JPH08110788A - Sound source for measuring instrument - Google Patents

Sound source for measuring instrument

Info

Publication number
JPH08110788A
JPH08110788A JP27445494A JP27445494A JPH08110788A JP H08110788 A JPH08110788 A JP H08110788A JP 27445494 A JP27445494 A JP 27445494A JP 27445494 A JP27445494 A JP 27445494A JP H08110788 A JPH08110788 A JP H08110788A
Authority
JP
Japan
Prior art keywords
sound source
sound
wind
electrode rods
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27445494A
Other languages
Japanese (ja)
Other versions
JP2978939B2 (en
Inventor
Takakazu Miyahara
隆和 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elm Co Ltd
Original Assignee
Elm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elm Co Ltd filed Critical Elm Co Ltd
Priority to JP27445494A priority Critical patent/JP2978939B2/en
Publication of JPH08110788A publication Critical patent/JPH08110788A/en
Application granted granted Critical
Publication of JP2978939B2 publication Critical patent/JP2978939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE: To provide a small nondirectional sound source suitable for an anemometer. CONSTITUTION: Two needle-like electrode rods 24, 25 made of a conducting material are arranged so that their tips face each other at a prescribed gap, and a pulse-like high voltage is applied between two electrode rods 24, 25. The sound wave containing ultrasonic wave is uniformly emitted to the surrounding by an electric discharge between the electrode rods 24, 25.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、風向、風速等を測定す
る風向風速計やその他の音波を利用した測定器に適した
音源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound source suitable for an anemometer for measuring wind direction, wind speed and the like and other measuring instruments using sound waves.

【0002】[0002]

【従来の技術】大気中における音波の伝播速度が大気の
動き(風)の方向及び速さにより変化することを利用し
て風向、風速等(同時に温度も測定することができるも
のもある)を測定する風向風速計は既に知られている。
このような風向風速計の音源としては従来、専ら小型の
スピーカーが用いられていた。スピーカーは、磁気又は
圧電セラミックにより振動電気信号を物体の動きに変換
し、それにより空気を振動させるものである。
2. Description of the Related Art Wind direction, wind speed, etc. (some of which can measure temperature at the same time) are utilized by utilizing the fact that the propagation speed of sound waves in the atmosphere changes depending on the direction and speed of the movement (wind) of the atmosphere. Anemometers for measuring are already known.
Conventionally, a small speaker has been exclusively used as the sound source of such anemometer. Speakers are magnetic or piezoelectric ceramics that convert an oscillating electrical signal into the motion of an object, thereby vibrating the air.

【0003】[0003]

【発明が解決しようとする課題】音波の伝播速度を利用
して風向や風速を高精度に測定するためには、音源や受
音器が測定対象である風の動きに影響を与えないように
しなければならない。受音器については近年開発された
小型マイクロフォンを利用することが可能であるが、音
源については、上記原理を採用する限りは、測定に必要
な大きさの音を発生させる為にある程度の大きさの振動
物体が必要であり、小型化に限界がある。
In order to measure the wind direction and speed with high accuracy by utilizing the propagation velocity of sound waves, the sound source and the sound receiver should not affect the movement of the wind to be measured. There must be. Although it is possible to use a small microphone that has been developed in recent years for the sound receiver, as long as the above-mentioned principle is adopted, the sound source needs to have a certain amount of sound to generate a sound volume necessary for measurement. This requires a vibrating object, and there is a limit to miniaturization.

