JPH08115728A - Lithium primary battery - Google Patents

Lithium primary battery

Info

Publication number
JPH08115728A
JPH08115728A JP6275923A JP27592394A JPH08115728A JP H08115728 A JPH08115728 A JP H08115728A JP 6275923 A JP6275923 A JP 6275923A JP 27592394 A JP27592394 A JP 27592394A JP H08115728 A JPH08115728 A JP H08115728A
Authority
JP
Japan
Prior art keywords
lithium
manganese dioxide
carbonate
primary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6275923A
Other languages
Japanese (ja)
Other versions
JP3322490B2 (en
Inventor
Yoshihiro Shoji
良浩 小路
Yuji Yamamoto
祐司 山本
Mayumi Uehara
真弓 上原
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27592394A priority Critical patent/JP3322490B2/en
Publication of JPH08115728A publication Critical patent/JPH08115728A/en
Application granted granted Critical
Publication of JP3322490B2 publication Critical patent/JP3322490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE: To enhance low temperature discharge performance by using surface modified manganese dioxide containing 1-15 atomic percent of lithium as a positive active material and specific solvent and solute as a nonaqueous electrolyte. CONSTITUTION: Electrolytic manganese dioxide whose impurity content is preferably small and a lithium compound such as lithium hydroxide are mixed, and the mixture is baked at 150-400 deg.C to obtain surface modified manganese dioxide for a positive active material. The content of lithium in the active material obtained is 1-15 atomic percent. A mixed solvent of 20-80 volume percent of a carbonate such as ethylene carbonate 80-20 volume percent of 2- dimethoxyethane is used in a nonaqueous electrolyte. Lithium trifluoromethanesulfonate or lithium hexafluorophosphate is used as a solute. By lithium formed on the surface of manganese dioxide particle, wettability to a specific nonaqueous electrolyte is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム一次電池に係
わり、詳しくは、その低温放電特性を改善することを目
的とした正極活物質、非水電解液の溶媒及び溶質の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium primary battery, and more particularly to improvement of a positive electrode active material, a solvent and a solute of a non-aqueous electrolyte for the purpose of improving low temperature discharge characteristics thereof.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
リチウム一次電池の正極活物質として、二酸化マンガン
が使用されているが、二酸化マンガンは非水電解液との
濡れ性が良くないために、正極の有効反応面積が小さ
い。このため、従来のリチウム一次電池には、低温での
放電特性(低温放電特性)が良くないという問題があっ
た。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Manganese dioxide is used as a positive electrode active material of a lithium primary battery. However, manganese dioxide has a poor positive electrode wettability with a non-aqueous electrolyte, so that the effective reaction area of the positive electrode is small. Therefore, the conventional lithium primary battery has a problem that the discharge characteristic at low temperature (low temperature discharge characteristic) is not good.

【0003】この問題を解決するべく鋭意研究した結
果、本発明者らは、非水電解液として特定の溶媒及び溶
質からなるものを使用し、且つ二酸化マンガンの表面を
所定の手段を用いて改質すれば、二酸化マンガンと非水
電解液との濡れ性の悪さが解消されることを見出した。
As a result of earnest studies to solve this problem, the present inventors have used a non-aqueous electrolyte consisting of a specific solvent and solute and modified the surface of manganese dioxide by a predetermined means. It has been found that the poor wettability between the manganese dioxide and the non-aqueous electrolyte can be eliminated if the quality is improved.

