JPH02290571A - Detection of deterioration of arrester - Google Patents

Detection of deterioration of arrester

Info

Publication number
JPH02290571A
JPH02290571A JP1009990A JP1009990A JPH02290571A JP H02290571 A JPH02290571 A JP H02290571A JP 1009990 A JP1009990 A JP 1009990A JP 1009990 A JP1009990 A JP 1009990A JP H02290571 A JPH02290571 A JP H02290571A
Authority
JP
Japan
Prior art keywords
temperature
zinc oxide
lightning arrester
oxide element
arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009990A
Other languages
Japanese (ja)
Inventor
Yukiya Sakuraba
桜庭 幸哉
Mitsuru Mizuno
充 水野
Takashi Sasaki
隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1009990A priority Critical patent/JPH02290571A/en
Publication of JPH02290571A publication Critical patent/JPH02290571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To perform efficiently and accurately a grasp of deterioration and evaluation of heat stability by incorporating a crystal resonator with a zinc oxide element and arranging a temperature detecting device at the outside to detect the resonance frequency. CONSTITUTION:A crystal resonator sensor 15 consisting of an oscillator and a coupling coil is mounted on the zinc oxide element 12 and hermetically sealed in a insulator tube 13, and the temperature detecting device 16 detecting the resonance frequency is arranged in the outside position corresponding to the sensor 15. In the device 16, a high frequency made in the oscillation circuit 32 is applied to the crystal resonator with a probe coil 31, then the resonance frequency which is absorbed and unreflected by the resonator is detected with a resonance point detecting circuit 33 and converted to temperature data by a frequency/temperature conversion circuit 34 to detect a temperature of the element 12. With this arrangement, the temperature of element 12 impressed with a high voltage can be measured direct and accurately from the outside.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、酸化亜鉛形避雷器の劣化検出方法に関し、特
に、水晶温度センサを使用した劣化検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for detecting deterioration of a zinc oxide type lightning arrester, and particularly to a method for detecting deterioration using a crystal temperature sensor.

B.発明の概要 本発明は、酸化亜鉛形避雷器の劣化検出方法において、 固有振動数が温度により変化する水晶振動子を酸化亜鉛
素子に装着するか、もしくは酸化亜鉛素子と共に避雷器
に内蔵させ、該振動子の共振周波数を検出する温度検出
装置を避雷器の外郎に配設することにより、 高電圧が印加され、且つ気密に封入されている酸化亜鉛
素子の温度を避雷器外から直接ワイヤレスで測定し、避
雷器の劣化把握及び熱安定性の評価を能率的かつ高精度
に行う技術を提供するものである。
B. Summary of the Invention The present invention provides a method for detecting deterioration of a zinc oxide type lightning arrester, in which a crystal oscillator whose natural frequency changes depending on temperature is attached to a zinc oxide element, or is built into the arrester together with the zinc oxide element, and the oscillator is By installing a temperature detection device that detects the resonant frequency of the arrester in the outer part of the arrester, the temperature of the zinc oxide element to which high voltage is applied and which is hermetically sealed can be directly wirelessly measured from outside the arrester. The objective is to provide a technology that efficiently and accurately assesses deterioration and thermal stability.

C.従来の技術 酸化亜鉛形避雷器の使用限界(寿命)は、通常熱安定性
によって評価され得ることは知られている。
C. BACKGROUND OF THE INVENTION It is known that the service life (life) of conventional zinc oxide type lightning arresters can usually be evaluated by thermal stability.

第9図は、酸化亜鉛形避雷器の熱バランス特性を示す曲
線図である。第9図において、縦軸は放熱らしくは発熱
の量を示し、横軸は温度変化を示す。ここで、放熱曲線
Aは避雷器の構造によって決まり、発熱曲線Bは酸化亜
鉛素子の特性によって決定する。定常状態においては、
避雷器は放熱量と発熱量とが均衡した温度(安定点C)
で安定しているが、酸化亜鉛素子が劣化すると発熱曲線
Bが上界するため、安定点C′ も上昇する。劣化や過
大なサージ吸収により避雷器内部の素子温度が放熱曲線
Aを上回った場合、避雷器は自復(自己回復)すること
ができず、熱暴走に至る。
FIG. 9 is a curve diagram showing the heat balance characteristics of a zinc oxide type lightning arrester. In FIG. 9, the vertical axis indicates the amount of heat dissipated, and the horizontal axis indicates temperature change. Here, the heat radiation curve A is determined by the structure of the lightning arrester, and the heat generation curve B is determined by the characteristics of the zinc oxide element. In steady state,
The lightning arrester is at a temperature where the amount of heat dissipated and the amount of heat generated are balanced (stable point C)
However, as the zinc oxide element deteriorates, the heat generation curve B reaches its upper limit, and the stable point C' also rises. If the element temperature inside the surge arrester exceeds the heat radiation curve A due to deterioration or excessive surge absorption, the surge arrester will not be able to recover itself (self-recovery), leading to thermal runaway.

