。
(Third Embodiment) FIG. 3 shows Al of the third embodiment.
It is an energy band diagram of a GaInN / InGaN / AlGaInN quantum well structure. In the quantum well structure of this example, the energy at the base of the conduction band is -9.09.
eV, the energy at the top of the valence band is 12.05 eV
In the well layer made of In 0.3 Ga 0.7 N having a forbidden band width of 2.96 eV, the base energy of the conduction band is −9.28.
eV, the energy at the top of the valence band is -12.66 eV
And a forbidden band width of 3.38 eV of Al 0.2 Ga 0.4 In
It is sandwiched by barrier layers made of 0.4 N, and unlike the quantum well of the GaN / InN / GaN structure shown in FIG. 7 above, In 0.3 Ga 0.7 N is a well layer in both the conduction band and the valence band. . Therefore, the probability of optical transition is increased, which is extremely effective as an optical element.

【0021】この量子井戸構造を、In0.3 Ga0.7
井戸層、AlGaInN障壁層よりも禁制帯幅が大きい
Al0.4 Ga0.6 N(伝導帯の基底のエネルギーが−
8.76eV、価電子帯の頂上のエネルギーが−13.
82eVで、禁制帯幅が5.06eV)からなるクラッ
ド層によって挟むことができる。
This quantum well structure is used as In 0.3 Ga 0.7 N
Al 0.4 Ga 0.6 N having a forbidden band width larger than that of the well layer and the AlGaInN barrier layer (the energy of the base of the conduction band is −
8.76 eV, energy at the top of the valence band is -13.
It can be sandwiched between clad layers having a band gap of 82 eV and a band gap of 5.06 eV.

【0022】(第4実施例)図4は、第4実施例のAl
GaN/AlGaN/AlGaN量子井戸構造のエネル
ギーバンド図である。この実施例の量子井戸構造におい
ては、伝導帯の基底のエネルギーが−9.09eV、価
電子帯の頂上のエネルギーが−12.05eVで、禁制
帯幅が2.96eVのIn0.3 Ga0.7 Nからなる井戸
層を、伝導帯の基底のエネルギーが−8.68eV、価
電子帯の頂上のエネルギーが−12.63eVで、禁制
帯幅が3・95eVのAl0.2 Ga0.8 Nからなる障壁
層によって挟んだ構造を有しており、先に図7によって
示したGaN/InN/GaN構造の量子井戸とは異な
り、伝導帯も価電子帯もIn0.3 Ga0.7 Nが井戸層に
なっている。このため、光学遷移の確率が高まり、光素
子として極めて有効である。
(Fourth Embodiment) FIG. 4 shows Al of the fourth embodiment.
FIG. 3 is an energy band diagram of a GaN / AlGaN / AlGaN quantum well structure. In the quantum well structure of this example, the energy of the ground of the conduction band is −9.09 eV, the energy of the top of the valence band is −12.05 eV, and the forbidden band width is 2.96 eV from In 0.3 Ga 0.7 N. The well layer consisting of Al 0.2 Ga 0.8 N having a conduction band ground energy of −8.68 eV, a valence band top energy of −12.63 eV, and a forbidden band width of 3.95 eV. In contrast to the quantum well of the GaN / InN / GaN structure shown in FIG. 7, the conduction band and the valence band of In 0.3 Ga 0.7 N are well layers. Therefore, the probability of optical transition is increased, which is extremely effective as an optical element.

【0023】この量子井戸構造を、In0.3 Ga0.7
井戸層、Al0.2 Ga0.8 N障壁層よりも禁制帯幅が大
きいAl0.4 Ga0.6 N(伝導帯の基底のエネルギーが
−8.76eV、価電子帯の頂上のエネルギーが−1
3.32eVで、禁制帯幅が4.56eV)からなるク
ラッド層によって挟むことができる。
This quantum well structure is used as In 0.3 Ga 0.7 N
Well layer, Al 0.4 Ga 0.6 N having a forbidden band width larger than that of the Al 0.2 Ga 0.8 N barrier layer (conduction band ground energy is −8.76 eV, valence band top energy is −1)
It can be sandwiched by cladding layers having a band gap of 4.56 eV at 3.32 eV.