【0004】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、低温放電特性に
優れたリチウム一次電池を提供するにある。
The present invention has been made on the basis of such findings, and an object of the present invention is to provide a lithium primary battery having excellent low temperature discharge characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム一次電池(本発明電池)は、正
極と、金属リチウム又はリチウム合金を活物質とする負
極と、溶質及び溶媒からなる非水電解液と、セパレータ
とを備えるリチウム一次電池において、前記正極が、二
酸化マンガンとリチウム化合物との混合物を150〜4
00°Cで焼成してなる、リチウムとマンガンとの総量
に基づいてリチウムを1〜15原子%含有する表面改質
二酸化マンガンを活物質とし、前記溶媒が、エチレンカ
ーボネート、プロピレンカーボネート、ブチレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネート
及びエチルメチルカーボネートよりなる群から選ばれた
少なくとも1種の炭酸エステル20〜80体積%と、
1,2−ジメトキシエタン80〜20体積%との混合溶
媒であり、且つ前記溶質が、トリフルオロメタンスルホ
ン酸リチウム又はヘキサフルオロリン酸リチウムである
ことを特徴とする。
A lithium primary battery according to the present invention (a battery according to the present invention) for achieving the above object comprises a positive electrode, a negative electrode using metallic lithium or a lithium alloy as an active material, a solute and a solvent. In a lithium primary battery including a non-aqueous electrolyte solution and a separator, the positive electrode contains a mixture of manganese dioxide and a lithium compound in an amount of 150 to 4
A surface-modified manganese dioxide containing 1 to 15 atom% of lithium based on the total amount of lithium and manganese, which is obtained by firing at 00 ° C, is used as an active material, and the solvent is ethylene carbonate, propylene carbonate, butylene carbonate, 20 to 80% by volume of at least one carbonic acid ester selected from the group consisting of dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate,
It is a mixed solvent with 80 to 20% by volume of 1,2-dimethoxyethane, and the solute is lithium trifluoromethanesulfonate or lithium hexafluorophosphate.

【0006】二酸化マンガンとしては、電解二酸化マン
ガン及び化学二酸化マンガンのいずれも使用することが
できるが、化学二酸化マンガンは製法上不純物の混入が
多く、また高密度のものが得られにくいので、電解二酸
化マンガンを使用することが好ましい。
As the manganese dioxide, either electrolytic manganese dioxide or chemical manganese dioxide can be used. However, since chemical manganese dioxide contains a large amount of impurities due to the manufacturing method, and it is difficult to obtain high density manganese dioxide, electrolytic manganese dioxide can be obtained. Preference is given to using manganese.

【0007】リチウム化合物としては、水酸化リチウ
ム、炭酸リチウム、硝酸リチウム、酸化リチウムが例示
される。
Examples of the lithium compound include lithium hydroxide, lithium carbonate, lithium nitrate and lithium oxide.

【0008】二酸化マンガンとリチウム化合物との混合
物の焼成温度は150〜400°Cである。150°C
未満の場合は含有せる水分が充分に除去されないため、
一方400°Cを越えた場合は二酸化マンガンの結晶構
造が変化して失活するため、いずれの場合にも良好な低
温放電特性を発現するリチウム一次電池を得ることが困
難となる。
The firing temperature of the mixture of manganese dioxide and a lithium compound is 150 to 400 ° C. 150 ° C
If it is less than less than enough water is not removed,
On the other hand, when the temperature exceeds 400 ° C., the crystal structure of manganese dioxide changes and deactivates, and in any case, it becomes difficult to obtain a lithium primary battery exhibiting good low-temperature discharge characteristics.

【0009】本発明における表面改質二酸化マンガンの
リチウム含有量は、リチウムとマンガンとの総量に基づ
いて1〜15原子%である。リチウム含有量が1原子%
未満の場合は二酸化マンガンの表面を充分に改質するこ
とが困難となるため、一方リチウム含有量が15原子%
を越えた場合は正極活物質たる二酸化マンガンの量が減
少するため、いずれの場合にも良好な低温放電特性を発
現するリチウム一次電池を得ることが困難となる。
The lithium content of the surface-modified manganese dioxide in the present invention is 1 to 15 atom% based on the total amount of lithium and manganese. Lithium content is 1 atomic%
If it is less than the above, it is difficult to sufficiently modify the surface of manganese dioxide, so that the lithium content is 15 atomic%.
If it exceeds the above range, the amount of manganese dioxide as the positive electrode active material decreases, and in any case, it becomes difficult to obtain a lithium primary battery exhibiting good low temperature discharge characteristics.

【0010】本発明における非水電解液は、エチレンカ
ーボネート、プロピレンカーボネート、ブチレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネート
及びエチルメチルカーボネートよりなる群から選ばれた
少なくとも1種の炭酸エステル20〜80体積%と、
1,2−ジメトキシエタン80〜20体積%とからなる
混合溶媒に、トリフルオロメタンスルホン酸リチウム又
はヘキサフルオロリン酸リチウムを溶かしたものであ
る。非水電解液の溶媒及び溶質がこのように限定される
のは、たとえ正極活物質として上記した表面改質二酸化
マンガンを使用したとしても、他の溶媒又は溶質を使用
したのでは、良好な低温放電特性を発現するリチウム一
次電池を必ずしも得ることができないからである。
The non-aqueous electrolyte in the present invention contains 20 to 80% by volume of at least one carbonic acid ester selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
It is obtained by dissolving lithium trifluoromethanesulfonate or lithium hexafluorophosphate in a mixed solvent containing 80 to 20% by volume of 1,2-dimethoxyethane. The solvent and solute of the non-aqueous electrolytic solution are limited in this way, even if the above-mentioned surface-modified manganese dioxide is used as the positive electrode active material, if another solvent or solute is used, a good low temperature is obtained. This is because it is not always possible to obtain a lithium primary battery that exhibits discharge characteristics.