【0004】また、従来の音源は方向性についても問題
がある。例えば、特開平5−307087号公報に記載
の超音波風向風速温度測定装置は、音源を中心に周囲4
箇所に受音器を配置し、中央の音源から発せられた音が
4箇所の受音器に到達する迄の時間を基に風向、風速及
び気温を測定するものであるが、このような装置では、
音源からその周囲の受音器に対して均一に音波を発生す
る必要がある。この場合、従来は音響ホーンを使用する
等により発射強度の方向性の均一化を図っていたが、こ
れによると更に音源が大きくなり、高精度の測定を困難
にしていた。
Further, the conventional sound source has a problem in directivity. For example, in the ultrasonic wind direction wind velocity temperature measuring device described in Japanese Patent Laid-Open No. 5-307087, the surroundings 4 around the sound source are used.
A sound receiver is arranged at each location, and the wind direction, wind speed, and temperature are measured based on the time taken for the sound emitted from the central sound source to reach the four sound receivers. Then
It is necessary to uniformly generate sound waves from the sound source to the sound receivers around it. In this case, conventionally, the direction of the emission intensity was made uniform by using an acoustic horn or the like, but this made the sound source larger and made it difficult to perform highly accurate measurement.

【0005】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、風向風
速計等の音波を利用した測定器に適した小型で、無方向
性の音源を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a compact, non-directional device suitable for a measuring instrument using sound waves such as an anemometer. It is to provide a sound source.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る測定器用音源は、 a)導電性材料から成り、所定のギャップを設けて先端が
対向するように設けられた2本の針状の電極棒と、 b)上記2本の電極棒の間にパルス状の高電圧を印加する
電圧印加回路と、を備えることを特徴とする。
Means for Solving the Problems A sound source for a measuring instrument according to the present invention made to solve the above problems is a) made of a conductive material and provided with a predetermined gap so that its tips are opposed to each other. It is characterized by further comprising two needle-shaped electrode rods and b) a voltage application circuit for applying a pulsed high voltage between the two electrode rods.

【0007】[0007]

【作用】電圧印加回路から両電極棒に高電圧を印加する
と、両電極棒の先端の間にギャップを超えて放電が生じ
る。これにより音波(超音波を含む)が発生するが、こ
の音波の発生源は両電極間のギャップという非常に小さ
い部分であり、また、その強度も、両電極の先端を結ぶ
直線の周囲360度の方向で均一となっている。
When a high voltage is applied from the voltage application circuit to both electrode rods, a discharge occurs across the gap between the tips of both electrode rods. This causes sound waves (including ultrasonic waves) to be generated, but the source of this sound wave is a very small portion, which is the gap between both electrodes, and its strength is 360 degrees around the straight line connecting the tips of both electrodes. Is uniform in the direction of.

【0008】[0008]

【実施例】本発明の一実施例である超音波風向風速温度
計を図1から図6により説明する。図1(a)に示すよ
うに、本実施例の風向風速温度計の測定部は、音波を発
生する音源20と、それを中心に4方向に配置された4
個のマイクロフォン11〜14から成る。これらは図1
(a)のように1枚のベース10上に固定しておくのが
精度、取り扱い等の点で便利であるが、それぞれ独立に
設置してもよい。音源20は金属製のパイプからなるス
テー(支柱)21の上に設け、ステー21はベース10
による風の乱れを避けるために、やや長めにしておく。
マイクロフォン11〜14も同様に支柱上に設け、音源
20と同じ高さにしておく。なお、このマイクロフォン
用の支柱又は後述の音源20用の上部保持体29を更に
上に延ばし、雨や直射日光による温度上昇を防止するた
めの傘を設けておくことが望ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic wind direction anemometer according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1A, the measurement unit of the wind direction anemometer of this embodiment includes a sound source 20 that generates sound waves, and a sound source 20 that is arranged in four directions around the sound source 20.
The microphones 11 to 14 are provided. These are shown in Figure 1.
It is convenient to fix it on one base 10 as shown in (a) in terms of accuracy and handling, but they may be installed independently. The sound source 20 is provided on a stay (support) 21 made of a metal pipe, and the stay 21 is the base 10.
Keep it slightly longer to avoid wind turbulence.
Similarly, the microphones 11 to 14 are also provided on the support column and have the same height as the sound source 20. It is desirable to further extend the microphone column or the upper holding body 29 for the sound source 20 described later and to provide an umbrella for preventing a temperature rise due to rain or direct sunlight.