【0024】(第5実施例)図5は、第5実施例のAl
N/InGaN/AlN量子井戸構造のエネルギーバン
ド図である。この実施例の量子井戸構造においては、伝
導帯の基底のエネルギーが−9.09eV、価電子帯の
頂上のエネルギーが−12.05eVで、禁制帯幅が
2.96eVのIn0.3 Ga0.7 Nからなる井戸層を、
伝導帯の基底のエネルギーが−8.84eV、価電子帯
の頂上のエネルギーが−15.01eVで、禁制帯幅が
6.17eVのAlNからなる障壁層によって挟んだ構
造を有しており、先に図7によって示したGaN/In
N/GaN構造の量子井戸とは異なり、伝導帯も価電子
帯もIn0.3 Ga0.7 Nが井戸層になっている。このた
め、光学遷移の確率が高まり、光素子として極めて有効
である。
(Fifth Embodiment) FIG. 5 shows the Al of the fifth embodiment.
It is an energy band figure of a N / InGaN / AlN quantum well structure. In the quantum well structure of this example, the energy of the ground of the conduction band is −9.09 eV, the energy of the top of the valence band is −12.05 eV, and the forbidden band width is 2.96 eV from In 0.3 Ga 0.7 N. A well layer
The conduction band has a ground energy of −8.84 eV, the valence band has a top energy of −15.01 eV, and has a structure sandwiched by barrier layers made of AlN having a forbidden band width of 6.17 eV. GaN / In shown by FIG.
Different from the quantum well having the N / GaN structure, In 0.3 Ga 0.7 N is a well layer in both the conduction band and the valence band. Therefore, the probability of optical transition is increased, which is extremely effective as an optical element.

【0025】なお、上記の各実施例において説明した構
造は、CVD法等の従来から知られていた結晶成長技術
を用いることによって容易に実現することができる。
The structures described in the above embodiments can be easily realized by using a conventionally known crystal growth technique such as the CVD method.

【0026】[0026]

【発明の効果】以上説明したように、本発明によると、
窒素化合物を用いて優れた光学特性を有する量子井戸構
造を実現することができ、次世代の情報記憶装置として
有望視されている高密度光磁気ディスク用光源等の可視
光領域の光素子関連技術分野において寄与するところが
大きい。
As described above, according to the present invention,
Optical element related technology in the visible light region such as a light source for high density magneto-optical disk, which is promising as a next-generation information storage device that can realize a quantum well structure with excellent optical characteristics by using a nitrogen compound. It has a large contribution in the field.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のInAlN/InN/InAlN
量子井戸構造のエネルギーバンド図である。
FIG. 1 InAlN / InN / InAlN of the first embodiment
It is an energy band diagram of a quantum well structure.

【図2】第2実施例のInAlN/InGaN/InA
lN量子井戸構造のエネルギーバンド図である。
FIG. 2 InAlN / InGaN / InA of the second embodiment
It is an energy band figure of a 1N quantum well structure.

【図3】第3実施例のAlGaInN/InGaN/A
lGaInN量子井戸構造のエネルギーバンド図であ
る。
FIG. 3 AlGaInN / InGaN / A of the third embodiment.
It is an energy band diagram of a 1GaInN quantum well structure.

【図4】第4実施例のAlGaN/AlGaN/AlG
aN量子井戸構造のエネルギーバンド図である。
FIG. 4 AlGaN / AlGaN / AlG of the fourth embodiment
It is an energy band diagram of an aN quantum well structure.

【図5】第5実施例のAlN/InGaN/AlN量子
井戸構造のエネルギーバンド図である。
FIG. 5 is an energy band diagram of an AlN / InGaN / AlN quantum well structure of a fifth example.

【図6】窒素化合物の伝導帯と価電子帯のエネルギー説
明図である。
FIG. 6 is an explanatory diagram of energy in a conduction band and a valence band of a nitrogen compound.

