JPH08111375A - Scanning aligner - Google Patents

Scanning aligner

Info

Publication number
JPH08111375A
JPH08111375A JP6270655A JP27065594A JPH08111375A JP H08111375 A JPH08111375 A JP H08111375A JP 6270655 A JP6270655 A JP 6270655A JP 27065594 A JP27065594 A JP 27065594A JP H08111375 A JPH08111375 A JP H08111375A
Authority
JP
Japan
Prior art keywords
photosensitive substrate
mask
scanning
projection optical
positional relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6270655A
Other languages
Japanese (ja)
Inventor
Takeshi Narabe
毅 奈良部
Kazuaki Saeki
和明 佐伯
Masami Seki
昌美 関
Seiji Miyazaki
聖二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6270655A priority Critical patent/JPH08111375A/en
Priority to KR1019950034203A priority patent/KR960015753A/en
Publication of JPH08111375A publication Critical patent/JPH08111375A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE: To obtain a scanning aligner in which the accuracy of a pattern, being exposed through a plurality of projection optical systems, can be enhanced significantly as compared with a conventional one. CONSTITUTION: Prior to exposure, the positional relationship between a mask 11 being illuminated through a plurality of projection optical systems 12A-12C and a photosensitive substrate 3 is determined in the direction of the optical axis of the projection optical system at an arbitrary position by position detecting means 12A-12C disposed, respectively, in the scanning direction of the plurality of projection optical systems 12A-12C. The positional relationship thus determined is stored in a memory 32. At the time of scanning exposure, the mask surface 11A and the photosensitive substrate surface 3A are controlled to satisfy a predetermined positional relationship based on the relative relationship. Consequently, the scanning exposure can be carried out while sustaining an optimal positional relationship between the mask surface 11A and the photosensitive substrate surface 3A in a plurality of exposure regions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型露光装置に関し
て、例えば液晶表示デバイス製造用の露光装置に適用し
得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be applied to a scanning type exposure apparatus, for example, an exposure apparatus for manufacturing a liquid crystal display device.

【0002】[0002]

【従来の技術】今日、微細加工技術の発達に伴い露光装
置の制御も複雑になりつつある。その制御技術の一つと
して、感光基板を適切な位置に配置することにより投影
光学系の焦点位置や感光基板上に生じた凹凸等の誤差を
補正するレベリング技術が知られている。
2. Description of the Related Art Today, the control of an exposure apparatus is becoming complicated with the development of fine processing technology. As one of the control techniques, there is known a leveling technique that corrects an error such as a focus position of a projection optical system or unevenness generated on the photosensitive substrate by disposing the photosensitive substrate at an appropriate position.

【0003】この種の露光装置としては、図9に示すよ
うな自動焦点調整機構(以下オートフオーカス機構とい
う)を有するものがある。この露光装置1では、LED
等の光源2から出射された光が感光基板3上で反射さ
れ、この反射光を受光装置4によつて受光する。ここで
感光基板3の位置がZ方向で変化すると、受光装置4に
よつて受光される反射光の位置もそれに従つて変化する
ので、反射光の受光位置から感光基板3のZ方向の位置
の変化を読み取ることができる。露光装置1では、この
測定された感光基板3の位置の変化に基づいて、感光基
板3のZ方向の位置を補正(感光基板3を投射光学系5
の結像面に位置決めする)してマスク上の描画パターン
を正確に感光基板上に転写する。
As an exposure apparatus of this type, there is one having an automatic focus adjusting mechanism (hereinafter referred to as an autofocus mechanism) as shown in FIG. In this exposure apparatus 1, the LED
The light emitted from the light source 2 such as the above is reflected on the photosensitive substrate 3, and the reflected light is received by the light receiving device 4. Here, when the position of the photosensitive substrate 3 changes in the Z direction, the position of the reflected light received by the light receiving device 4 also changes accordingly, so that the position of the photosensitive substrate 3 in the Z direction changes from the position where the reflected light is received. You can read the changes. In the exposure apparatus 1, the position of the photosensitive substrate 3 in the Z direction is corrected based on the measured change in the position of the photosensitive substrate 3 (the photosensitive substrate 3 is projected onto the optical system 5).
(Positioning on the image forming surface of) is performed and the drawing pattern on the mask is accurately transferred onto the photosensitive substrate.

【0004】[0004]

【発明が解決しようとする課題】ところでマスクや感光
基板及びそれらを位置決めして保持する露光装置のマス
クホルダ及び感光基板ホルダにおいては、平面度及び平
行度が必ずしも良好とは言えない。このため複数の投影
光学系を有し、露光領域が複数に分かれている露光装置
においては、投射光学系それぞれの結像面が一定に揃つ
ていたとしても、マスク等の平面度の影響により、各露
光領域が結像面に一致しないことになる。このため、投
影光学系個々の露光領域において生じるマスクと感光基
板の投影光学系の光軸方向の位置関係を1つのオートフ
オーカス機構によつて位置制御することは困難であると
いう問題があつた。
By the way, the flatness and the parallelism are not necessarily good in the mask and the photosensitive substrate, and in the mask holder and the photosensitive substrate holder of the exposure apparatus for positioning and holding them. For this reason, in an exposure apparatus that has a plurality of projection optical systems and the exposure area is divided into a plurality of areas, even if the image planes of the projection optical systems are uniformly aligned, the effect of the flatness of the mask or the like causes , Each exposure area does not coincide with the image plane. For this reason, it is difficult to control the positional relationship between the mask and the photosensitive substrate in the optical axis direction of the projection optical system, which occurs in each exposure area of the projection optical system, by one autofocus mechanism. .

【0005】本発明は以上の点を考慮してなされたもの
で、複数の投影光学系を用いた走査型露光装置におい
て、マスク等の平面度に影響されることなく、露光領域
におけるマスクと感光基板との投影光学系の光軸方向の
位置関係が常に適切になるように制御しながら走査露光
することができる走査型露光装置を提案しようとするも
のである。
The present invention has been made in consideration of the above points, and in a scanning type exposure apparatus using a plurality of projection optical systems, the mask and the photosensitive area in the exposure area are not affected by the flatness of the mask. An object of the present invention is to propose a scanning type exposure apparatus capable of performing scanning exposure while controlling so that the positional relationship between the substrate and the projection optical system in the optical axis direction is always appropriate.