【0011】[0011]

【作用】本発明電池においては、正極活物質として表面
改質二酸化マンガンが、また非水電解液として該表面改
質二酸化マンガンとの濡れ性に優れる非水電解液が、そ
れぞれ使用されているので、従来のリチウム一次電池に
比べて、充放電時の正極の有効反応面積が大きく、低温
放電特性に優れる。このように二酸化マンガンの表面改
質により特定の非水電解液に対する濡れ性が向上する理
由については、本発明者らにおいても定かではないが、
表面改質により二酸化マンガンの粒子表面にリチウムが
生成付着し、このリチウムが二酸化マンガンの特定の非
水電解液に対する濡れ性の向上に貢献しているのではな
いかと考える。
In the battery of the present invention, the surface-modified manganese dioxide is used as the positive electrode active material, and the non-aqueous electrolyte having excellent wettability with the surface-modified manganese dioxide is used as the non-aqueous electrolyte. As compared with the conventional lithium primary battery, the effective reaction area of the positive electrode during charging / discharging is large, and the low temperature discharge characteristics are excellent. The reason why the surface modification of manganese dioxide improves the wettability to a specific non-aqueous electrolyte is not clear even by the present inventors,
It is considered that lithium is generated and adhered to the surface of the manganese dioxide particles by the surface modification, and this lithium contributes to the improvement of the wettability of the manganese dioxide with respect to the specific non-aqueous electrolyte.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0013】〔正極の作製〕正極活物質としての二酸化
マンガン粉末(粒径100μm以下)と、表1又は表2
中に示す種々のリチウム化合物(粒径100μm以下)
の粉末とを、マンガンとリチウムとの原子比が90:1
0となる比率で混合し、375°Cで2時間焼成して、
表面改質二酸化マンガン粉末を作製した。
[Production of Positive Electrode] Manganese dioxide powder (particle size: 100 μm or less) as a positive electrode active material, and Table 1 or Table 2.
Various lithium compounds shown inside (particle size 100 μm or less)
And the atomic ratio of manganese to lithium is 90: 1.
Mix in a ratio of 0 and fire at 375 ° C for 2 hours,
A surface modified manganese dioxide powder was prepared.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】次いで、これらの表面改質二酸化マンガン
粉末又は表面改質しなかった二酸化マンガン粉末と、導
電剤としてのカーボン(人造黒鉛)と、結着剤とを、重
量比80:10:10で混合し、成形して、円板状の正
極を作製した。
Next, the surface-modified manganese dioxide powder or the manganese dioxide powder which has not been surface-modified, carbon (artificial graphite) as a conductive agent, and a binder are mixed at a weight ratio of 80:10:10. A disk-shaped positive electrode was produced by mixing and molding.

【0017】〔負極の作製〕リチウム金属板を打ち抜い
て円板状の負極を作製した。
[Production of Negative Electrode] A lithium metal plate was punched out to produce a disk-shaped negative electrode.

【0018】〔非水電解液の調製〕表1又は表2に示す
混合溶媒及び溶質を使用して、種々の非水電解液を調製
した。溶質濃度は全て1モル/リットルとした。二成分
系の混合溶媒については、炭酸エステルと1,2−ジメ
トキシエタンとの体積比を、全て1:1とした。また、
三成分系の混合溶媒については、二種の炭酸エステルと
1,2−ジメトキシエタンとの混合比(体積%)を、全
て30:30:40とした。
[Preparation of Non-Aqueous Electrolyte] Various non-aqueous electrolytes were prepared using the mixed solvent and solute shown in Table 1 or Table 2. All solute concentrations were 1 mol / liter. For the binary solvent mixture, the volume ratio of the carbonic acid ester and 1,2-dimethoxyethane was all 1: 1. Also,
Regarding the ternary mixed solvent, the mixing ratio (volume%) of the two types of carbonic acid ester and 1,2-dimethoxyethane was all set to 30:30:40.

