JPH08112515A - Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas - Google Patents

Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas

Info

Publication number
JPH08112515A
JPH08112515A JP6275540A JP27554094A JPH08112515A JP H08112515 A JPH08112515 A JP H08112515A JP 6275540 A JP6275540 A JP 6275540A JP 27554094 A JP27554094 A JP 27554094A JP H08112515 A JPH08112515 A JP H08112515A
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
dust
electrostatic precipitator
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6275540A
Other languages
Japanese (ja)
Inventor
Takeo Tanaka
建夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP6275540A priority Critical patent/JPH08112515A/en
Publication of JPH08112515A publication Critical patent/JPH08112515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To reduce the quantity of dust in waste gas fed into a dry desulfurizing/denitrifying device and to reduce driving power by recycling off gas into waste gas in the upstream side of an electrostatic precipitator. CONSTITUTION: Off gas containing SO2 and SO3 which have not been removed by a byproduct recovery device 11 is recycle-injected into inlet waste gas of an electrostatic precipitator 3. In this way, SO3 in the off gas is stuck on dust in waste gas and the dust is collected and removed by the electrostatic precipitator 3. Therefore, since the quantity of SO3 at the inlet of an adsorber 7 is remarkably decreased and the quantity of formed ammonium salt is decreased, the ammonium salt is prevented from being stuck and deposited on an inlet louver 13 to block a gas flow passage. Further, the electric resistance of the dust is lowered to improve dust collecting performance in the electrostatic precipitator 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ボイラ等からの排ガ
ス中に含まれている硫黄酸化物(SOX)及び窒素酸化
物(NOX)を除去するための乾式脱硫脱硝方法に関す
る。
BACKGROUND OF THE INVENTION This invention relates to a dry desulfurization and denitration process for removing sulfur oxides contained in the exhaust gas from a boiler or the like (SO X) and nitrogen oxides (NO X).

【0002】[0002]

【従来の技術】SOX及びNOXを含有する排ガスを活性
炭等の粒状触媒が充填されている直交流式移動層吸着塔
(以下吸着塔と略称する)に導き、SOX、NOXを粒状
触媒に接触させ、SOXは触媒に吸着させ、NOXはN2
に還元して除去する乾式脱硫脱硝方法は従来から公知で
ある。そして、該触媒の活性向上、NOXとの反応や触
媒が損耗するのを低減するために、吸着塔の入口で排ガ
ス中にアンモニアガスを注入することも公知である。こ
れら従来からの脱硫脱硝方法は、図3に示すように、ボ
イラ1からの排ガスは、エアヒータ2で冷却され電気集
塵機3で排ガス中のダストを捕集した後、ブロワー4を
経て乾式脱硫脱硝装置5に導入される。乾式脱硫脱硝装
置の詳細は図4に示すごとく、吸着塔7、脱離塔8、コ
ンベア9、アンモニア供給装置10から構成されてお
り、前記吸着塔7の入口で排ガス中にアンモニアガスが
注入され吸着塔に導入される。そして、排ガスは該吸着
塔内に充填されている活性炭と反応し、排ガス中のSO
Xは、硫酸アンモニウム塩の形で活性炭に吸着され、N
Xは還元反応によってN2に還元されてSOX、NOX
除去されたガスとなって煙突6から放散される。SOX
を吸着している活性炭は吸着塔7の底部から取り出され
コンベア9により脱離塔8へ搬入される。脱離塔8で活
性炭は降下しながら約400℃まで加熱されると、SO
Xは活性炭から脱離し、活性炭を再生すると共に脱離ガ
スはSO2濃縮ガスとなって副生品回収装置11へ導か
れ副生品(硫酸等)として回収される。しかし、一部は
回収されずにオフガス中にSO2やSO3として残留して
いるため、副生品回収装置からのオフガスは前記吸着塔
7の入口で排ガス中へリサイクルされる。一方、脱離塔
8で再生された活性炭は篩分機12でダストを分離した
後、コンベア9により吸着塔7の頂部から該吸着塔内に
供給され再使用される。
2. Description of the Related Art Exhaust gas containing SO X and NO X is led to a cross-flow type moving bed adsorption tower (hereinafter abbreviated as an adsorption tower) packed with a granular catalyst such as activated carbon, and SO X and NO X are granular. The catalyst is brought into contact with the catalyst, SO x is adsorbed on the catalyst, and NO x is N 2
A dry desulfurization and denitration method for reducing and removing the above is conventionally known. The enhanced activity of the catalyst, in order to reduce a reaction or catalyst with NO X is worn, it is also known to inject ammonia gas into the exhaust gas at the inlet of the adsorption tower. In these conventional desulfurization and denitration methods, as shown in FIG. 3, the exhaust gas from the boiler 1 is cooled by an air heater 2 and the dust in the exhaust gas is collected by an electric dust collector 3 and then passed through a blower 4 to obtain a dry desulfurization and denitration device. Introduced in 5. As shown in FIG. 4, the details of the dry desulfurization and denitration device are composed of an adsorption tower 7, a desorption tower 8, a conveyor 9 and an ammonia supply device 10. At the inlet of the adsorption tower 7, ammonia gas is injected into the exhaust gas. It is introduced into the adsorption tower. Then, the exhaust gas reacts with the activated carbon filled in the adsorption tower, so that the SO
X is adsorbed on activated carbon in the form of ammonium sulfate,
O X is reduced to N 2 by a reduction reaction and becomes a gas from which SO X and NO X have been removed, and is emitted from the chimney 6. SO X
The activated carbon adsorbing is taken out from the bottom of the adsorption tower 7 and carried into the desorption tower 8 by the conveyor 9. When the activated carbon descends in the desorption tower 8 and is heated to about 400 ° C., SO
X is desorbed from the activated carbon, regenerates the activated carbon, and the desorbed gas becomes SO 2 concentrated gas, which is guided to the byproduct recovery device 11 and is recovered as a byproduct (sulfuric acid or the like). However, a part of the off-gas from the by-product recovery device is recycled into the exhaust gas at the inlet of the adsorption tower 7 because some of it remains as SO 2 and SO 3 in the off-gas without being recovered. On the other hand, the activated carbon regenerated in the desorption tower 8 is separated into dust by a sieving machine 12, and then supplied from the top of the adsorption tower 7 into the adsorption tower 7 by a conveyor 9 for reuse.