【0009】図1(b)に示すように、音源20は下部
放電電極棒24と上部放電電極棒25から成る。下部電
極棒24はステー21の上部に固定され、上部電極棒2
5は上部保持体29により保持される。上部保持体29
は複数本の金属製のガード22によりステー21に連
結、固定される。ガード22はまた、高圧が印加される
下部電極棒24及び放電部分であるギャップへの人体の
接触を防止する安全柵となる他、ごみ(落ち葉等)がギ
ャップ間に入り、放電により発火することを防ぐ役割、
昆虫等がギャップ周辺に侵入し、漏電により音が出なく
なることを防ぐ役割等、種々の役割を果たす。図5、図
6(これらは後述するように別の実施例であるが、ステ
ー21内及び下部電極棒24の取り付け部分においては
同様の構成を有する)に示すように、パイプ状のステー
21の内部には絶縁層27を介して電線28が配設され
ており、この電線28は下部電極棒24と後述のパルス
高電圧発生回路43の高圧側端子を接続する。ステー2
1の上端の下部電極棒24取付部分においては、図5、
図6に示すように、塵埃や雨水等の侵入による絶縁低下
を防止するため絶縁体のキャップ23を設け、キャップ
23とステー21の内壁の間をOリング26でシールし
ておく。上部電極棒25は上部保持体29、ガード22
及びステー21の外周部を通じて接地される。なお、ス
テー21の外径は3〜5mm程度、各ガード22の外径
は1mm程度が適当である。
As shown in FIG. 1B, the sound source 20 comprises a lower discharge electrode rod 24 and an upper discharge electrode rod 25. The lower electrode rod 24 is fixed to the upper portion of the stay 21, and the upper electrode rod 2
5 is held by the upper holding body 29. Upper holder 29
Is connected and fixed to the stay 21 by a plurality of metal guards 22. The guard 22 also serves as a safety fence that prevents the human body from contacting the lower electrode rod 24 to which a high voltage is applied and the gap that is the discharge part, and dust (fallen leaves, etc.) enters the gap and is ignited by discharge. Role to prevent
It plays various roles, such as preventing insects from invading around the gap and preventing sound from leaking. As shown in FIG. 5 and FIG. 6 (these are other examples as described later, the stay 21 and the mounting portion of the lower electrode rod 24 have similar configurations), the pipe-shaped stay 21 An electric wire 28 is arranged inside via an insulating layer 27, and the electric wire 28 connects the lower electrode rod 24 and a high voltage side terminal of a pulse high voltage generating circuit 43 described later. Stay 2
In the mounting portion of the lower electrode rod 24 at the upper end of FIG.
As shown in FIG. 6, an insulating cap 23 is provided in order to prevent deterioration of insulation due to invasion of dust, rainwater, etc., and an O-ring 26 seals between the cap 23 and the inner wall of the stay 21. The upper electrode rod 25 includes an upper holder 29 and a guard 22.
And is grounded through the outer periphery of the stay 21. It is suitable that the outer diameter of the stay 21 is about 3 to 5 mm, and the outer diameter of each guard 22 is about 1 mm.