【0006】[0006]

【課題を解決するための手段】マスク(11)上の複数
の領域をそれぞれ照明し、該複数の領域のそれぞれの像
を複数の投影光学系(12A〜12C)を介して感光基
板(3)上に投影すると共に、マスク(11)と感光基
板(3)とを複数の投影光学系(12A〜12C)に対
して図中x軸方向に走査させることにより、マスク(1
1)の被露光領域(AR1〜AR3)を感光基板(3
A)の投射領域(AR1′〜AR3′)に露光する走査
型露光装置(10)において、複数の投影光学系(12
A〜12C)それぞれに対応して設置され、マスク面
(11A)上の被露光複数(AR1〜AR3)の領域の
それぞれと感光基板面(3A)上の投影領域(AR1′
〜AR3′)との投影光学系(12A〜12C)の光軸
方向の相対的な位置関係を走査方向上の任意の位置で測
定する位置検出手段(14A〜14C)と、位置検出手
段(14A〜14C)の測定結果に基づいて、相対的な
位置関係が所定の関係を維持するようにマスク(11)
と感光基板(3)の少なくとも一方の光軸方向の位置を
補正する位置補正手段(34、35、36)とを備え
る。
A plurality of areas on a mask (11) are illuminated respectively, and respective images of the plurality of areas are exposed through a plurality of projection optical systems (12A to 12C) to a photosensitive substrate (3). By projecting on the mask (11) and the photosensitive substrate (3), the plurality of projection optical systems (12A to 12C) are scanned in the x-axis direction in the figure, so that the mask (1
The exposed regions (AR1 to AR3) of 1) are exposed to the photosensitive substrate (3
In the scanning type exposure apparatus (10) for exposing the projection areas (AR1 ′ to AR3 ′) of A), a plurality of projection optical systems (12) are provided.
A to C) corresponding to each of the plurality of exposed areas (AR1 to AR3) on the mask surface (11A) and the projection area (AR1 ′) on the photosensitive substrate surface (3A).
-AR3 ') and position detection means (14A-14C) for measuring the relative positional relationship of the projection optical system (12A-12C) in the optical axis direction at any position in the scanning direction, and position detection means (14A). 14C), the mask (11) is used so that the relative positional relationship maintains a predetermined relationship.
And position correction means (34, 35, 36) for correcting the position of at least one of the photosensitive substrates (3) in the optical axis direction.

【0007】また本発明においては、位置検出手段(1
4A〜14C)は、相対的な位置関係を複数の被露光領
域内と複数の投射領域内の任意の位置で測定する。また
本発明においては、位置検出手段は(14A〜14
C)、走査方向における相対的な位置関係を複数の被露
光領域と複数の投影領域の前方又は後方位置で測定す
る。
In the present invention, the position detecting means (1
4A to 14C) measure a relative positional relationship in a plurality of exposed regions and arbitrary positions in a plurality of projection regions. Further, in the present invention, the position detecting means (14A to 14A
C), the relative positional relationship in the scanning direction is measured at the front or rear positions of the plurality of exposed areas and the plurality of projected areas.

【0008】[0008]

【作用】複数の投影光学系(12A〜12C)のそれぞ
れによつて露光される複数の領域毎に設けられた複数の
位置検出手段(12A〜12C)によつて、マスク面
(11A)と感光基板面(3A)との投影光学系の光軸
方向の位置関係を走査方向における任意の位置について
求め、マスク面(11A)と感光基板面(3A)との光
軸方向の位置関係が所定の関係となるように制御したこ
とにより、複数の投影光学系(12A〜12C)のそれ
ぞれの結像面の違いや、マスクと感光基板の平面度や平
行度に影響されることなく、鮮明な像を感光基板面(3
A)上に転写し得る。
The mask surface (11A) and the photosensitive surface are exposed by the plurality of position detecting means (12A to 12C) provided for each of the plurality of areas exposed by each of the plurality of projection optical systems (12A to 12C). The positional relationship in the optical axis direction of the projection optical system with the substrate surface (3A) is obtained at an arbitrary position in the scanning direction, and the positional relationship between the mask surface (11A) and the photosensitive substrate surface (3A) in the optical axis direction is predetermined. By controlling so as to have a relation, a clear image can be obtained without being affected by the difference in the image plane of each of the plurality of projection optical systems (12A to 12C) and the flatness and parallelism between the mask and the photosensitive substrate. To the photosensitive substrate surface (3
A) can be transferred onto.

【0009】さらに位置検出手段(14A〜14C)に
より相対的な位置関係を複数の被露光領域内と複数の投
影領域の任意の位置で測定することにより、複数の被露
光領域内と複数の投影領域における位置関係の測定精度
を向上し得る。さらに位置検出手段(14A〜14C)
により相対的な位置関係を複数の被露光領域と複数の投
影領域の走査方向の前方又は後方位置で測定することに
より、走査中に逐次位置関係を検出しながら制御する際
にも制御の応答遅れが生じることなく、測定し得る。
Further, the relative position relationship is measured by the position detecting means (14A to 14C) in the plurality of exposed regions and in the arbitrary positions of the plurality of projected regions, so that the plurality of exposed regions and the plurality of projected regions are measured. The measurement accuracy of the positional relationship in the area can be improved. Further position detecting means (14A to 14C)
By measuring the relative positional relationship at the front or rear position in the scanning direction of the multiple exposed areas and the multiple projected areas, the response delay of the control is achieved even when the control is performed while sequentially detecting the positional relationship during scanning. Can be measured without causing.

【0010】[0010]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0011】マスク面と感光基板面との位置関係を制御
するには、マスクを固定しておき感光基板側を駆動する
方法と、感光基板を固定しておきマスク側を駆動する方
法と、マスク及び感光基板共に駆動する方法とが考えら
れる。ここではマスク側を固定しておき、感光基板側を
駆動させる場合を例に複数の投影光学系を用いる走査型
露光装置を説明する。
In order to control the positional relationship between the mask surface and the photosensitive substrate surface, a method of fixing the mask and driving the photosensitive substrate side, a method of fixing the photosensitive substrate and driving the mask side, and a mask And a method of driving both the photosensitive substrate. Here, a scanning type exposure apparatus using a plurality of projection optical systems will be described taking the case where the mask side is fixed and the photosensitive substrate side is driven as an example.

【0012】図1において、10は走査型露光装置を示
し、マスク11と感光基板3とが3つの投影光学系12
A、12B及び12Cを挟んで面対向に配置される。マ
スク11と感光基板3とは走査ステージ13に保持され
て紙面に対して垂直方向(X方向)に一体に走査させる
ことにより、マスク面11A上に描画されたパターンを
感光基板面3A上に投影露光する。3つの投影光学系1
2A、12B及び12Cは、非走査方向(図中に示すY
方向)に沿つて千鳥状に配置され、それぞれの投影領域
は隣接する領域同士がY方向に一部重複しており、これ
によつて1つの投影光学系の投影領域に比べて大きな面
積を一度の走査によつて露光できるようになつている。
In FIG. 1, reference numeral 10 denotes a scanning type exposure apparatus, in which a mask 11 and a photosensitive substrate 3 have three projection optical systems 12.
They are arranged face to face with A, 12B and 12C interposed therebetween. The mask 11 and the photosensitive substrate 3 are held by the scanning stage 13 and integrally scanned in the direction perpendicular to the paper surface (X direction), so that the pattern drawn on the mask surface 11A is projected onto the photosensitive substrate surface 3A. Expose. Three projection optical system 1
2A, 12B and 12C are in the non-scanning direction (Y shown in the figure).
Direction), and the adjacent areas of the respective projection areas partially overlap in the Y direction, which results in a large area once compared to the projection area of one projection optical system. It becomes possible to expose by scanning.