【0003】[0003]

【発明が解決しようとする課題】従来の乾式脱硫脱硝方
法は以上のようにして行なわれているが、オフガスは吸
着塔の入口で排ガス中にリサイクルされているため、オ
フガス中のSO3がアンモニアと化合しアンモニウム塩
が生成され、このアンモニウム塩が煙道に付着堆積する
だけでなく、吸着塔7の活性炭を保持している入口ルー
バ13に付着堆積し、ガス流路を閉塞し、圧力損失を増
加する等の問題点があった。この発明は、上記の問題点
を解決するとともに、脱硫脱硝装置へ送給される排ガス
中のダスト量を減少させ、設備の運転動力を節減させる
ことを目的とするものである。
The conventional dry desulfurization and denitration method is performed as described above, but since the off gas is recycled into the exhaust gas at the inlet of the adsorption tower, the SO 3 in the off gas is ammonia. To produce an ammonium salt, which not only deposits and deposits on the flue but also deposits and deposits on the inlet louver 13 holding the activated carbon of the adsorption tower 7, blocking the gas flow path and causing pressure loss. There was a problem such as increasing. It is an object of the present invention to solve the above-mentioned problems and to reduce the amount of dust in the exhaust gas sent to the desulfurization and denitration apparatus to save the operating power of the equipment.

【0004】[0004]

【課題を解決するための手段】ボイラー等から排出され
るSOX、NOXを含有する排ガスを電気集塵装置で脱塵
した後、排ガスにアンモニアを注入し、該ガスを活性炭
等の粒状触媒が充填された吸着塔に導入し、該吸着塔内
で脱硫脱硝反応を行なわせ、SOXが吸着されている粒
状触媒を脱離塔へ導いてSOXを脱離し、該脱離ガスを
副生品回収装置で硫酸などの副生品として回収し、副生
品回収装置からのオフガスを吸着塔の入口排ガス中にリ
サイクルしている乾式脱硫脱硝方法において、前記排ガ
スへのアンモニアの注入箇所及び、前記オフガスの注入
箇所を電気集塵装置の上流にしたことを特徴とする。
Means for Solving the Problems After exhaust gas containing SO X and NO X discharged from a boiler or the like is dedusted by an electric dust collector, ammonia is injected into the exhaust gas and the gas is used as a granular catalyst such as activated carbon. Is introduced into the adsorption tower, the desulfurization and denitration reaction is carried out in the adsorption tower, and the granular catalyst in which SO X is adsorbed is introduced into the desorption tower to desorb SO X and the desorbed gas as a by-product. In a dry desulfurization denitration method in which a raw product recovery device collects by-products such as sulfuric acid and the off-gas from the by-product recovery device is recycled into the exhaust gas at the inlet of the adsorption tower, the injection point of ammonia into the exhaust gas and The off-gas injection location is upstream of the electrostatic precipitator.