【0010】電極棒24、25へ高電圧を印加する高電
圧印加回路及びマイクロフォン11〜14の検出信号か
ら風速、風向等を算出する演算回路はベース10の下又
は上記の傘の下等に設けられる。これらの電気回路の構
成を図2に示す。発振回路42は水晶振動子又は外部か
ら得られる精度の高い基準信号を分周することにより、
2つの基準クロック信号46及び47を出力する。基準
クロック信号46は高電圧パルスを生成するための基準
信号となるとともに、計時回路38〜41が音波の伝播
時間の計測を開始するためのスタート信号となる。ま
た、基準クロック信号47は他方の基準クロック信号4
6よりも高周波のパルス信号であり、計時回路38〜4
1において時間測定の基準として用いられるクロック信
号である。
A high voltage applying circuit for applying a high voltage to the electrode rods 24 and 25 and an arithmetic circuit for calculating the wind speed, the wind direction and the like from the detection signals of the microphones 11 to 14 are provided under the base 10 or under the umbrella or the like. To be The configuration of these electric circuits is shown in FIG. The oscillation circuit 42 divides a crystal oscillator or a highly accurate reference signal obtained from the outside by
It outputs two reference clock signals 46 and 47. The reference clock signal 46 serves as a reference signal for generating a high voltage pulse, and also serves as a start signal for the timing circuits 38 to 41 to start measuring the propagation time of a sound wave. The reference clock signal 47 is the other reference clock signal 4
6, which is a pulse signal of a higher frequency than 6,
1 is a clock signal used as a reference for measuring time.

【0011】パルス高電圧発生回路43は、発振回路4
2から供給される基準クロック信号46に基づきパルス
状の高電圧を生成して、音源20の両電極棒24、25
間に印加する。パルス状の高電圧を生成するには各種方
法が考えられるが、一般には、低電圧のパルスを単巻又
は複巻トランスを用いて昇圧するか、或いは近年開発さ
れた圧電トランス(電気信号を運動に変え、運動を再び
電気に変える)を用いると効率が良い。両電極棒24、
25間のギャップに印加する電圧は、必要とする音の大
きさにより最適値は変化するが、例えば電極間ギャップ
を1mmとした場合、2kV程度が適当である。
The pulse high voltage generating circuit 43 includes an oscillating circuit 4
A pulse-shaped high voltage is generated based on the reference clock signal 46 supplied from 2 and the two electrode rods 24, 25 of the sound source 20 are generated.
Apply between. Although various methods can be considered to generate a pulsed high voltage, generally, a low voltage pulse is boosted by using a single-winding or a double-winding transformer, or a recently developed piezoelectric transformer (electric signal To change the movement to electricity again) is more efficient. Both electrode rods 24,
The optimum value of the voltage applied to the gap between 25 varies depending on the volume of the required sound, but for example, when the gap between the electrodes is 1 mm, about 2 kV is suitable.

【0012】両電極棒24、25間の放電により、超音
波を含む音波が生成される。音波は両電極棒24、25
間のギャップから周囲に一様に発射されるが、周囲に伝
播してゆく際、伝播媒体である大気の動き(風)により
その伝播速度が異なる。このため、4個のマイクロフォ
ン11〜14により検出される時刻は、風向及び風速に
よりそれぞれ異なる。4個のマイクロフォン11〜14
から出力される音波検出信号は帯域制限増幅器30〜3
3により増幅され、電圧比較器34〜37により所定の
基準電圧をスレッシュホールドとして二値化される。電
圧比較器34〜37に与えるスレッシュホールドは、音
源20における放電音のみを取り出すような値に設定し
ておく。二値化された信号は計時回路38〜41に送ら
れる。計時回路38〜41は、発振回路42から供給さ
れる基準クロック信号46のパルスを受信する毎に他方
の基準クロック信号47の計数を開始し、4個の電圧比
較器34〜37からの4種の二値化信号が到着するまで
の計数値をそれぞれ用意されたレジスタに納める。MP
U回路44は各計時回路38〜41のレジスタの値を読
み出し、これらの値より、音源20で音波が発射された
時点から各マイクロフォン11〜14にその音波が到達
した時点迄の時間t1、t2、t3、t4を算出する。
A sound wave including an ultrasonic wave is generated by the discharge between the electrode rods 24 and 25. The sound waves are both electrode rods 24, 25
It is uniformly emitted to the surroundings from the gap between them, but when propagating to the surroundings, its propagation speed varies depending on the movement (wind) of the atmosphere, which is the propagation medium. Therefore, the times detected by the four microphones 11 to 14 differ depending on the wind direction and the wind speed. Four microphones 11-14
The sound wave detection signal output from the band limiting amplifier 30 to 3
Amplified by 3 and binarized by the voltage comparators 34 to 37 using a predetermined reference voltage as a threshold. The thresholds given to the voltage comparators 34 to 37 are set to values such that only the discharge sound of the sound source 20 is extracted. The binarized signal is sent to the timing circuits 38 to 41. Each of the time counting circuits 38 to 41 starts counting the other reference clock signal 47 each time it receives a pulse of the reference clock signal 46 supplied from the oscillation circuit 42, and the four types of four voltage comparators 34 to 37 are supplied. The count value until the binarized signal of 1 arrives is stored in the prepared register. MP
The U circuit 44 reads the value of the register of each of the timing circuits 38 to 41, and based on these values, the time t 1 from the time when the sound wave is emitted from the sound source 20 to the time when the sound wave reaches each of the microphones 11 to 14, Calculate t 2 , t 3 , and t 4 .