上記の説明で明らかなように、酸化亜鉛素子の温度を把
握することが、酸化亜鉛形避雷器の劣化把握及び熱安定
性の評価に直接関係する。
As is clear from the above description, understanding the temperature of the zinc oxide element is directly related to understanding the deterioration and evaluating the thermal stability of the zinc oxide type lightning arrester.

D.発明が解決しようとする課題 それにも拘わらず、従来は、酸化亜鉛形避雷器の劣化診
断に酸化亜鉛素子の温度測定が適用された例が殆どなく
、電力ロスの測定や抵抗分漏洩電流の測定で代用されて
いた。それは、下記の理由による。
D. Problems to be Solved by the Invention Despite this, in the past, there have been few cases in which temperature measurement of zinc oxide elements has been applied to the deterioration diagnosis of zinc oxide type lightning arresters, and it has not been possible to measure power loss or resistance leakage current. It had been substituted. This is due to the following reasons.

(1)酸化亜鉛素子に高電圧が印加されているため高耐
圧の41定装置が必要である。
(1) Since a high voltage is applied to the zinc oxide element, a high-voltage 41 constant device is required.

(2)酸化亜鉛素子に温度センサを取り付けるためには
、センサからのリード線を避雷器外に引き出す必要があ
るが、避雷器にとって重要な気密性を損なう恐れがある
(2) In order to attach the temperature sensor to the zinc oxide element, it is necessary to draw out the lead wire from the sensor to the outside of the lightning arrester, but this may impair the airtightness, which is important for the lightning arrester.

本発明は、このような課題に鑑みて創案されたもので、
高電圧が印加されている酸化亜鉛素子の温度を避雷器外
部から直接ワイヤレスで測定し、避雷器の劣化把握及び
熱安定性の評価を能率的かつ高精度に行う避雷器の劣化
検出方法を提供することを目的としている。
The present invention was created in view of these problems, and
To provide a method for detecting deterioration of a lightning arrester, in which the temperature of a zinc oxide element to which a high voltage is applied is directly wirelessly measured from the outside of the arrester, and the deterioration of the arrester can be ascertained and the thermal stability evaluated efficiently and with high precision. The purpose is

E.課題を解決するための手段 本発明における上記課題を解決するための手段は、 (1)酸化亜鉛素子を内蔵する避雷器の劣化検出方法に
おいて、固有振動数が温度により変化する水晶振動子を
酸化亜鉛素子素子に装着するか、もしくは酸化亜鉛素子
と共に避雷器に内蔵させ、該振動子の共振周波数を検出
する温度検出装置を避雷器の外部に配設する避雷器の劣
化検出方法によるものとし、 (2)酸化亜鉛素子を内蔵する避雷器の劣化検出方法に
おいて、固有振動数が温度により変化する水晶振動子を
酸化亜鉛素子に装着するか、もしくは酸化亜鉛素子と共
に避雷器に内蔵させ、該振動子の共振周波数を検出する
温度検出装置を超音波ブローブを介して避雷器の外部に
配設する避雷器の劣化検出方法によるものとする。
E. Means for Solving the Problems Means for solving the above problems in the present invention are as follows: (1) In a method for detecting deterioration of a lightning arrester incorporating a zinc oxide element, a crystal resonator whose natural frequency changes depending on temperature is replaced with a zinc oxide element. (2) Oxidation In a method for detecting deterioration of a lightning arrester with a built-in zinc element, a crystal oscillator whose natural frequency changes depending on the temperature is attached to the zinc oxide element, or is built into the arrester together with the zinc oxide element, and the resonant frequency of the oscillator is detected. The present invention is based on a method for detecting deterioration of a lightning arrester in which a temperature detection device is provided outside the lightning arrester via an ultrasonic probe.