【0005】[0005]

【作用】この発明では、副生品回収装置11からのオフ
ガスを電気集塵装置入口の排ガス中にリサイクルするこ
とにより、オフガス中のSO3が排ガス中のダストに付
着し、該ダストは電気集塵装置で捕集除去されるので吸
着塔7入口におけるSO3の量が大幅に減少し、アンモ
ニアを注入することにより生成されるアンモニウム塩の
量が減少するため、アンモニウム塩が入口ルーバ13へ
付着堆積しガス流路を閉塞するのを抑制することができ
る。さらに、ダストの電気抵抗値が高い場合、SO3
ダストに付着するためダストの電気抵抗値が低下し、電
気集塵装置3での集塵性能を向上させる。また、アンモ
ニアガスの注入箇所を乾式脱硫脱硝装置5の吸着塔7入
口から電気集塵装置3入口に変更することにより、電気
集塵装置の前段でアンモニウム塩を生成させ、これを電
気集塵装置で除去できるため乾式脱硫脱硝装置入口のダ
スト中にはアンモニウム塩が低減しているので該装置の
吸着塔内にダストの付着、堆積が起こりにくくなる。さ
らに、排ガス中のハロゲン化合物もアンモニアと反応
し、アンモニウム塩を生成するので、これも電気集塵装
置で除去することができるため、同様に吸着塔内にダス
トの付着、堆積が起こりにくくなる。
In the present invention, the off gas from the by-product recovery device 11 is recycled into the exhaust gas at the inlet of the electrostatic precipitator, so that SO 3 in the off gas adheres to the dust in the exhaust gas, and the dust is collected by the electrostatic collector. Since it is collected and removed by the dust device, the amount of SO 3 at the inlet of the adsorption tower 7 is significantly reduced, and the amount of ammonium salt produced by injecting ammonia is reduced, so that the ammonium salt adheres to the inlet louver 13. It is possible to suppress the accumulation and blocking of the gas flow path. Further, when the electric resistance value of the dust is high, SO 3 adheres to the dust, so that the electric resistance value of the dust is lowered, and the dust collecting performance of the electric dust collector 3 is improved. Further, by changing the injection position of the ammonia gas from the inlet of the adsorption tower 7 of the dry desulfurization and denitration device 5 to the inlet of the electrostatic precipitator 3, an ammonium salt is generated in the preceding stage of the electrostatic precipitator, and the ammonium salt is generated. Since the ammonium salt is reduced in the dust at the inlet of the dry desulfurization and denitration apparatus because it can be removed by, the adhesion and deposition of dust in the adsorption tower of the apparatus hardly occur. Further, the halogen compound in the exhaust gas also reacts with ammonia to form an ammonium salt, which can also be removed by the electrostatic precipitator, so that dust is unlikely to adhere or accumulate in the adsorption tower.

【0006】[0006]