【0013】MPU回路44では、以下のような手順に
より風向、風速及び気温を算出する。なお、以下では簡
単のため、図3に示すように音源20と各マイクロフォ
ン11〜14との間の距離が全てLであるとするが、こ
れらが互いに異なっていても計算は可能である。
The MPU circuit 44 calculates the wind direction, the wind speed and the temperature by the following procedure. In the following, for simplicity, it is assumed that the distance between the sound source 20 and each of the microphones 11 to 14 is L as shown in FIG. 3, but calculation is possible even if they are different from each other.

【0014】まず、図4に示すように音源20を挟んで
対向するマイクロフォン11と13について考える。音
速をc、マイクロフォン13からマイクロフォン11へ
の方向(この方向をxとする)の風速がvxであるとす
ると、t1及びt3はそれぞれ、 t1=L/(c+vx) …(1) t3=L/(c−vx) …(2) となる。ところが、音速cは温度Tにより変化するた
め、式(1)、(2)は正確には t1=L/(c0+k・T+vx) …(3) t3=L/(c0+k・T−vx) …(4) と表わされる。ここで、c0は0℃における音速(c0
331.5m/s)、kは1℃当たりの音速の変化率(k=0.60
7(m/s)/deg)である。式(3)、(4)より温度Tは T=(L/t1+L/t3−2・c0)/(2・k) …(5) と算出される。
First, consider the microphones 11 and 13 facing each other across the sound source 20 as shown in FIG. Assuming that the sound velocity is c and the wind velocity in the direction from the microphone 13 to the microphone 11 (this direction is x) is v x , t 1 and t 3 are respectively t 1 = L / (c + v x ) ... (1 ) T 3 = L / (c−v x ) ... (2) However, since the sound velocity c changes depending on the temperature T, the equations (1) and (2) are exactly t 1 = L / (c 0 + k · T + v x ) ... (3) t 3 = L / (c 0 + k · T-v x) ... it is expressed as (4). Here, c 0 is the speed of sound at 0 ° C. (c 0 =
331.5m / s), k is the rate of change in sound velocity per degree Celsius (k = 0.60)
7 (m / s) / deg). From the equations (3) and (4), the temperature T is calculated as T = (L / t 1 + L / t 3 −2 · c 0 ) / (2 · k) (5).

【0015】この温度Tの値を式(3)に代入すること
により、音源20からマイクロフォン11への風速vx+
が vx+= (L/t1−L/t3)/2 …(6) と、また、同様に温度Tの値を式(4)に代入すること
により、音源20からマイクロフォン13への風速vx-
が vx-=−(L/t1−L/t3)/2 …(7) と算出される。
By substituting the value of the temperature T into the equation (3), the wind speed v x + from the sound source 20 to the microphone 11
Is v x + = (L / t 1 −L / t 3 ) / 2 (6), and similarly, by substituting the value of the temperature T into the equation (4), the wind speed from the sound source 20 to the microphone 13 is v x-
Is calculated as v x− = − (L / t 1 −L / t 3 ) / 2 (7).