【0013】この3つの投影光学系12A、12B及び
12Cそれぞれには、図2に示すような、マスク面11
Aと感光基板面3Aとの投影光学系の光軸AX方向(Z
方向)の相対的な間隔を測定するフオーカスセンサ14
A、14B及び14Cの位置がそれぞれ、マスクの照明
領域AR1〜AR3及び感光基板の投影領域AR1′〜
AR3′の走査軌跡上に一致するように配置されてい
る。さらにこの走査型露光装置10にはマスク11と感
光基板3とのXY平面内での相対位置を測定するアライ
メントセンサ(図示せず)が配置され、このフオーカス
センサとアライメントセンサとを用いてマスク面11A
と感光基板面3Aとの正確な位置関係を検出している。
因みにマスク11と感光基板3との相対的な位置関係は
投影光学系12A、12B及び12Cの焦点方向におけ
るもので、以下これをフオーカス方向(図中、Z方向)
という。
Each of the three projection optical systems 12A, 12B and 12C has a mask surface 11 as shown in FIG.
A and the photosensitive substrate surface 3A, the optical axis AX direction (Z
Sensor 14 for measuring the relative distance between
The positions of A, 14B and 14C are respectively illumination areas AR1 to AR3 of the mask and projection areas AR1 'to AR1' of the photosensitive substrate.
They are arranged so as to coincide with the scanning locus of AR3 '. Further, an alignment sensor (not shown) for measuring the relative position of the mask 11 and the photosensitive substrate 3 in the XY plane is arranged in the scanning type exposure apparatus 10, and the mask is used by using the focus sensor and the alignment sensor. Surface 11A
The accurate positional relationship between the photosensitive substrate surface 3A and the photosensitive substrate surface 3A is detected.
Incidentally, the relative positional relationship between the mask 11 and the photosensitive substrate 3 is in the focal direction of the projection optical systems 12A, 12B and 12C, and this will be referred to as the focus direction (Z direction in the drawing) hereinafter.
Say.

【0014】マスク11及び感光基板3はそれぞれホル
ダ15及び16によつて断面コ字状の走査ステージ13
に取り付けられている。ところで実際の装置ではこの走
査ステージ13の開口部分が上を向くような状態で使用
される。この走査ステージ13はレール17Aに沿つて
X方向に移動できるように本体17に取り付けられてい
る。この走査ステージ13の移動によつてマスク11と
感光基板3との一体走査が実現される。因に一体走査さ
れるマスク11及び感光基板3を照明する照明光学系1
7Bは本体17に保持されている。
The mask 11 and the photosensitive substrate 3 are provided with holders 15 and 16 respectively, and a scanning stage 13 having a U-shaped cross section.
Attached to. By the way, in an actual apparatus, the scanning stage 13 is used in a state in which the opening portion faces upward. The scanning stage 13 is attached to the main body 17 so as to be movable in the X direction along the rail 17A. By the movement of the scanning stage 13, the integrated scanning of the mask 11 and the photosensitive substrate 3 is realized. Due to this, an illumination optical system 1 for illuminating the mask 11 and the photosensitive substrate 3 which are integrally scanned.
7B is held by the main body 17.

【0015】フオーカスセンサ14A、14B及び14
Cはそれぞれ発光素子と受光素子の2つの光学素子によ
つて構成されている。これら一対の発光素子及び受光素
子はそれぞれ投影光学系の部材中にオフアクシスの位置
に配置されている。計測時には発光素子からマスク面1
1A及び感光基板面3Aの両面へ向けて照明光が射出
し、各面で反射された反射光から得られる像の相対的な
距離を測定することによりマスク面11Aと感光基板面
3Aとの相対的な間隔を測定するようになされている。
この実施例ではマスク面11Aと感光基板面3A上の複
数の点について相対的な間隔を測定することにする。こ
のとき測定点は多いほど後述する平面度マツプの精度を
高めることができるが、極端に多すぎると信号処理に余
分に時間がかかるため適当な数を選択することにする。
Focus sensors 14A, 14B and 14
Each C is composed of two optical elements, a light emitting element and a light receiving element. The pair of the light emitting element and the light receiving element are arranged at off-axis positions in the members of the projection optical system. Mask surface 1 from the light emitting element during measurement
Illumination light is emitted toward both 1A and the photosensitive substrate surface 3A, and the relative distance between the mask surface 11A and the photosensitive substrate surface 3A is measured by measuring the relative distance of the image obtained from the reflected light reflected by each surface. It is designed to measure specific intervals.
In this embodiment, relative distances between a plurality of points on the mask surface 11A and the photosensitive substrate surface 3A are measured. At this time, the more the number of measurement points is, the higher the accuracy of the flatness map described later can be increased. However, if the number of measurement points is excessively large, it takes extra time for signal processing.

【0016】図3に示すように、オートフオーカス機構
におけるマスク面11Aと感光基板面3Aとの間隔を測
定する光学系20はマスク面11Aに対して、光学系2
0Aの発光素子であるLED(light emissioned diod
e)21Aからの出射光L1がミラー22Aによつて反
射され、スリツト23A、レンズ24A及びミラー25
Aを介してマスク面11A上の投射方向の所定位置Pで
反射され、ミラー26A、レンズ27A及びスリツト2
8Aを介して後、プリズム29によつて反射され受光素
子であるデイテクタ30上の受光面30Aの位置P´に
おいて検出される。
As shown in FIG. 3, the optical system 20 for measuring the distance between the mask surface 11A and the photosensitive substrate surface 3A in the autofocus mechanism has an optical system 2 for the mask surface 11A.
0A LED (light emissioned diode)
e) The emitted light L1 from 21A is reflected by the mirror 22A, and the slit 23A, the lens 24A and the mirror 25
It is reflected at a predetermined position P in the projection direction on the mask surface 11A via A, and the mirror 26A, the lens 27A, and the slit 2 are reflected.
After passing through 8A, the light is reflected by the prism 29 and detected at the position P'of the light receiving surface 30A on the detector 30, which is a light receiving element.

【0017】同様に感光基板面3Aに対しては光学系2
0Bの発光素子であるLED21Bからの出射光L2が
ミラー22Bによつて反射され、スリツト23B、レン
ズ24B及びミラー25Bを介してマスク面11Aの所
定位置Pのフオーカス方向の投射位置に対応する感光基
板面3A上の位置Qで反射されて後、ミラー26B、レ
ンズ27B及びスリツト28Bを介してプリズム29に
よつてデイテクタ30上の受光面30Aの位置Q´にお
いて検出される。このようにして得られた受光面30A
上のP´Q´の間隔の変化はマスク面11A上の位置P
から感光基板面3A上のフオーカス方向の投射位置Q迄
の間隔の変化に正比例する。これを用いてマスク面3A
と感光基板面11Aとのフオーカス方向の間隔の変化を
検出することができる。
Similarly, for the photosensitive substrate surface 3A, the optical system 2 is used.
The light L2 emitted from the LED 21B, which is a light emitting element of 0B, is reflected by the mirror 22B, and passes through the slit 23B, the lens 24B, and the mirror 25B, and corresponds to the projection position in the focus direction of the predetermined position P of the mask surface 11A. After being reflected at the position Q on the surface 3A, it is detected by the prism 29 via the mirror 26B, the lens 27B and the slit 28B at the position Q'of the light receiving surface 30A on the detector 30. Light-receiving surface 30A thus obtained
The change in the interval of P'Q 'on the upper side indicates the position P on the mask surface 11A.
To the projection position Q in the focus direction on the photosensitive substrate surface 3A in direct proportion. Using this, the mask surface 3A
The change in the distance between the photosensitive substrate surface 11A and the photosensitive substrate surface 11A in the focus direction can be detected.