【実施例】つぎに、この発明の実施例について説明す
る。図1は請求項1の発明方法のフローチャートであ
る。ボイラー1からの排ガスはエアヒータ2で約140
℃に冷却されて排ガス中のダストを捕集するため、電気
集塵装置3に導入される。電気集塵装置3で脱塵された
排ガスはブロワー4により乾式脱硫脱硝装置5の吸着塔
7に導かれる。該吸着塔7の入口部で排ガス中にアンモ
ニアガスが注入され、該装置5で排ガス中のSOX、N
Xを除去し、煙突6から放散される。そして、乾式脱
硫脱硝装置の脱離塔8からの脱離ガス(SO2濃縮ガ
ス)は副生品回収装置11に導かれ、硫酸などの副生品
として回収される。(ここまでは、公知の脱硫脱硝方法
と同じである。) しかして、副生品回収装置で回収しきれなかったS
2、SO3含有オフガスを前記電気集塵装置3の入口排
ガス中にリサイクル注入している。このようにすること
により、オフガス中のSO3が排ガス中のダストに付着
し、該ダストは電気集塵装置3で捕集除去されるので吸
着塔7入口におけるSO3の量が大幅に減少し、生成さ
れるアンモニウム塩の量が減少するのでアンモニウム塩
が入口ルーバ13へ付着堆積しガス流路を閉塞するのを
抑制することができる。さらに、ダストの電気抵抗値が
高い場合、SO3がダストに硫酸の形で付着するためダ
ストの電気抵抗値が集塵性に好適な値に低下し、電気集
塵機3での集塵性能を向上させる。
EXAMPLES Next, examples of the present invention will be described. FIG. 1 is a flowchart of the method of the present invention. The exhaust gas from the boiler 1 is about 140 at the air heater 2.
In order to collect the dust in the exhaust gas after cooling to ℃, it is introduced into the electrostatic precipitator 3. The exhaust gas dedusted by the electric dust collector 3 is guided by the blower 4 to the adsorption tower 7 of the dry desulfurization and denitration device 5. Is ammonia gas is injected into the exhaust gas at the inlet of the adsorber column 7, in the exhaust gas in the device 5 SO X, N
O x is removed and is emitted from the chimney 6. Then, the desorbed gas (SO 2 concentrated gas) from the desorption tower 8 of the dry desulfurization and denitration device is guided to the byproduct recovery device 11 and recovered as a byproduct such as sulfuric acid. (Up to this point, it is the same as the known desulfurization and denitration method.) However, S that could not be recovered by the byproduct recovery device
The off gas containing O 2 and SO 3 is recycled and injected into the exhaust gas at the inlet of the electrostatic precipitator 3. By doing so, SO 3 in the off-gas adheres to the dust in the exhaust gas, and the dust is collected and removed by the electrostatic precipitator 3, so the amount of SO 3 at the inlet of the adsorption tower 7 is greatly reduced. Since the amount of the produced ammonium salt decreases, it is possible to prevent the ammonium salt from adhering to and depositing on the inlet louver 13 and blocking the gas flow path. Further, when the electric resistance value of the dust is high, SO 3 adheres to the dust in the form of sulfuric acid, so that the electric resistance value of the dust is reduced to a value suitable for the dust collecting property, and the dust collecting performance of the electric dust collector 3 is improved. Let

【0007】図2は請求項2の発明方法のフローチャー
トである。排ガスへのアンモニアガスの注入箇所を除い
ては請求項1の発明と同じであり、この発明では、アン
モニアガスの注入箇所を電気集塵装置3の入口部とした
ことである。この方法によれば、電気集塵装置の前段で
アンモニウム塩を生成させ、これを電気集塵装置で除去
できるため乾式脱硫脱硝装置入口のダスト中にはアンモ
ニウム塩が低減しているので該装置の吸着塔内にダスト
の付着、堆積が起こりにくくなる。さらに、排ガス中の
ハロゲン化合物もアンモニアと反応し、アンモニウム塩
を生成するが、これも電気集塵装置で除去することがで
きるため、同様にダストの付着、堆積が起こりにくくな
る。
FIG. 2 is a flow chart of the method of the present invention. The present invention is the same as that of the first aspect of the invention except for the point of injecting the ammonia gas into the exhaust gas, and in this invention, the point of injecting the ammonia gas is the inlet of the electrostatic precipitator 3. According to this method, the ammonium salt is generated in the preceding stage of the electrostatic precipitator and can be removed by the electrostatic precipitator, so that the ammonium salt is reduced in the dust at the inlet of the dry desulfurization and denitration device, so It becomes difficult for dust to adhere and accumulate in the adsorption tower. Further, the halogen compound in the exhaust gas also reacts with ammonia to form an ammonium salt, which can also be removed by the electrostatic precipitator, so that dust adhesion and deposition are also less likely to occur.

【0008】[0008]

【発明の効果】この発明によれば、アンモニウム塩が入
口ルーバ13へ付着堆積し、吸着塔7のガス流路を閉塞
するのを抑制すると共にダストの電気抵抗値が高い場
合、これを集塵性に好適な値に低下し、電気集塵装置3
の集塵性能を向上させることができる。また、アンモニ
アガスの注入箇所を乾式脱硫脱硝装置5の吸着塔7入口
から電気集塵装置3入口に変更することにより、電気集
塵装置の前段でアンモニウム塩を生成させ、これを電気
集塵装置で除去できるため吸着塔入口のダスト中にはア
ンモニウム塩が低減しているので該装置の吸着塔入口ル
ーバにダストの付着、堆積が起こりにくくなり、吸着塔
の圧力損失が軽減され、この設備の運転コストを低減す
ることができる。さらに、排ガス中のハロゲン化合物も
アンモニアと反応し、アンモニウム塩を生成するので、
これを電気集塵装置で除去することができる等同様の効
果を奏する。
According to the present invention, it is possible to prevent ammonium salt from adhering to and depositing on the inlet louver 13 and blocking the gas flow path of the adsorption tower 7, and when dust has a high electric resistance value, it is collected. Electrostatic precipitator 3
The dust collection performance of can be improved. Further, by changing the injection position of the ammonia gas from the inlet of the adsorption tower 7 of the dry desulfurization and denitration device 5 to the inlet of the electrostatic precipitator 3, an ammonium salt is generated in the preceding stage of the electrostatic precipitator, and the ammonium salt is generated. Since the ammonium salt is reduced in the dust at the inlet of the adsorption tower because it can be removed by, the adhesion and deposition of dust on the louver at the inlet of the adsorption tower of the device are less likely to occur, and the pressure loss of the adsorption tower is reduced, The operating cost can be reduced. Furthermore, the halogen compounds in the exhaust gas also react with ammonia to form ammonium salts,
The same effect can be obtained such that this can be removed by the electrostatic precipitator.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明方法のフローチャートである。1 is a flow chart of the method of the invention as claimed in claim 1;