F.作用 (1)水晶振動子は、周波数/温度特性の安定度が良い
という理由で、一般に、Z軸より35゜ 15゛ずらし
たYカット系のATカットが通信用として広く使用され
ているが、Z軸より角度を若干ずらしただけ、又はYカ
ットそのものを使用すれば、周波数/温度特性の再現性
の良い温度センザ索子か得られる。また、周波数を扱い
易いIOM1−1 z付近に設定すると、lllzの分
解能が得られる。例えば、80pprn/’(のカット
角を選べば、約l/800゜Cの分解能となる。このよ
うなYカット系の水晶振動子に外部から高周波エネルギ
ーを付与すると、その水晶振動子の固有振動周波数と同
じ周波数の高周波エネルギーを吸収する性質があり、か
つ水晶振動子の固有振動周波数は正確な温度依存を示す
。そこで、避雷器内部の酸化亜鉛素子部分に、振動子と
結合コイルを組み合わせた水晶振動子センサを取り付け
、外部から電気的な連1J((電磁結合)により共振周
波数を検出することで酸化亜鉛素子の温度を測定するこ
とができる。この温度検出装置は、避雷器の外郎に配設
され、ワイヤレスて測定を行い、温度変化の監視により
避雷器の劣化把握と熱安定性の評価ができる。
F. Effect (1) Crystal resonators generally have a Y-cut type AT cut offset from the Z axis by 35° to 15° because of their good stability in frequency/temperature characteristics, but are widely used for communication purposes. By slightly shifting the angle from the Z axis or by using the Y cut itself, a temperature sensor cord with good reproducibility of frequency/temperature characteristics can be obtained. Furthermore, if the frequency is set near IOM1-1z, which is easy to handle, a resolution of llz can be obtained. For example, if a cut angle of 80 pprn/' is selected, the resolution will be approximately 1/800°C. When high-frequency energy is externally applied to such a Y-cut type crystal unit, the natural vibration It has the property of absorbing high-frequency energy of the same frequency as the crystal oscillator, and the natural oscillation frequency of the crystal oscillator shows accurate temperature dependence. Therefore, a crystal oscillator that combines a oscillator and a coupling coil is used in the zinc oxide element part inside the lightning arrester. The temperature of the zinc oxide element can be measured by attaching a vibrator sensor and detecting the resonant frequency from the outside through electrical connection (electromagnetic coupling).This temperature detection device is installed in the outer part of the lightning arrester. By performing wireless measurements and monitoring temperature changes, it is possible to understand the deterioration of lightning arresters and evaluate their thermal stability.

(2)また水晶の共振周波数を40KHz程度の超音波
振動領域に設定した場合は、避雷器内部の酸化亜鉛素子
部分に、水晶振動子センサを取り付け、外部から音響的
な連携(超音波振動結合)により共振周波数を検出する
ことで酸化亜鉛素子の温度を測定することができる。こ
の場合、温度検出装置は超音波プローブを介して避雷器
の外部に配設される。このため電磁波か遮蔽されてしま
う金属タンクを用いたタンク形避雷器であっても、前記
センサから避雷器外部へリード線を引き出す必要がなく
、避雷器の気密性を妨げない。
(2) If the resonant frequency of the crystal is set to the ultrasonic vibration region of about 40 KHz, a crystal resonator sensor is attached to the zinc oxide element inside the lightning arrester, and acoustic cooperation from the outside (ultrasonic vibration coupling) is performed. By detecting the resonance frequency, the temperature of the zinc oxide element can be measured. In this case, the temperature detection device is arranged outside the lightning arrester via an ultrasonic probe. Therefore, even in a tank-type lightning arrester using a metal tank that shields electromagnetic waves, there is no need to draw out a lead wire from the sensor to the outside of the lightning arrester, and the airtightness of the lightning arrester is not hindered.

G、実施例 以下、図面を参照して、請求項(1)に記載の発明の実
施例を詳細に説明する。
G. Embodiments Hereinafter, embodiments of the invention set forth in claim (1) will be described in detail with reference to the drawings.

第1図は、本発明を実施したがいし形避雷器の一例を示
す構成図である。同図において、避雷器I1は、酸化亜
鉛素子12をかい管I3内に密封収容して形成され、母
線l4に接続される。本実施例では、振動子と結合コイ
ルで成る水晶振動子センサl5を前記酸化亜鉛素子l2
に装着したのち密封ずるものとし、その水晶振動子セン
サ15に対応する位置の外部に、水晶振動子の共振周波
数を検出する温度検出装置16を配設している。
FIG. 1 is a configuration diagram showing an example of an insulator type lightning arrester embodying the present invention. In the figure, a lightning arrester I1 is formed by sealingly housing a zinc oxide element 12 in a tube I3, and is connected to a bus bar I4. In this embodiment, the crystal resonator sensor l5 consisting of a resonator and a coupling coil is connected to the zinc oxide element l2.
A temperature detection device 16 for detecting the resonance frequency of the crystal oscillator is disposed outside at a position corresponding to the crystal oscillator sensor 15.