【0018】このようにフオーカスセンサ14A〜14
Cによつて測定された各測定点の検出結果S1は検出系
31を介して記憶装置32に与えられ、固定デイスク等
の記憶媒体に位置情報として格納される。ところで検出
系31から与えられる計測値はマスク面11Aと感光基
板面3Aとの相対的な間隔でしかないため、図4(A)
に示すように、マスク11に凹凸があつたのかそれとも
感光基板3に凹凸があつたのかの区別がつかない。
As described above, the focus sensors 14A to 14
The detection result S1 of each measurement point measured by C is given to the storage device 32 via the detection system 31 and stored as position information in a storage medium such as a fixed disk. By the way, since the measurement value given from the detection system 31 is only the relative distance between the mask surface 11A and the photosensitive substrate surface 3A, FIG.
As shown in FIG. 5, it is impossible to distinguish whether the mask 11 has irregularities or the photosensitive substrate 3 has irregularities.

【0019】そこで実施例では、図4(B)に示すよう
に、マスク11が理想的な平面であると仮定し、全ての
凹凸が感光基板3側にあるものとする。すなわちマスク
面11Aを基準として計測値を基に感光基板3の側の高
さや傾きを制御する。このため記憶装置32は検出系3
1から与えられた検出結果S1を基に感光基板面3A上
の凹凸を等高線で結んだ曲面(以下、これを平面度マツ
プという)を生成し、これを記憶するようになされてい
る。
Therefore, in the embodiment, as shown in FIG. 4B, it is assumed that the mask 11 is an ideal plane, and all the irregularities are on the photosensitive substrate 3 side. That is, the height and the inclination of the side of the photosensitive substrate 3 are controlled based on the measured values with the mask surface 11A as a reference. For this reason, the storage device 32 uses the detection system 3
On the basis of the detection result S1 given from 1, a curved surface (hereinafter referred to as a flatness map) in which irregularities on the photosensitive substrate surface 3A are connected by contour lines is generated and stored.

【0020】制御系33はこの平面度マツプを基に駆動
系34、35及び36をそれぞれ制御し、ホルダ15、
16及び走査ステージ13の位置を補正するようになさ
れている。このように平面度マツプに沿つて露光領域内
の感光基板3を制御できればマスク面11Aと感光基板
面3Aとの位置関係を常に最適化することができる。し
かし感光基板3は投影光学系12A〜12Cに対応する
個々の露光領域ごとに動かすことができない。
The control system 33 controls the drive systems 34, 35 and 36, respectively, based on this flatness map, and holds the holder 15,
The positions of 16 and the scanning stage 13 are corrected. If the photosensitive substrate 3 in the exposure area can be controlled along the flatness map in this way, the positional relationship between the mask surface 11A and the photosensitive substrate surface 3A can be always optimized. However, the photosensitive substrate 3 cannot be moved for each exposure area corresponding to the projection optical systems 12A to 12C.

【0021】そこでこの走査型露光装置10は、露光領
域内におけるマスク面11Aと感光基板面3Aとの位置
関係を最適にするような、また後述のZ、Zθ1 、Zθ
2 方向の移動や回転によつて制御できるような面として
近似面を作成する。そして、図5に示すように、感光基
板3を走査方向(X方向)を中心軸L1とした回転方向
Zθ1 や走査方向(X方向)及びフオーカス方向(Z方
向)に対してそれぞれ直交する方向(Y方向)を中心軸
L2とした回転方向Zθ2 に回転させて(ただし、Zθ
2 を駆動する時は走査方向に2列投影光学系がならんで
いる場合)近似面に一致させるように制御するようにす
る。
Therefore, the scanning type exposure apparatus 10 optimizes the positional relationship between the mask surface 11A and the photosensitive substrate surface 3A in the exposure area, and also Z, Zθ 1 , Zθ, which will be described later.
Create an approximate surface as a surface that can be controlled by movement or rotation in two directions. Then, as shown in FIG. 5, the photosensitive substrate 3 is orthogonal to the rotation direction Zθ 1 with the scanning direction (X direction) as the central axis L1, the scanning direction (X direction), and the focus direction (Z direction). Rotate in the rotation direction Zθ 2 with (Y direction) as the central axis L 2 (however, Zθ 2
When 2 is driven, it is controlled so that it coincides with the approximate surface when the two-row projection optical system is aligned in the scanning direction.

【0022】この近似面の作成方法には様々なものが考
えられる。まず簡易的な方法として最小自乗法を使つた
ものが考えられる。この方法を用いる場合には、感光基
板面3Aのうち走査方向(X方向)に対して直交する方
向(Y方向)に並ぶ複数の点について平面度を求め、こ
れら複数の平面度について最小自乗法による近似線LV
を作成する。この近似線LV を図6に示す。そして露光
時には走査方向上の各位置について求められている近似
線LV に感光基板面3Aが一致するようにホルダ16を
回転(Zθ1 )又は移動(Z方向)させるようにする。
Various methods are conceivable for creating this approximate surface. First, as a simple method, a method using the least squares method can be considered. When this method is used, the flatness is obtained for a plurality of points arranged in the direction (Y direction) orthogonal to the scanning direction (X direction) on the photosensitive substrate surface 3A, and the least squares method is applied to the plurality of flatness. Approximate line LV
Create This approximate line LV is shown in FIG. Then, during exposure, the holder 16 is rotated (Zθ 1 ) or moved (Z direction) so that the photosensitive substrate surface 3A coincides with the approximate line LV obtained for each position in the scanning direction.

【0023】ところで走査型露光装置10は3つの投影
光学系12A、12B、12Cを有する。このため単純
にマスク面11Aと感光基板面3Aとを近似面に合わせ
るだけでは各投影光学系12A、12B、12Cの焦点
距離の違いから最適な位置とならなくなるおそれがあ
る。そこで各投影光学系12A、12B、12Cについ
ての焦点距離の差も平面度マツプに考慮する。
The scanning exposure apparatus 10 has three projection optical systems 12A, 12B and 12C. Therefore, if the mask surface 11A and the photosensitive substrate surface 3A are simply aligned with each other, the optimum positions may not be obtained due to the difference in the focal lengths of the projection optical systems 12A, 12B, and 12C. Therefore, the difference in focal length between the projection optical systems 12A, 12B, and 12C is also considered in the flatness map.