【図2】請求項2の発明方法のフローチャートである。FIG. 2 is a flowchart of the method of the present invention.

【図3】公知の乾式脱硫脱硝方法のフローチャートであ
る。
FIG. 3 is a flowchart of a known dry desulfurization and denitration method.

【図4】図3における乾式脱硫脱硝装置及び副製品回収
装置の詳細説明図である。
FIG. 4 is a detailed explanatory view of a dry desulfurization denitration device and a by-product recovery device in FIG.

【符号の説明】[Explanation of symbols]

1 ボイラー 2 エアヒータ 3 電気集塵装置 4 ブロワー 5 乾式脱硫脱硝装置 6 煙突 7 直交流式移動層吸着塔 8 脱離塔 9 コンベア 10 アンモニア供給装置 11 副生品回収装置 12 篩分機 13 ルーバ 1 Boiler 2 Air heater 3 Electrostatic precipitator 4 Blower 5 Dry desulfurization denitration device 6 Chimney 7 Cross flow type moving bed adsorption tower 8 Desorption tower 9 Conveyor 10 Ammonia supply device 11 By-product recovery device 12 Sieve filter 13 Louver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/81 53/56 53/94 B01D 53/34 123 B 129 B 53/36 102 G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01D 53/81 53/56 53/94 B01D 53/34 123 B 129 B 53/36 102 G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ボイラー等から排出されるSOX、NOX
含有する排ガスを電気集塵装置で脱塵した後、排ガスに
アンモニアを注入し、該ガスを活性炭等の粒状触媒が充
填された吸着塔に導入し、該吸着塔内で脱硫脱硝反応を
行なわせ、SOXが吸着されている粒状触媒を脱離塔へ
導いてSOXを脱離し、該脱離ガスを副生品回収装置で
硫酸などの副生品として回収し、副生品回収装置からの
オフガスを吸着塔の入口排ガス中にリサイクルしている
乾式脱硫脱硝方法において、前記オフガスの注入箇所を
電気集塵装置上流の排ガス中にリサイクルしたことを特
徴とする乾式脱硫脱硝方法。
1. An exhaust gas containing SO X and NO X discharged from a boiler or the like is dedusted by an electrostatic precipitator, ammonia is injected into the exhaust gas, and the gas is filled with a granular catalyst such as activated carbon. It is introduced into an adsorption tower, a desulfurization and denitration reaction is performed in the adsorption tower, and a granular catalyst having SO X adsorbed therein is guided to a desorption tower to desorb SO X, and the desorbed gas is a by-product recovery device. In the dry desulfurization and denitration method, in which the off-gas from the by-product recovery device is recycled to the exhaust gas at the inlet of the adsorption tower, the off-gas injection point is the exhaust gas upstream of the electrostatic precipitator. A dry desulfurization and denitration method characterized by being recycled into the inside.
【請求項2】ボイラー等から排出されるSOX、NOX
含有する排ガスを電気集塵装置で脱塵した後、排ガスに
アンモニアを注入し、該ガスを活性炭等の粒状触媒が充
填された吸着塔に導入し、該吸着塔内で脱硫脱硝反応を
行なわせ、SOXが吸着されている粒状触媒を脱離塔へ
導いてSOXを脱離し、該脱離ガスを副生品回収装置で
硫酸などの副生品として回収し、副生品回収装置からの
オフガスを吸着塔の入口排ガス中にリサイクルしている
乾式脱硫脱硝方法において、前記排ガスへのアンモニア
の注入箇所及び、前記オフガスの注入箇所を電気集塵装
置の上流にしたことを特徴とする乾式脱硫脱硝方法。
2. An exhaust gas containing SO X and NO X discharged from a boiler or the like is dedusted by an electrostatic precipitator, ammonia is injected into the exhaust gas, and the gas is filled with a granular catalyst such as activated carbon. It is introduced into an adsorption tower, a desulfurization and denitration reaction is performed in the adsorption tower, and a granular catalyst having SO X adsorbed therein is guided to a desorption tower to desorb SO X, and the desorbed gas is a by-product recovery device. In a dry desulfurization and denitration method in which sulfuric acid is recovered as a by-product in the exhaust gas and the off-gas from the by-product recovery device is recycled into the exhaust gas at the inlet of the adsorption tower, the injection point of ammonia into the exhaust gas and the off-gas A dry desulfurization denitration method characterized in that the injection location is located upstream of the electrostatic precipitator.
JP6275540A 1994-10-17 1994-10-17 Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas Pending JPH08112515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6275540A JPH08112515A (en) 1994-10-17 1994-10-17 Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6275540A JPH08112515A (en) 1994-10-17 1994-10-17 Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas

Publications (1)

Publication Number Publication Date
JPH08112515A true JPH08112515A (en) 1996-05-07

Family

ID=17556881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6275540A Pending JPH08112515A (en) 1994-10-17 1994-10-17 Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas

Country Status (1)

Country Link
JP (1) JPH08112515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011110A (en) * 2009-06-30 2011-01-20 Sumitomo Heavy Ind Ltd Exhaust gas treatment apparatus
CN102997621A (en) * 2012-10-31 2013-03-27 宜兴市宜刚环保工程材料有限公司 Denitration catalyst single-room-type drying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011110A (en) * 2009-06-30 2011-01-20 Sumitomo Heavy Ind Ltd Exhaust gas treatment apparatus
CN102997621A (en) * 2012-10-31 2013-03-27 宜兴市宜刚环保工程材料有限公司 Denitration catalyst single-room-type drying device

Similar Documents

Publication Publication Date Title
CN1331571C (en) Flue gas hydrargyrum-removing method by catalytic oxidation
CN110124507B (en) Method and device for cleaning and treating multi-pollutant flue gas
CN105688647A (en) Method for dry desulfurization and demercuration of sintering flue gas containing mercury by means of low-grade pyrolusite
CN107875838A (en) With the production technology and processing system of compound claus oven processing activated coke method coke oven flue gas desulphurization denitration acid vapour
CN104353325A (en) Device and method for removing mercury from boiler flue gas of power station
JPH05220338A (en) Treating equipment for exhaust gas of refuse incinerator
JP3411483B2 (en) Setting method of ammonia injection amount in waste gas incinerator exhaust gas treatment equipment
JPH08112515A (en) Dry desulfurizing and denitrifying method for removing sulfur oxide and nitrogen oxide in waste gas
CN209696680U (en) A kind of comprehensive treatment system for activated coke factory exhaust gas
JPH11114366A (en) Treatment of released gas in waste gas treating device for refuse incinerator
CN208082173U (en) The processing system of activated coke method coke oven flue gas desulphurization denitration acid vapour is handled with system for preparing sulfuric acid
JPH04277005A (en) Exhaust gas treatment apparatus of urban garbage incinerator
JP4574884B2 (en) Method and apparatus for recovering sulfuric acid in exhaust gas treatment system
CN113274837A (en) Calcining flue gas purifying treatment system
CN207941382U (en) A kind of system of ozone oxidization combination desulfurization and denitration
JP3858137B2 (en) Apparatus and method for decomposing and treating harmful substances in exhaust gas
JPH06210138A (en) Dry exhaust gas purifying method and operation of blast furnace and sintering machine
CN107890755A (en) With the production technology and processing system of system for preparing sulfuric acid processing activated coke method coke oven flue gas desulphurization denitration acid vapour
JP3217627B2 (en) Method for improving desulfurization and denitration performance of carbonaceous catalyst
CN107875839A (en) With the production technology and processing system of claus oven processing activated coke method coke oven flue gas desulphurization denitration acid vapour
JPH0691126A (en) Method for separating and recording co2 from combustion exhaust gas and device therefor
JPH1147536A (en) Method for treating exhaust gas
CN213375916U (en) Wet electrostatic dust collector for desulfurization
JPH06210139A (en) Waste gas treatment
CN101766945A (en) Dry-process integrating method for purifying smoke and system used therefor