【0019】表1及び表2中の略符号はそれぞれ下記の
溶媒を示す。 EC:エチレンカーボネート DME:1,2−ジメトキシエタン PC:プロピレンカーボネート BC:1,2−ブチレンカーボネート DMC:ジメチルカーボネート EMC:エチルメチルカーボネート DEC:ジエチルカーボネート γ−BL:γ−ブチロラクトン SL:スルホラン THF:テトラヒドロフラン DOS:1,3−ジオキソラン
The abbreviations in Tables 1 and 2 indicate the following solvents, respectively. EC: ethylene carbonate DME: 1,2-dimethoxyethane PC: propylene carbonate BC: 1,2-butylene carbonate DMC: dimethyl carbonate EMC: ethyl methyl carbonate DEC: diethyl carbonate γ-BL: γ-butyrolactone SL: sulfolane THF: tetrahydrofuran DOS: 1,3-dioxolane

【0020】〔リチウム一次電池の組立〕上記の正極、
負極及び非水電解液を使用して、扁平型のリチウム一次
電池(直径20mm、高さ2.5mm)を組み立てた。
このうち、本発明電池をA1〜A14で表し、比較電池
をB1〜B15で表す。セパレータとしては、ポリアミ
ド不織布を使用した。
[Assembly of Lithium Primary Battery] The above positive electrode,
A flat type lithium primary battery (diameter 20 mm, height 2.5 mm) was assembled using the negative electrode and the non-aqueous electrolyte.
Of these, the batteries of the present invention are represented by A1 to A14, and the comparative batteries are represented by B1 to B15. A polyamide nonwoven fabric was used as the separator.

【0021】〔放電容量〕−20°Cにて、各電池を5
kΩの定抵抗放電で終止電圧2Vで放電して、各電池の
低温での放電容量を求めた。結果を先の表1及び表2に
示す。
[Discharge capacity] At -20 ° C, each battery was charged to 5
The discharge capacity at a low temperature of each battery was obtained by discharging with a constant resistance discharge of kΩ at a final voltage of 2V. The results are shown in Tables 1 and 2 above.

【0022】表1及び表2より、本発明電池A1〜A1
4は、比較電池B1〜B15に比べて、−20°Cでの
放電容量が大きく、低温放電特性に優れていることが分
かる。
From Tables 1 and 2, the batteries A1 to A1 of the present invention are shown.
It can be seen that No. 4 has a larger discharge capacity at −20 ° C. and is excellent in low temperature discharge characteristics as compared with Comparative Batteries B1 to B15.

【0023】〔表面改質二酸化マンガンのリチウム含有
率と低温放電特性の関係〕エチレンカーボネートと1,
2−ブチレンカーボネートと1,2−ジメトキシエタン
との体積比30:30:40の混合溶媒にトリフルオロ
メタンスルホン酸リチウムを1モル/リットル溶かした
非水電解液を使用し、且つマンガンとリチウムとの総量
に基づくリチウム含有率が0.5原子%、1原子%、2
原子%、5原子%、8原子%、15原子%又は20原子
%の表面改質二酸化マンガンを正極活物質として使用し
たこと以外は先と同様にして、リチウム一次電池を組み
立てた。
[Relationship between Lithium Content of Surface Modified Manganese Dioxide and Low Temperature Discharge Characteristics] Ethylene carbonate and 1,
A non-aqueous electrolytic solution prepared by dissolving 1 mol / liter of lithium trifluoromethanesulfonate in a mixed solvent of 2-butylene carbonate and 1,2-dimethoxyethane in a volume ratio of 30:30:40 is used, and the mixture of manganese and lithium is used. The lithium content based on the total amount is 0.5 atom%, 1 atom%, 2
A lithium primary battery was assembled in the same manner as above, except that at least 5 atomic%, 8 atomic%, 15 atomic% or 20 atomic% of the surface-modified manganese dioxide was used as the positive electrode active material.

【0024】次いで、これらの各電池を、先と同じ条件
で放電して、各電池の−20°Cでの放電容量を求め
た。結果を図1に示す。図1中には、本発明電池A11
の−20°Cでの放電容量(105mAh)も示してあ
る。
Next, each of these batteries was discharged under the same conditions as above, and the discharge capacity at -20 ° C of each battery was determined. The results are shown in Fig. 1. In FIG. 1, the battery A11 of the invention is shown.
The discharge capacity (−105 mAh) at −20 ° C. is also shown.