【0024】例えばY方向に千鳥状に配置される複数の
投影光学系12A、12B、12Cに焦点距離の差があ
る場合にはそのまま走査露光すると、図7に示すよう
に、感光基板3のY方向にあたかもうねりが生じている
かと同じことが言える。つまり感光基板3の凹凸と同じ
判断ができる。この場合には走査露光中に走査方向(X
方向)と平行な中心軸L1を中心に感光基板3を回転
(Zθ1 )させれば良い。
For example, when a plurality of projection optical systems 12A, 12B, 12C arranged in a zigzag pattern in the Y direction have different focal lengths, scanning exposure is performed as it is, and as shown in FIG. The same can be said as if there is a warp in the direction. That is, the same judgment as the unevenness of the photosensitive substrate 3 can be made. In this case, the scanning direction (X
Direction), the photosensitive substrate 3 may be rotated (Zθ 1 ) about a central axis L1 parallel to the (direction).

【0025】このように走査型露光装置10はマスク面
11Aと感光基板面3Aとの位置関係について求められ
た近似面と焦点距離との情報に基づいてマスク面11A
と感光基板面3Aとの位置関係を補正することによつて
投影光学系12A、12B、12Cを介して照明される
露光領域のそれぞれについてマスク11のパターンを正
確に感光基板3に転写できるようになされている。
As described above, the scanning type exposure apparatus 10 uses the mask surface 11A based on the information of the approximate surface and the focal length obtained for the positional relationship between the mask surface 11A and the photosensitive substrate surface 3A.
By correcting the positional relationship between the photosensitive substrate surface 3A and the photosensitive substrate surface 3A, the pattern of the mask 11 can be accurately transferred to the photosensitive substrate 3 for each of the exposure regions illuminated through the projection optical systems 12A, 12B, and 12C. Has been done.

【0026】以上の構成において、走査型露光装置10
による走査露光動作を説明する。まず露光に先立つて、
走査型露光装置10はマスク面11Aと感光基板面3A
との位置関係をフオーカスセンサ14A〜14Cによつ
て投射光学系12A〜12Cのそれぞれの走査方向に沿
つてマスク面11A及び感光基板面3A上の任意の位置
について測定し、この走査方向上の位置に対する間隔を
記憶装置32の記憶媒体に記憶しておく。またこれらの
情報を基に前述した平面度マツプを作成し、近似面を作
成しておく。また各投影光学系12A、12B、12C
の焦点距離の差に基づく補正量も求めておく。
In the above structure, the scanning type exposure apparatus 10
The scanning exposure operation by will be described. First, prior to exposure,
The scanning exposure apparatus 10 has a mask surface 11A and a photosensitive substrate surface 3A.
Is measured by the focus sensors 14A to 14C at arbitrary positions on the mask surface 11A and the photosensitive substrate surface 3A along the respective scanning directions of the projection optical systems 12A to 12C, and on the scanning direction. The distance to the position is stored in the storage medium of the storage device 32. In addition, the above-mentioned flatness map is created based on these pieces of information to create an approximate surface. In addition, each projection optical system 12A, 12B, 12C
A correction amount based on the difference in the focal lengths of is also obtained.

【0027】これらの処理によつて必要な情報が求めら
れると、制御系33は駆動系36に制御データを与え、
走査ステージ13の走査を開始させる。また制御系33
は駆動系35に制御データを与えて感光基板3が載置さ
れているホルダ16をZ方向に移動し、又は2つの中心
軸L1、L2について回転(Zθ1 、Zθ2 )させるこ
とにより(ただしZθ2 を駆動する時は投影光学系が走
査方向に2列ならんでいる時。以下同様)走査露光中に
おける感光基板面3Aとマスク面11Aとの位置関係を
最適な状態に制御させる。
When the necessary information is obtained by these processes, the control system 33 gives the control data to the drive system 36,
The scanning of the scanning stage 13 is started. The control system 33
By giving control data to the drive system 35 to move the holder 16 on which the photosensitive substrate 3 is placed in the Z direction or by rotating (Zθ 1 , Zθ 2 ) about the two central axes L1 and L2 (however, When Zθ 2 is driven, the projection optical system is arranged in two rows in the scanning direction. The same applies hereinafter) The positional relationship between the photosensitive substrate surface 3A and the mask surface 11A during scanning exposure is controlled to an optimum state.

【0028】このように感光基板3についての制御デー
タを制御系33から駆動系35に送り、そのデータ値に
基づいて感光基板3を駆動するのであるが、制御データ
の送出時点で露光すべき領域部分についての制御データ
を制御系33から駆動系35に送つたのでは処理が遅れ
てしまう。すなわち駆動系35が制御データに基づいた
動作を開始するまでの間に感光基板3が走行して実際に
位置補正のための制御が実行された際には、制御系33
が指定した位置に対して遅れた位置について感光基板3
の駆動が実行されてしまう。
In this way, the control data for the photosensitive substrate 3 is sent from the control system 33 to the drive system 35, and the photosensitive substrate 3 is driven based on the data value. The area to be exposed at the time of sending the control data. If the control data for the portion is sent from the control system 33 to the drive system 35, the processing will be delayed. That is, when the photosensitive substrate 3 travels and the control for position correction is actually executed before the drive system 35 starts the operation based on the control data, the control system 33
Regarding the position delayed from the position specified by
Will be driven.

【0029】そこで制御系33は、感光基板3の走行速
度(すなわち走査ステージ13の走査速度)を考慮し、
指定位置でホルダ16についての駆動が完了されている
ように制御位置に対して少し手前の位置で制御データを
送るようになされている。
Therefore, the control system 33 considers the traveling speed of the photosensitive substrate 3 (that is, the scanning speed of the scanning stage 13),
The control data is sent at a position slightly before the control position so that the driving of the holder 16 is completed at the designated position.

【0030】例えば制御系33から駆動系35へ制御デ
ータとして位置情報が送られるまでの時間をt1 とし、
駆動系35が位置情報を判断して駆動を完了するまでの
時間をt2 とし、またこの際における感光基板3の移動
速度がvであるとすると、ある露光領域が位置xに来た
ときに感光基板3の位置を補正したいのであれば、次式
For example, the time until position information is sent from the control system 33 to the drive system 35 as control data is t1,
Assuming that the time required for the drive system 35 to judge the position information and complete the drive is t2, and the moving speed of the photosensitive substrate 3 at this time is v, the exposure is performed when an exposure region reaches the position x. If you want to correct the position of the board 3,

【数1】 によつて表される位置Xに露光領域が来たときに位置情
報を送る。
[Equation 1] The position information is sent when the exposure area comes to the position X represented by.