第2図は、本発明を実施したタンク形避雷器の一例を示
す構成図である。タンク形避雷器は変圧器内蔵用や絶縁
ガス封入機器(G I S)用に用いられるもので、同
図に示すように、避雷器2lは、酸化亜鉛素子22をモ
ールド・スベーサ23に接続してタンク24内に収容し
ているが、本実施例では、振動子と結合コイルで成る水
晶振動子センサ25を前記酸化亜鉛素子22に装着した
のち密封ずるものとする。この場合は、電磁波が金属の
タンク24によって遮蔽されタンク内に届かないので、
温度検出装置26のブローブ・コイル27をフランジ2
8を介して、タンク24内に配置することにより水晶振
動子の共振周波数を検出する。
FIG. 2 is a configuration diagram showing an example of a tank type lightning arrester embodying the present invention. Tank-type lightning arresters are used for built-in transformers and insulating gas-filled equipment (GIS).As shown in the figure, the lightning arrester 2l is constructed by connecting a zinc oxide element 22 to a molded spacer 23 and attaching it to a tank. In this embodiment, a crystal resonator sensor 25 consisting of a resonator and a coupling coil is attached to the zinc oxide element 22 and then sealed. In this case, the electromagnetic waves are shielded by the metal tank 24 and do not reach the inside of the tank.
The probe coil 27 of the temperature detection device 26 is connected to the flange 2.
8, the resonant frequency of the crystal resonator is detected by placing it in the tank 24.

第3図は、上記の実施例に使用される温度検出装置の構
成図である。図中、31はブローブ・コイル、32は発
振回路,33は共振点検出回路、34は周波数/温度変
換回路、35は表示回路である。同図において、温度検
出装置は、発振回路32で作成した高周波をプローブ・
コイル31より水晶振動子に印加し、水晶振動子に吸収
されて反射してこない共振周波数を共振点検出回路33
で検出し、その共振周波数を周波数/温度変換回路34
で温度データに変換することにより、酸化亜鉛素子の温
度を検出して、表示回路35に出力するものである。
FIG. 3 is a configuration diagram of a temperature detection device used in the above embodiment. In the figure, 31 is a probe coil, 32 is an oscillation circuit, 33 is a resonance point detection circuit, 34 is a frequency/temperature conversion circuit, and 35 is a display circuit. In the same figure, the temperature detection device uses a high frequency generated by the oscillation circuit 32 as a probe.
A resonance point detection circuit 33 applies a resonance frequency that is applied to the crystal oscillator from the coil 31 and is absorbed by the crystal oscillator and not reflected.
The resonant frequency is detected by the frequency/temperature conversion circuit 34.
By converting it into temperature data, the temperature of the zinc oxide element is detected and output to the display circuit 35.

既に述べたように、ブローブ・コイルは避雷器の外部又
は内部のいずれに配設しても差し支えないが、いずれに
せよ、水晶振動子と配線上の接続はなく、温度検出装置
は避雷器とは独立していて、水晶振動子センサさえ予め
避雷器に内蔵させておけば、温度検出装置自体は運搬自
在であり、複数の避雷器に対応できる。また、この温度
検出装置を避雷器の近傍に設置し、その出力を信号線等
で伝送すれば、避雷器の劣化を常時監視することが容易
になる。
As already mentioned, the blow coil can be placed either outside or inside the arrester, but in any case there is no wiring connection to the crystal oscillator, and the temperature detection device is independent of the arrester. However, if the crystal oscillator sensor is built into the lightning arrester in advance, the temperature detection device itself can be transported freely and can be used with multiple lightning arresters. Further, if this temperature detection device is installed near the lightning arrester and its output is transmitted through a signal line or the like, it becomes easy to constantly monitor the deterioration of the lightning arrester.

第4図は、上記実施例に使用される水晶振動子センサの
一例を示す説明図である。同図(a)に示す如く、一般
にはZ軸より35゜ I5−ずらしたYカット系のAT
カットが使用されているが、本発明の実施例ではプラス
側に5゜ずらしたYカット系の水晶を直径3xx、高さ
Bxxの金属円筒に収納したセンサを使用する。共振周
波数10.6MHzS l 6 7 0Hz/℃、バラ
つき±0401℃である。第4図(b)は、図(a)に
示すカット方法で作成された水晶片の軸方向3φX81
!J!の矩形板水晶片を示す図である。
FIG. 4 is an explanatory diagram showing an example of a crystal resonator sensor used in the above embodiment. As shown in Figure (a), the Y-cut type AT is generally shifted by 35° I5 from the Z axis.
However, in the embodiment of the present invention, a sensor is used in which a Y-cut type crystal shifted by 5 degrees to the positive side is housed in a metal cylinder with a diameter of 3xx and a height of Bxx. The resonance frequency is 10.6 MHz S l 6 70 Hz/°C, and the variation is ±0401°C. Figure 4(b) shows the axial direction of the crystal piece 3φX81 made by the cutting method shown in Figure (a).
! J! FIG. 2 is a diagram showing a rectangular plate crystal piece.