【0025】図1は、表面改質二酸化マンガンのリチウ
ム含有率と低温放電特性の関係を、縦軸に−20°Cで
の放電容量(mAh)を、また横軸にリチウム含有率
(原子%)をとって示したグラフである。図1より、低
温での放電容量の大きいリチウム一次電池を得るために
は、リチウム含有率1〜15原子%、好ましくは2〜8
原子%の表面改質二酸化マンガンを使用する必要がある
ことが分かる。
FIG. 1 shows the relationship between the lithium content of the surface-modified manganese dioxide and the low temperature discharge characteristics, the vertical axis represents the discharge capacity (mAh) at −20 ° C., and the horizontal axis represents the lithium content (atomic%). ) Is a graph shown. From FIG. 1, in order to obtain a lithium primary battery having a large discharge capacity at low temperatures, the lithium content is 1 to 15 atom%, preferably 2 to 8
It can be seen that it is necessary to use atomic percent surface modified manganese dioxide.

【0026】〔表面改質二酸化マンガンの焼成温度と低
温放電特性の関係〕エチレンカーボネートと1,2−ブ
チレンカーボネートと1,2−ジメトキシエタンとの混
合比(体積%)30:30:40の混合溶媒にトリフル
オロメタンスルホン酸リチウムを1モル/リットル溶か
した非水電解液を使用し、且つ100°C、150°
C、200°C、300°C、400°C又は450°
Cで二酸化マンガンと水酸化リチウムとの混合物を焼成
して得た、マンガンとリチウムとの総量に基づくリチウ
ム含有率が10原子%の表面改質二酸化マンガンを正極
活物質として使用したこと以外は先と同様にして、リチ
ウム一次電池を組み立てた。
[Relationship between firing temperature of surface-modified manganese dioxide and low-temperature discharge characteristics] Mixing ratio (volume%) of ethylene carbonate, 1,2-butylene carbonate and 1,2-dimethoxyethane of 30:30:40 Using a non-aqueous electrolyte in which 1 mol / liter of lithium trifluoromethanesulfonate is dissolved in a solvent, and at 100 ° C and 150 °
C, 200 ° C, 300 ° C, 400 ° C or 450 °
Except that a surface-modified manganese dioxide having a lithium content of 10 atomic% based on the total amount of manganese and lithium obtained by firing a mixture of manganese dioxide and lithium hydroxide at C was used as the positive electrode active material. A lithium primary battery was assembled in the same manner as in.

【0027】次いで、これらの各電池を、先と同じ条件
で放電して、各電池の−20°Cでの放電容量を求め
た。結果を図2に示す。図2中には、本発明電池A11
の−20°Cでの放電容量(105mAh)も示してあ
る。
Next, each of these batteries was discharged under the same conditions as above, and the discharge capacity at -20 ° C of each battery was determined. The results are shown in Figure 2. In FIG. 2, the battery A11 of the invention is shown.
The discharge capacity (−105 mAh) at −20 ° C. is also shown.

【0028】図2は、表面改質二酸化マンガン作製時の
焼成温度と低温放電特性の関係を、縦軸に−20°Cで
の放電容量(mAh)を、また横軸に焼成温度(°C)
をとって示したグラフである。図2より、低温での放電
容量の大きいリチウム一次電池を得るためには、150
〜400°Cで焼成して得た表面改質二酸化マンガンを
使用する必要があることが分かる。
FIG. 2 shows the relationship between the firing temperature and the low-temperature discharge characteristics in the production of surface-modified manganese dioxide, the vertical axis represents the discharge capacity (mAh) at −20 ° C., and the horizontal axis represents the firing temperature (° C). )
It is the graph which took and showed. From FIG. 2, in order to obtain a lithium primary battery having a large discharge capacity at low temperature,
It can be seen that it is necessary to use the surface modified manganese dioxide obtained by firing at ~ 400 ° C.