【0016】式(6)及び(7)を見てもわかる通り、
x+及びvx-は本来、符号が逆であるのみで、絶対値は
同じであるはずであるが、本装置に何らかの異常が生じ
ている場合には両値vx+,vx-の絶対値の算出結果が一
致しないことがあり得る。そこで、本実施例の風向風速
温度計のMPU回路44では、式(6)及び(7)の双
方を用いて風速値のx方向成分vx+,vx-を算出し、両
者vx+,vx-の絶対値を比較することにより、本装置に
何らかの異常が生じているか否かを判断する。すなわ
ち、両者の絶対値が一致しているときは、vx+=−vx-
=vxとして、風速のx方向成分を決定する。両者の値
が一致しないとき(vx+≠−vx-)は、本装置が異常で
あると判定する。
As can be seen from the equations (6) and (7),
Originally, v x + and v x- have only opposite signs, and their absolute values should be the same. However, when some abnormality occurs in this device, the absolute values of v x + and v x- are absolute. The calculated values may not match. Therefore, the MPU circuit 44 of the wind direction anemometer according to the present embodiment calculates the x-direction components v x + , v x- of the wind speed using both equations (6) and (7), and both v x + , v By comparing the absolute values of x- , it is determined whether or not any abnormality has occurred in this device. That is, when the absolute values of both are the same, v x + = −v x-
= V x , the x-direction component of the wind speed is determined. When the two values do not match (v x + ≠ −v x− ), it is determined that the device is abnormal.

【0017】他の2個のマイクロフォン対12、14
(この方向をyとする)についても上記と同様に風速の
y方向の成分vy+、vy-が算出される。 vy+= (L/ty+−L/ty-)/2 …(8) vy-=−(L/ty+−L/ty-)/2 …(9) y方向についても上記と同様に本装置が異常であるか否
かを判断し、両値vy+、vy-の絶対値が等しいときに
は、y方向の成分値としてvy+=−vy-=vyを採用す
る。x方向とy方向の成分値vx、vyより、風向及び風
速の絶対値を算出することができる。
The other two microphone pairs 12, 14
Also for (this direction is y), the y-direction components v y + and v y- of the wind speed are calculated in the same manner as above. v y + = (L / t y + −L / t y− ) / 2 (8) v y− = − (L / t y + −L / t y− ) / 2 (9) The same applies to the y direction. Similarly, it is determined whether or not the device is abnormal, and when the absolute values of both values v y + and v y− are equal, v y + = −v y− = v y is adopted as the component value in the y direction. The absolute values of the wind direction and the wind speed can be calculated from the component values v x and v y in the x direction and the y direction.

【0018】MPU回路44は上記のような手順で風
向、風速、温度の算出を行なった後、これらのデータを
出力回路45を介してLCDパネルやCRDディスプレ
イ等に出力し、或いは通信回線を通じてデータセンター
等に送信する。また、経時的に得られるこれらのデータ
を蓄積して、定期的に推移表を作成したり、平均値、最
大・最小値等を同時に表示する等の二次的データ処理を
行なうようにしてもよい。
The MPU circuit 44 calculates the wind direction, the wind speed, and the temperature in the above-described procedure, and then outputs these data to the LCD panel, the CRD display or the like through the output circuit 45, or the data through the communication line. Send to the center etc. Also, by accumulating these data obtained over time, it is possible to periodically create a transition table or perform secondary data processing such as displaying average values, maximum / minimum values, etc. at the same time. Good.