【図7】本発明の前提となるGaN/InN/GaN量
子井戸構造のエネルギーバンド図である。
FIG. 7 is an energy band diagram of a GaN / InN / GaN quantum well structure which is a premise of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 InN井戸層と、該InN井戸層を挟み
InNよりも禁制帯幅が大きいInAlN障壁層からな
る半導体量子井戸構造を活性層として具えることを特徴
とする半導体量子井戸光素子。
1. A semiconductor quantum well optical device comprising a semiconductor quantum well structure comprising an InN well layer and an InAlN barrier layer sandwiching the InN well layer and having a band gap larger than InN as an active layer.
【請求項2】 InGaN井戸層と、該InGaN井戸
層を挟みInGaNよりも禁制帯幅が大きいAlGa
N,InAlNまたはAlGaInNの障壁層からなる
半導体量子井戸構造を活性層として具えることを特徴と
する半導体量子井戸光素子。
2. An InGaN well layer and AlGa having a band gap larger than that of InGaN sandwiching the InGaN well layer.
A semiconductor quantum well optical device comprising a semiconductor quantum well structure composed of a barrier layer of N, InAlN or AlGaInN as an active layer.
【請求項3】 量子井戸層および障壁層を、該量子井戸
層および障壁層よりも禁制帯幅が大きいAlGaNクラ
ッド層によって挟んだ構造を具えることを特徴とする請
求項2に記載された半導体量子井戸光素子。
3. The semiconductor according to claim 2, further comprising a structure in which the quantum well layer and the barrier layer are sandwiched by AlGaN cladding layers having a band gap larger than those of the quantum well layer and the barrier layer. Quantum well optical device.
【請求項4】 InGaN井戸層と、該InGaN井戸
層を挟みInGaNよりも禁制帯幅が大きいAlN障壁
層からなる半導体量子井戸構造を活性層として具えるこ
とを特徴とする半導体量子井戸光素子。
4. A semiconductor quantum well optical device comprising, as an active layer, a semiconductor quantum well structure including an InGaN well layer and an AlN barrier layer sandwiching the InGaN well layer and having a forbidden band width larger than InGaN.
JP25031994A 1994-10-17 1994-10-17 Semiconductor quantum well optical element Withdrawn JPH08116128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25031994A JPH08116128A (en) 1994-10-17 1994-10-17 Semiconductor quantum well optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25031994A JPH08116128A (en) 1994-10-17 1994-10-17 Semiconductor quantum well optical element

Publications (1)

Publication Number Publication Date
JPH08116128A true JPH08116128A (en) 1996-05-07

Family

ID=17206143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25031994A Withdrawn JPH08116128A (en) 1994-10-17 1994-10-17 Semiconductor quantum well optical element

Country Status (1)

Country Link
JP (1) JPH08116128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423984B1 (en) 1998-09-10 2002-07-23 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
CN103368074A (en) * 2013-07-18 2013-10-23 中国科学院苏州纳米技术与纳米仿生研究所 Semiconductor laser active area, semiconductor laser and manufacturing method thereof
CN103996766A (en) * 2014-03-21 2014-08-20 安徽三安光电有限公司 GaN-based light-emitting diode and preparation method thereof
WO2014192206A1 (en) * 2013-05-29 2014-12-04 パナソニックIpマネジメント株式会社 Semiconductor light-emitting element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US6423984B1 (en) 1998-09-10 2002-07-23 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US6853009B2 (en) 1998-09-10 2005-02-08 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US7045809B2 (en) 1998-09-10 2006-05-16 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
WO2014192206A1 (en) * 2013-05-29 2014-12-04 パナソニックIpマネジメント株式会社 Semiconductor light-emitting element
JPWO2014192206A1 (en) * 2013-05-29 2017-02-23 パナソニックIpマネジメント株式会社 Semiconductor light emitting device
CN103368074A (en) * 2013-07-18 2013-10-23 中国科学院苏州纳米技术与纳米仿生研究所 Semiconductor laser active area, semiconductor laser and manufacturing method thereof
CN103996766A (en) * 2014-03-21 2014-08-20 安徽三安光电有限公司 GaN-based light-emitting diode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2839077B2 (en) Gallium nitride based compound semiconductor light emitting device
US5742628A (en) Short wavelength laser emitting diode with an improved GaN system double heterostructure
JPH06104533A (en) Blue color light emitting element and fabrication thereof
JPH02270387A (en) Semiconductor light emitting element
JP3189791B2 (en) Semiconductor laser
JPH0143472B2 (en)
JPH10294532A (en) Nitride-based semiconductor light emitting element and its manufacture
US4796067A (en) Semiconductor device having a superlattice structure
JP3519990B2 (en) Light emitting device and manufacturing method thereof
US4999844A (en) Semiconductor quantum well laser
JP2683195B2 (en) Semiconductor laser
JPH08116128A (en) Semiconductor quantum well optical element
JPH07202340A (en) Visible-light semiconductor laser
JPH10294533A (en) Nitride compound semiconductor laser and its manufacture
JPH1187856A (en) Gallium nitride compound semiconductor laser and manufacture thereof
JP3197042B2 (en) Semiconductor light emitting device
JPH02116187A (en) Semiconductor laser
JP3053955B2 (en) AlGaAsP semiconductor laser device
JPS59145590A (en) Semiconductor laser device
JPH08181386A (en) Semiconductor optical element
JP2504372B2 (en) Superlattice structure
JP2794743B2 (en) Quantum well semiconductor laser device
JPH0685385A (en) Semiconductor laser
JP3193087B2 (en) AlGaInP semiconductor light emitting device
JP3617129B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115