【0029】〔炭酸エステルと1,2−ジメトキシエタ
ンとの混合比と低温放電特性の関係〕エチレンカーボネ
ートと1,2−ジメトキシエタンとの体積比90:1
0、80:20、50:50、20:80又は10:9
0の混合溶媒にトリフルオロメタンスルホン酸リチウム
を1モル/リットル溶かした非水電解液を使用し、且つ
375°Cで二酸化マンガンと水酸化リチウムとの混合
物を焼成して得た、マンガンとリチウムとの総量に基づ
くリチウム含有率が10原子%の表面改質二酸化マンガ
ンを正極活物質として使用したこと以外は先と同様にし
て、リチウム一次電池を組み立てた。
[Relationship between mixing ratio of carbonic acid ester and 1,2-dimethoxyethane and low-temperature discharge characteristics] Volume ratio of ethylene carbonate and 1,2-dimethoxyethane 90: 1
0, 80:20, 50:50, 20:80 or 10: 9
Manganese and lithium obtained by firing a mixture of manganese dioxide and lithium hydroxide at 375 ° C. using a non-aqueous electrolyte in which 1 mol / liter of lithium trifluoromethanesulfonate was dissolved in a mixed solvent of 0. A lithium primary battery was assembled in the same manner as above except that surface-modified manganese dioxide having a lithium content of 10 atomic% based on the total amount of was used as the positive electrode active material.

【0030】次いで、これらの各電池を、先と同じ条件
で放電して、各電池の−20°Cでの放電容量を求め
た。結果を図3に示す。
Next, each of these batteries was discharged under the same conditions as above, and the discharge capacity at -20 ° C of each battery was determined. The results are shown in Fig. 3.

【0031】図3は、エチレンカーボネートと1,2−
ジメトキシエタンとの混合比と低温放電特性の関係を、
縦軸に−20°Cでの放電容量(mAh)を、また横軸
にエチレンカーボネートと1,2−ジメトキシエタンと
の混合比をとって示したグラフである。図3より、低温
での放電容量の大きい低温放電特性に優れたリチウム一
次電池を得るためには、エチレンカーボネートと1,2
−ジメトキシエタンとの混合比を20:80〜80:2
0の範囲とする必要があることが分かる。なお、他の炭
酸エステルについても、同じ混合比の範囲において優れ
た低温放電特性を有するリチウム一次電池が得られるこ
とを確認した。
FIG. 3 shows ethylene carbonate and 1,2-
The relationship between the mixing ratio with dimethoxyethane and the low temperature discharge characteristics
3 is a graph showing the discharge capacity (mAh) at −20 ° C. on the vertical axis and the mixing ratio of ethylene carbonate and 1,2-dimethoxyethane on the horizontal axis. From FIG. 3, in order to obtain a lithium primary battery having a large discharge capacity at low temperature and excellent in low temperature discharge characteristics, ethylene carbonate and 1,2
-The mixing ratio with dimethoxyethane is 20:80 to 80: 2.
It can be seen that the range needs to be 0. It was confirmed that lithium carbonate primary batteries having excellent low-temperature discharge characteristics were obtained with other carbonic acid esters within the same mixing ratio range.

【0032】上記実施例では、本発明を扁平型のリチウ
ム一次電池に適用する場合について説明したが、電池の
形状に特に制限はなく、本発明は、円筒型、角型など、
種々の形状のリチウム一次電池に適用し得るものであ
る。
In the above embodiment, the case where the present invention is applied to the flat type lithium primary battery has been described. However, the shape of the battery is not particularly limited, and the present invention is applicable to a cylindrical type, a square type, etc.
It can be applied to lithium primary batteries of various shapes.

【0033】[0033]

【発明の効果】本発明電池は、正極の非水電解液に対す
る濡れ性が良いので、正極の有効反応面積が大きく、低
温放電特性に優れる。
Since the battery of the present invention has good wettability of the positive electrode with respect to the non-aqueous electrolyte, the positive electrode has a large effective reaction area and excellent low-temperature discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面改質二酸化マンガンのリチウム含有率と低
温放電特性の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the lithium content of surface-modified manganese dioxide and low-temperature discharge characteristics.

【図2】表面改質二酸化マンガン作製時の焼成温度と低
温放電特性の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the firing temperature and the low-temperature discharge characteristics when producing surface-modified manganese dioxide.

【図3】エチレンカーボネート(炭酸エステル)と1,
2−ジメトキシエタンとの混合比と低温放電特性の関係
を示すグラフである。
[Figure 3] Ethylene carbonate (carbonic acid ester) and 1,
3 is a graph showing the relationship between the mixing ratio with 2-dimethoxyethane and low temperature discharge characteristics.