【0019】本発明に係る音源は周囲360度に均一に
音波を発射させることができる点に特徴があるが、もち
ろん限定された一部の方向にのみ発射させることも可能
である。例えば、図3のようなL字形構造にすることに
より単一方向にのみ発射することができ、図4のような
T字形構造にすることにより2方向に発射する発音源と
することができる。なお、図5、図6において、図1と
同じ記号は同じ要素を表わす。
The sound source according to the present invention is characterized in that it can uniformly emit sound waves around 360 degrees, but of course it is also possible to emit sound waves only in a limited part of the directions. For example, an L-shaped structure as shown in FIG. 3 can be used for emission in only one direction, and a T-shaped structure as shown in FIG. 4 as a sound source for emission in two directions. 5 and 6, the same symbols as those in FIG. 1 represent the same elements.

【0020】[0020]

【発明の効果】本発明に係る音源は、2本の電極棒のみ
で構成されるため、非常に小型である。また、狭いギャ
ップが発音部であるため発音部自体が小さく、それに加
えて音が周囲360度に均一に発射されるため、高精度
の測定を行なうことができる。従って、風向風速(温
度)計の他、音波を利用して距離等を測定する各種測定
器に適した音源となる。
The sound source according to the present invention is very small because it is composed of only two electrode rods. Also, since the narrow gap is the sounding portion, the sounding portion itself is small, and in addition, the sound is emitted uniformly in the surrounding 360 degrees, so that highly accurate measurement can be performed. Therefore, the sound source is suitable for various measuring instruments that measure distances and the like using sound waves, in addition to the wind direction and wind speed (temperature) meter.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例である風向風速温度計の測
定部の斜視図(a)及び音源の拡大斜視図(b)。
FIG. 1 is a perspective view (a) of a measurement unit of a wind direction anemometer and an enlarged perspective view (b) of a sound source according to an embodiment of the present invention.

【図2】 実施例の風向風速温度計の電気回路図。FIG. 2 is an electric circuit diagram of the wind direction wind velocity thermometer of the embodiment.

【図3】 音源及びマイクロフォンの位置関係を示す説
明図。
FIG. 3 is an explanatory diagram showing a positional relationship between a sound source and a microphone.

【図4】 x方向の音波の伝播速度と風速の関係を示す
説明図。
FIG. 4 is an explanatory diagram showing a relationship between a sound wave propagation velocity in the x direction and a wind velocity.

【図5】 本発明の第2の実施例であるL字形音源の断
面図。
FIG. 5 is a sectional view of an L-shaped sound source that is a second embodiment of the present invention.

【図6】 本発明の第3の実施例であるT字形音源の断
面図。
FIG. 6 is a sectional view of a T-shaped sound source that is a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…ベース 11、12、13、14…マイクロフォン 20…音源 21…ステー 22…ガード 23…キャップ 24、25…放電電極棒 26…Oリング 27…絶縁層 28…高電圧電線 29…上部保持体 30、31、32、33…帯域制限増幅器 34、35、36、37…電圧比較器 38、39、40、41…計時回路 42…発振回路 43…パルス高電圧発生回路 44…MPU回路 45…出力回路 46…基準クロック信号 47…基準クロック信号(高周波) 10 ... Base 11, 12, 13, 14 ... Microphone 20 ... Sound source 21 ... Stay 22 ... Guard 23 ... Cap 24, 25 ... Discharge electrode rod 26 ... O-ring 27 ... Insulating layer 28 ... High voltage electric wire 29 ... Upper holding body 30 , 31, 32, 33 ... Band limiting amplifier 34, 35, 36, 37 ... Voltage comparator 38, 39, 40, 41 ... Timing circuit 42 ... Oscillation circuit 43 ... Pulse high voltage generation circuit 44 ... MPU circuit 45 ... Output circuit 46 ... Reference clock signal 47 ... Reference clock signal (high frequency)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)導電性材料から成り、所定のギャップ
を設けて先端が対向するように設けられた2本の針状の
電極棒と、 b)上記2本の電極棒の間にパルス状の高電圧を印加する
電圧印加回路と、を備えることを特徴とする、音波を利
用した測定器用の音源。
1. A) two needle-shaped electrode rods which are made of a conductive material and are provided with a predetermined gap so that their tips are opposed to each other; and b) a pulse is provided between the two electrode rods. And a voltage applying circuit for applying a high voltage of a circular shape, and a sound source for a measuring instrument using sound waves.
JP27445494A 1994-10-12 1994-10-12 Sound source for measuring instruments Expired - Lifetime JP2978939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27445494A JP2978939B2 (en) 1994-10-12 1994-10-12 Sound source for measuring instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27445494A JP2978939B2 (en) 1994-10-12 1994-10-12 Sound source for measuring instruments