【0031】このように走査型露光装置10は制御デー
タを基に、必要に応じて感光基板3をZ方向や2つの中
心軸L1、L2を中心に回転(Zθ1 、Zθ2 )させな
がら走査露光する(ただしZθ2 を駆動する時は投影光
学系が走査方向に2列ならんでいる場合)。以上の構成
によれば、フオーカスセンサ14A〜14Cによつて投
射光学系12A〜12Cのそれぞれの走査方向に沿つて
予め測定したマスク面11Aと感光基板面3Aとの位置
関係と走査方向における走査ステージの位置の情報を基
に走査露光中におけるマスク面11Aと感光基板面3A
との位置関係を常に最適な状態(解像力やテレセントリ
ツク性能が最良な状態)に制御することにより、精度の
良い状態でマスク面11A上のパターンを感光基板面3
A上へ転写することができる。
As described above, the scanning type exposure apparatus 10 scans the photosensitive substrate 3 while rotating the photosensitive substrate 3 about the Z direction or the two central axes L1 and L2 (Zθ 1 and Zθ 2 ) as needed, based on the control data. Exposure (however, when Zθ 2 is driven, the projection optical system is arranged in two rows in the scanning direction). According to the above configuration, the positional relationship between the mask surface 11A and the photosensitive substrate surface 3A, which has been measured in advance by the focus sensors 14A to 14C along the respective scanning directions of the projection optical systems 12A to 12C, and the scanning in the scanning direction. Mask surface 11A and photosensitive substrate surface 3A during scanning exposure based on stage position information.
By always controlling the positional relationship between the photosensitive substrate surface 3A and the photosensitive substrate surface 3A in an accurate state, the pattern on the mask surface 11A can be accurately controlled.
Can be transferred onto A.

【0032】また感光基板3の位置補正を光軸方向(Z
方向)だけでなく、走査方向(X方向)に対して平行な
中心軸L1や走査方向に直交する中心軸L2に対して回
転させ、感光基板3の傾きを補正できるようにしたこと
により、マスク面11Aや感光基板面3Aの形状に即し
た細かい制御を実現することができる。
Further, the position of the photosensitive substrate 3 is corrected in the optical axis direction (Z
Not only the direction) but also the center axis L1 parallel to the scanning direction (X direction) and the center axis L2 orthogonal to the scanning direction so that the inclination of the photosensitive substrate 3 can be corrected, and thus the mask It is possible to realize fine control according to the shapes of the surface 11A and the photosensitive substrate surface 3A.

【0033】なお上述の実施例においては、マスク11
と感光基板3との相対的な位置関係を補正する場合、マ
スク11側を固定して感光基板3側のみを走査露光中に
逐次駆動する場合について述べたが、本発明はこれに限
らず、感光基板3側を固定してマスク11側のみを走査
露光中に逐次駆動しても良く、またマスク11と感光基
板3の両方を走査露光中に逐次駆動しても良い。
In the above embodiment, the mask 11 is used.
In the case of correcting the relative positional relationship between the photosensitive substrate 3 and the photosensitive substrate 3, the case where the mask 11 side is fixed and only the photosensitive substrate 3 side is sequentially driven during scanning exposure has been described, but the present invention is not limited to this. The photosensitive substrate 3 side may be fixed and only the mask 11 side may be sequentially driven during scanning exposure, or both the mask 11 and the photosensitive substrate 3 may be sequentially driven during scanning exposure.

【0034】また上述の実施例においては、投影光学系
を3つ用いる場合について述べたが、本発明はこれに限
らず、2つ用いる場合にも4つ以上用いる場合にも広く
適用し得る。ここで例えば図8に示すように複数個の投
影光学系を走査方向に沿つて2列設けた場合、1列目の
投影光学系12A〜12Cと2列目の投影光学系12
D、12Eとに焦点距離の差があると、そのまま走査露
光したのでは1列目の露光パターンと2列目の露光パタ
ーンとの間で焦点距離の違いによる差が生じてしまう。
そこでこの場合には、走査方向(X方向)に対して直交
する中心軸L2を中心としてマスク11や感光基板3を
回転(Zθ2 )させれば良い。すなわち近似面に一致す
るようにマスク11や感光基板3をZ方向や2つの軸L
1、L2を中心として回転(Zθ1 、Zθ2 )させれば
良い。これにより焦点距離によるパターン差を小さくす
ることができる。
Further, in the above-mentioned embodiment, the case where three projection optical systems are used has been described, but the present invention is not limited to this and can be widely applied when two projection optical systems are used or four or more projection optical systems are used. Here, for example, when a plurality of projection optical systems are provided in two rows along the scanning direction as shown in FIG. 8, the projection optical systems 12A to 12C in the first row and the projection optical system 12 in the second row are provided.
If there is a difference in focal length between D and 12E, if scanning exposure is performed as it is, a difference occurs between the exposure pattern in the first row and the exposure pattern in the second row due to the difference in focal length.
Therefore, in this case, the mask 11 and the photosensitive substrate 3 may be rotated (Zθ 2 ) about the central axis L2 orthogonal to the scanning direction (X direction). That is, the mask 11 and the photosensitive substrate 3 are arranged in the Z direction and the two axes L so as to coincide with the approximate surface.
It is sufficient to rotate (Zθ 1 , Zθ 2 ) about 1 and L2. Thereby, the pattern difference due to the focal length can be reduced.

【0035】さらに上述の実施例においては、近似面を
作成する際、最小自乗法を用いる場合について述べた
が、本発明はこれに限らず、他の方法を用いて近似面を
作成しても良い。例えば平面度の最高値を考慮する方法
も考えられる。最小自乗法による方法では、全体の平均
的な平面を得るために、微細な最高値又は最低値があつ
た場合、その部分だけ近似平面との差が大きくなつてし
まう。ところが露光においては微小なりとも、部分的な
ピークの存在は露光ムラにつながる。そのため露光領域
内全体に平均的な平面よりも、最高値と最低値をなだら
かに結ぶような平面の方が良い。
Further, in the above-mentioned embodiment, the case of using the least square method when creating the approximate surface has been described, but the present invention is not limited to this, and the approximate surface can be created by using another method. good. For example, a method of considering the maximum value of flatness can be considered. In the method using the least squares method, when there is a fine maximum value or minimum value in order to obtain an average plane for the whole, the difference from the approximate plane becomes large only for that portion. However, in exposure, even if it is minute, the presence of partial peaks leads to uneven exposure. Therefore, a plane that smoothly connects the highest value and the lowest value is better than an average plane over the entire exposure area.

【0036】また焦点深度を考慮した方法も考えられ
る。光学系には焦点深度があり、この範囲内であれば焦
点が合う。すなわちマスク11及び又は感光基板3に凹
凸があつても、また複数の投影光学系12A〜12Cの
焦点距離に差があつてもこの範囲内であればマスク11
や感光基板3の駆動がいらなくなる。そこでこの焦点深
度を予め計測しておき、その範囲内に感光基板を駆動さ
せることも考えられる。
A method considering the depth of focus is also conceivable. The optical system has a depth of focus, and is in focus within this range. That is, even if the mask 11 and / or the photosensitive substrate 3 has irregularities, or if there are differences in the focal lengths of the plurality of projection optical systems 12A to 12C, as long as they are within this range, the mask 11
The drive of the photosensitive substrate 3 is unnecessary. Therefore, it is possible to measure the depth of focus in advance and drive the photosensitive substrate within that range.