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front page continuation (72) Inventor Koji Nishio 2-5-5 Keihan Hon-dori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-5 Keihan-hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極と、金属リチウム又はリチウム合金を
活物質とする負極と、溶質及び溶媒からなる非水電解液
と、セパレータとを備えるリチウム一次電池において、
前記正極が、二酸化マンガンとリチウム化合物との混合
物を150〜400°Cで焼成してなる、リチウムとマ
ンガンとの総量に基づいてリチウムを1〜15原子%含
有する表面改質二酸化マンガンを活物質とし、前記溶媒
が、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート及びエチルメチルカーボネートよりなる
群から選ばれた少なくとも1種の炭酸エステル20〜8
0体積%と、1,2−ジメトキシエタン80〜20体積
%との混合溶媒であり、且つ前記溶質が、トリフルオロ
メタンスルホン酸リチウム又はヘキサフルオロリン酸リ
チウムであることを特徴とするリチウム一次電池。
1. A lithium primary battery comprising a positive electrode, a negative electrode using metallic lithium or a lithium alloy as an active material, a non-aqueous electrolytic solution containing a solute and a solvent, and a separator,
The positive electrode is a material obtained by firing a mixture of manganese dioxide and a lithium compound at 150 to 400 ° C. and containing surface-modified manganese dioxide containing 1 to 15 atom% of lithium based on the total amount of lithium and manganese as an active material. And the solvent is ethylene carbonate, propylene carbonate,
20-8 at least one carbonic acid ester selected from the group consisting of butylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate
A lithium primary battery, which is a mixed solvent of 0% by volume and 80 to 20% by volume of 1,2-dimethoxyethane, and wherein the solute is lithium trifluoromethanesulfonate or lithium hexafluorophosphate.
【請求項2】前記リチウム化合物が、水酸化リチウム、
炭酸リチウム、硝酸リチウム又は酸化リチウムである請
求項1記載のリチウム一次電池。
2. The lithium compound is lithium hydroxide,
The lithium primary battery according to claim 1, which is lithium carbonate, lithium nitrate or lithium oxide.
【請求項3】前記表面改質二酸化マンガンが、リチウム
とマンガンとの総量に基づいてリチウムを2〜8原子%
含有する請求項1又は2記載のリチウム一次電池。
3. The surface-modified manganese dioxide contains 2 to 8 atomic% lithium based on the total amount of lithium and manganese.
The lithium primary battery according to claim 1, which contains the lithium primary battery.
JP27592394A 1994-10-14 1994-10-14 Lithium primary battery Expired - Lifetime JP3322490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27592394A JP3322490B2 (en) 1994-10-14 1994-10-14 Lithium primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27592394A JP3322490B2 (en) 1994-10-14 1994-10-14 Lithium primary battery

Publications (2)

Publication Number Publication Date
JPH08115728A true JPH08115728A (en) 1996-05-07
JP3322490B2 JP3322490B2 (en) 2002-09-09

Family

ID=17562313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27592394A Expired - Lifetime JP3322490B2 (en) 1994-10-14 1994-10-14 Lithium primary battery

Country Status (1)

Country Link
JP (1) JP3322490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190800B1 (en) 1998-05-11 2001-02-20 The Gillette Company Lithiated manganese dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190800B1 (en) 1998-05-11 2001-02-20 The Gillette Company Lithiated manganese dioxide

Also Published As

Publication number Publication date
JP3322490B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JP3669064B2 (en) Nonaqueous electrolyte secondary battery
JP4070585B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2007214138A (en) Layered lithium-nickel-based composite oxide powder for lithium secondary battery positive electrode material and its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2000195516A (en) Lithium secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH0864238A (en) Nonaqueous electrolyte battery
KR20080031470A (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP4003759B2 (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP3301931B2 (en) Lithium secondary battery
JP2009193686A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2012146639A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JPH09147910A (en) Lithium secondary battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
US6482546B1 (en) Rechargeable lithium battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2000156224A (en) Nonaqueous electrolyte battery
JP2003163029A (en) Secondary non-aqueous electrolyte battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3229769B2 (en) Lithium secondary battery
WO2021184247A1 (en) Positive electrode active material and electrochemical device containing same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH08115728A (en) Lithium primary battery
JP3072049B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term