Publications (2)

Publication Number Publication Date
JPH08110788A true JPH08110788A (en) 1996-04-30
JP2978939B2 JP2978939B2 (en) 1999-11-15

Family

ID=17541921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27445494A Expired - Lifetime JP2978939B2 (en) 1994-10-12 1994-10-12 Sound source for measuring instruments

Country Status (1)

Country Link
JP (1) JP2978939B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830332A1 (en) * 2001-10-03 2003-04-04 Gaucherel Sandrine Measurement of all kinds of precipitation using a rain-meter that detects the sound or precipitation incident on a passive surface and transmits a measurement signal to a central data acquisition unit
KR101255103B1 (en) * 2011-12-08 2013-04-16 한국산업기술시험원 Apparatus for measuring sound power of noise source
CN105866467A (en) * 2016-05-12 2016-08-17 电子科技大学 All-integrated air velocity transducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813930B (en) * 2019-03-12 2020-12-22 吉林大学 Wind speed and direction measuring method based on reflective ultrasonic sensor array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830332A1 (en) * 2001-10-03 2003-04-04 Gaucherel Sandrine Measurement of all kinds of precipitation using a rain-meter that detects the sound or precipitation incident on a passive surface and transmits a measurement signal to a central data acquisition unit
KR101255103B1 (en) * 2011-12-08 2013-04-16 한국산업기술시험원 Apparatus for measuring sound power of noise source
CN105866467A (en) * 2016-05-12 2016-08-17 电子科技大学 All-integrated air velocity transducer
CN105866467B (en) * 2016-05-12 2019-02-15 电子科技大学 A kind of complete or collected works' molding air velocity transducer

Also Published As

Publication number Publication date
JP2978939B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
KR100417969B1 (en) Measuring the speed of sound of a gas
US11530968B2 (en) Apparatus for analyzing the particulate matter content of an aerosol
CN112345405B (en) Sulfur hexafluoride gas density monitoring device and method
EP0125061A1 (en) Fluid temperature and velocity measuring arrangement
JP2911884B2 (en) Apparatus for measuring volumetric flow of gaseous medium flowing in a pipe with high temporal resolution
JP2978939B2 (en) Sound source for measuring instruments
DK2985607T3 (en) Anemometer and method for determining a flow rate
CN109187738A (en) A kind of sulfur hexafluoride gas detection device based on ultrasonic wave principle
Bass et al. Ultrasonic background noise in industrial environments
KR100674745B1 (en) Sag monitoring apparatus for overhead transmission line
Fransson et al. Stl–ionophone: Transducer properties and construction
JP2002519629A (en) Method and apparatus for determining the frequency at which a resonator resonates
JPS5819529A (en) Pressure detector
JPS5676060A (en) Electric field strength detector
US3417606A (en) Electric discharge device
CN114166934B (en) Gas detection device and method based on graphene coated quartz tuning fork
JPS6039795Y2 (en) temperature detection device
RU2029947C1 (en) Method to determine flow parameters
SU650128A1 (en) Method and apparatus for measuring displacement with aid gas-discharge mechanotron
JP3626781B2 (en) Air potential measurement device
SU443271A1 (en) Method for measuring pressure fluctuations
SU883681A1 (en) Pressure transducer with frequency output
Pierce A simple method of measuring the intensity of sound
JPH02290571A (en) Detection of deterioration of arrester
JPS63236957A (en) Acoustic speed type measuring instrument for gas mixing rate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term