【0037】また走査方向(X方向)及びフオーカス方
向(Z方向)に対して直交する方向(Y方向)に対して
複数の平面度を得たときに、平面度として極端に異なつ
た値が示されることも考えられる。この理由としては感
光基板の部分的変形やゴミの付着、また検出器の異常等
が考えられる。この場合にはこれらの情報をそのまま使
用すると、異常値を使用することによつて他の平面度に
も影響が及ぶため正確な近似平面が得られなくなくおそ
れがある。そのようなことを防ぐためにある許容値を設
けて、その許容値に入つていなかつた平面度は使用しな
いということも考えられる。
Further, when a plurality of flatnesses are obtained in the direction (Y direction) orthogonal to the scanning direction (X direction) and the focus direction (Z direction), extremely different flatness values are shown. It is also possible that Possible reasons for this include partial deformation of the photosensitive substrate, adhesion of dust, and abnormality of the detector. In this case, if these pieces of information are used as they are, there is a possibility that an accurate approximate plane cannot be obtained because the use of an abnormal value affects other flatness. It is possible that a certain tolerance is set to prevent such a situation and flatness that does not fall within the tolerance is not used.

【0038】また上述の実施例においては、マスク面1
1A及び感光基板面3Aとの間の相対的な間隔によつて
マスク面11Aを基準とした感光基板面3Aの平面度マ
ツプを作成したが、本発明はこれに限らず、感光基板面
3Aを基準としたマスク面11Aの平面度マツプを作成
する場合にも、またマスク面11A及び感光基板面3A
のそれぞれについて平面度マツプを求めても良い。マス
ク面11A及び感光基板面3Aそれぞれについての平面
度マツプが得られればマスク面11Aと感光基板面3A
間の相対的な間隔が分かるため上記と同様な制御を適応
することができる。
In the above embodiment, the mask surface 1
Although the flatness map of the photosensitive substrate surface 3A based on the mask surface 11A is created by the relative distance between 1A and the photosensitive substrate surface 3A, the present invention is not limited to this. Also when the flatness map of the reference mask surface 11A is created, the mask surface 11A and the photosensitive substrate surface 3A are also used.
The flatness map may be obtained for each of the above. If flatness maps are obtained for the mask surface 11A and the photosensitive substrate surface 3A, respectively, the mask surface 11A and the photosensitive substrate surface 3A are obtained.
Since the relative distance between them is known, the same control as above can be applied.

【0039】さらに上述の実施例においては、マスク1
1や感光基板3を中心軸L1及びL2に対してそれぞれ
回転できるようにする場合について述べたが、本発明は
これに限らず、マスク11や感光基板3をX−Y平面内
で動かさせるように(すなわち中心軸L1及びL2がそ
れぞれX−Y平面内を動くように)しても良い。なお上
述の実施例においては、投影光学系の倍率を等倍として
おり、このためマスク11と感光基板3とを走査ステー
ジによつて一体走査する構成としているが、投影光学系
の倍率が等倍でない場合は、マスク11と感光基板3と
を独立して測定し、同期して走査する構成としてもよ
い。
Further, in the above embodiment, the mask 1
1 and the photosensitive substrate 3 are described so as to be rotatable with respect to the central axes L1 and L2 respectively, the present invention is not limited to this, and the mask 11 and the photosensitive substrate 3 may be moved in the XY plane. (That is, the central axes L1 and L2 move in the XY plane). In the above-described embodiment, the projection optical system has the same magnification, and therefore the mask 11 and the photosensitive substrate 3 are integrally scanned by the scanning stage, but the projection optical system has the same magnification. If not, the mask 11 and the photosensitive substrate 3 may be independently measured and may be synchronously scanned.

【0040】[0040]

【発明の効果】上述のように本発明によれば、複数の投
影光学系のそれぞれによつて露光される複数の領域毎に
設けられた複数の位置検出手段によつて、マクス面と感
光基板面との投影光学系の光軸方向の位置関係を走査方
向における任意の位置について求め、マスク面と感光基
板面との光軸方向の位置関係が所定の関係となるように
制御したことにより、複数の投影光学系のそれぞれの結
像面の違いや、マスクと感光基板の平面度や平行度に影
響されることなく、鮮明な像を感光基板上に転写し得
る。
As described above, according to the present invention, the max plane and the photosensitive substrate are provided by the plurality of position detecting means provided for each of the plurality of areas exposed by each of the plurality of projection optical systems. By determining the positional relationship in the optical axis direction of the projection optical system with the surface for any position in the scanning direction, by controlling the positional relationship in the optical axis direction between the mask surface and the photosensitive substrate surface to be a predetermined relationship, A clear image can be transferred onto the photosensitive substrate without being affected by the difference in the image plane of each of the plurality of projection optical systems and the flatness and parallelism of the mask and the photosensitive substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による走査型露光装置の一実施例を示す
略線図である。
FIG. 1 is a schematic diagram showing an embodiment of a scanning exposure apparatus according to the present invention.

【図2】投射光学系と走査方向に配置されるフオーカス
センサとを示す略線的斜視図である。
FIG. 2 is a schematic perspective view showing a projection optical system and a focus sensor arranged in a scanning direction.

【図3】オートフオーカス機構の光学系を示す略線図で
ある。
FIG. 3 is a schematic diagram showing an optical system of an autofocus mechanism.

【図4】マスク面と感光基板との両方に生じている凹凸
を感光基板のみの凹凸として見る様子の説明に供する略
線図である。
FIG. 4 is a schematic diagram for explaining how to see the unevenness generated on both the mask surface and the photosensitive substrate as the unevenness only on the photosensitive substrate.

【図5】位置関係の補正に使用される駆動軸の説明に供
する略線図である。
FIG. 5 is a schematic diagram for explaining a drive shaft used for correcting a positional relationship.

【図6】近似面の説明に供する略線図である。FIG. 6 is a schematic diagram for explaining an approximate surface.

【図7】焦点距離が異なる投影光学系を用いて走査露光
することによつて得られる焦点位置の軌跡を示す略線的
斜視図である。
FIG. 7 is a schematic perspective view showing a locus of focal positions obtained by scanning exposure using projection optical systems having different focal lengths.

【図8】走査方向に複数列並んだ投影光学系の説明に供
する略線的斜視図である。
FIG. 8 is a schematic perspective view for explaining a projection optical system arranged in a plurality of rows in the scanning direction.

【図9】従来のマスク面と感光基板との間隔を測定を示
す略線図である。
FIG. 9 is a schematic diagram showing measurement of a distance between a conventional mask surface and a photosensitive substrate.

【符号の説明】[Explanation of symbols]

1……露光装置、3……感光基板、3A……感光基板
面、4……受光装置、10……走査型露光装置、11…
…マスク、11A……マスク面、13……走査ステー
ジ、14……フオーカスセンサ、21A、21B……L
ED、30……デイテクタ、31……検出系、32……
記憶装置、33……制御系、34、35、36……駆動
系。
1 ... Exposure device, 3 ... Photosensitive substrate, 3A ... Photosensitive substrate surface, 4 ... Light receiving device, 10 ... Scanning exposure device, 11 ...
... mask, 11A ... mask surface, 13 ... scanning stage, 14 ... focus sensor, 21A, 21B ... L
ED, 30 ... Detector, 31 ... Detection system, 32 ...
Storage device, 33 ... Control system, 34, 35, 36 ... Drive system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03F 9/00 A (72)発明者 宮崎 聖二 東京都千代田区丸の内3丁目2番3号株式 会社ニコン内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location G03F 9/00 A (72) Inventor Seiji Miyazaki 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Stock company In Nikon

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】マスク上の複数の領域をそれぞれ照明し、
該複数の領域のそれぞれの像を複数の投影光学系を介し
て感光基板上に投影すると共に、前記マスクと前記感光
基板とを前記複数の投影光学系に対して走査させること
により、前記マスクの被露光領域を前記感光基板上の投
影領域に露光する走査型露光装置において、 前記複数の投影光学系それぞれに対応して設置され、前
記マスク面上の前記複数の被露光領域のそれぞれと前記
感光基板面上の前記投影領域との前記投影光学系の光軸
方向の相対的な位置関係を前記走査方向上の任意の位置
で測定する位置検出手段と、 前記位置検出手段の測定結果に基づいて、前記相対的な
位置関係が所定の関係を維持するように前記マスクと前
記感光基板の少なくとも一方の前記光軸方向の位置を補
正する位置補正手段とを具えることを特徴とする走査型
露光装置。
1. Illuminating a plurality of areas on a mask,
By projecting the respective images of the plurality of regions onto a photosensitive substrate via a plurality of projection optical systems and scanning the mask and the photosensitive substrate with respect to the plurality of projection optical systems, In a scanning type exposure apparatus that exposes a region to be exposed to a projection region on the photosensitive substrate, each of the plurality of regions to be exposed on the mask surface and the photosensitive region is installed corresponding to each of the plurality of projection optical systems. Based on a measurement result of the position detection unit, a position detection unit that measures a relative positional relationship in the optical axis direction of the projection optical system with the projection region on the substrate surface at an arbitrary position in the scanning direction, And a position correction means for correcting the position of at least one of the mask and the photosensitive substrate in the optical axis direction so that the relative positional relationship maintains a predetermined relationship. Exposure apparatus.
【請求項2】前記位置検出手段は、前記相対的な位置関
係を前記複数の被露光領域と前記複数の投影領域の任意
の位置で測定することを特徴とする請求項1に記載の走
査型露光装置。
2. The scanning type according to claim 1, wherein the position detecting means measures the relative positional relationship at arbitrary positions of the plurality of exposed regions and the plurality of projected regions. Exposure equipment.
【請求項3】前記位置検出手段は、前記相対的な位置関
係を前記走査方向における前記複数の被露光領域と前記
複数の投影領域の前方又は後方位置で測定することを特
徴とする請求項1に記載の走査型露光装置。
3. The position detecting means measures the relative positional relationship at positions in front of or behind the plurality of exposed regions and the plurality of projected regions in the scanning direction. The scanning type exposure apparatus according to.
JP6270655A 1994-10-07 1994-10-07 Scanning aligner Pending JPH08111375A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6270655A JPH08111375A (en) 1994-10-07 1994-10-07 Scanning aligner
KR1019950034203A KR960015753A (en) 1994-10-07 1995-10-06 Scanning exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270655A JPH08111375A (en) 1994-10-07 1994-10-07 Scanning aligner

Publications (1)

Publication Number Publication Date
JPH08111375A true JPH08111375A (en) 1996-04-30

Family

ID=17489119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270655A Pending JPH08111375A (en) 1994-10-07 1994-10-07 Scanning aligner

Country Status (2)

Country Link
JP (1) JPH08111375A (en)
KR (1) KR960015753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302043A (en) * 2003-03-31 2004-10-28 Nikon Corp Exposure apparatus and exposure method
JP2010266689A (en) * 2009-05-14 2010-11-25 Nikon Corp Method and apparatus for exposure, and method for manufacturing device
JP2012212898A (en) * 2003-05-30 2012-11-01 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2013200506A (en) * 2012-03-26 2013-10-03 Nikon Corp Exposure apparatus, exposure method and device manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505607B1 (en) * 1998-06-22 2005-09-26 삼성전자주식회사 Loudness control method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302043A (en) * 2003-03-31 2004-10-28 Nikon Corp Exposure apparatus and exposure method
JP4496711B2 (en) * 2003-03-31 2010-07-07 株式会社ニコン Exposure apparatus and exposure method
JP2012212898A (en) * 2003-05-30 2012-11-01 Asml Netherlands Bv Lithography apparatus and device manufacturing method
US8675175B2 (en) 2003-05-30 2014-03-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2014082517A (en) * 2003-05-30 2014-05-08 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2010266689A (en) * 2009-05-14 2010-11-25 Nikon Corp Method and apparatus for exposure, and method for manufacturing device
JP2013200506A (en) * 2012-03-26 2013-10-03 Nikon Corp Exposure apparatus, exposure method and device manufacturing method

Also Published As

Publication number Publication date
KR960015753A (en) 1996-05-22

Similar Documents

Publication Publication Date Title
JP3376179B2 (en) Surface position detection method
EP0585041B1 (en) Registration method usable with a projection optical system, exposure apparatus therefor and method of manufacturing a semiconductor device by using such exposure apparatus
JP3634068B2 (en) Exposure method and apparatus
JP3453818B2 (en) Apparatus and method for detecting height position of substrate
US5777722A (en) Scanning exposure apparatus and method
US20090097002A1 (en) Exposure device
JP4741396B2 (en) Drawing position measuring method and apparatus, and drawing method and apparatus
JP3880155B2 (en) Positioning method and positioning device
JPS61174717A (en) Positioning apparatus
JPH07228000A (en) Laser beam shift detector of image forming apparatus
JP5000948B2 (en) Drawing position measuring method and apparatus, and drawing method and apparatus
JPH08111375A (en) Scanning aligner
JP3381313B2 (en) Exposure apparatus, exposure method, and element manufacturing method
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
US20030133089A1 (en) Projection Aligner
JP2006227278A (en) Method for detecting clamp member, image forming method, and image forming apparatus
JP3428825B2 (en) Surface position detection method and surface position detection device
US5991007A (en) Step and scan exposure system and semiconductor device manufactured using said system
JP3754743B2 (en) Surface position setting method, wafer height setting method, surface position setting method, wafer surface position detection method, and exposure apparatus
JPH07307284A (en) Scanning exposure device
JPH10242040A (en) Projection aligner
JPH07302754A (en) Scanning type aligner
JP3376219B2 (en) Surface position detecting device and method
JP3218484B2 (en) Projection exposure apparatus, exposure method, and semiconductor manufacturing method using the same
JPH097915A (en) Surface tilt detection system