水晶のカット角と周波敗/温度係数との関係は第5図に
示す如くになる。同図において、横軸はX軸回りの回転
カット角を示し、縦軸はl゛当たりの周波数変化量を示
す。図中、周波数ZfjL度特性曲線が最初に零値にな
る点がATカット角で、次に零値になる点がBTカット
角である。第5図においては、ATカット角は90゜−
35゜の点にあり、最大感度点(YSカット)は90(
0)”より若干曲げた位置に依存するので、図中楕円で
囲んだ付近でセンサ振動子のカット角を選定して使用す
ればよい。その場合でも、直線性の誤差は存在するので
、コンピュータ処理でリニア化し、1/1000〜1/
10000℃程度の分解能を±3/100℃の誤差で得
るのが一般的である。
The relationship between the cut angle of the crystal and the frequency loss/temperature coefficient is as shown in FIG. In the figure, the horizontal axis shows the rotational cut angle around the X-axis, and the vertical axis shows the amount of frequency change per l. In the figure, the point where the frequency ZfjL degree characteristic curve first reaches a zero value is the AT cut angle, and the next point where the frequency ZfjL degree characteristic curve reaches a zero value is the BT cut angle. In Figure 5, the AT cut angle is 90°-
It is located at a point of 35 degrees, and the maximum sensitivity point (YS cut) is 90 (
0)", so it is best to select the cut angle of the sensor resonator near the ellipse in the figure. Even in that case, there will be linearity errors, so the computer Linearized through processing, 1/1000 to 1/
It is common to obtain a resolution of about 10,000°C with an error of ±3/100°C.

本発明の実施例では、下記の効果がある。The embodiments of the present invention have the following effects.

(1)高電圧が印加されている酸化亜鉛素子の温度を直
接かつ高精度に測定できる。
(1) The temperature of a zinc oxide element to which a high voltage is applied can be measured directly and with high precision.

(2)避雷器の外部から測定できる。温度検出装置は電
磁波を発信し、吸収された周波数を検出するだけで、セ
ンサに接続する必要はない。
(2) Can be measured from outside the arrester. Temperature sensing devices only emit electromagnetic waves and detect the absorbed frequencies; they do not need to be connected to a sensor.

(3)ワイヤレスなので、センサからのリード線を避雷
器外へ引き出す必要かなく、避雷器の気密性を妨げない
(3) Since it is wireless, there is no need to pull out the lead wire from the sensor to the outside of the lightning arrester, and it does not interfere with the airtightness of the lightning arrester.

(4)同一のセンサを各避雷器に内蔵しておけば、l台
の検出装置で複数の避雷器が測定できろ。
(4) If the same sensor is built into each lightning arrester, multiple lightning arresters can be measured with one detection device.

次に請求項(2)に記載の発明の一実施例を説明ずろ。Next, an embodiment of the invention according to claim (2) will be explained.

第6図において第1図と同一郎分は同一符号をもって示
している。第6図において、避雷器1lは、酸化亜鉛素
子12をかい管!3内に密封収容して形成され、母線!
4に接続される。本実施例では、振動子と結合コイルで
成る水晶振動子センサl5を前記酸化亜鉛素子l2に装
着したのち密封するものとし、水晶振動子の共振周波数
を検出する超音波プローブ4!および温度検出装置36
を避雷器1夏の外郎の低圧部分に配設していろ。
In FIG. 6, parts that are the same as those in FIG. 1 are indicated by the same reference numerals. In FIG. 6, the lightning arrester 1l includes a zinc oxide element 12! Formed by being sealed inside 3, the bus bar!
Connected to 4. In this embodiment, a crystal oscillator sensor l5 consisting of a vibrator and a coupled coil is attached to the zinc oxide element l2 and then sealed, and an ultrasonic probe 4! detects the resonance frequency of the crystal oscillator. and temperature detection device 36
Arrange the lightning arrester in the low voltage part of Uiro in summer.

第7図は請求項(2)の発明を実施したタンク形避雷器
の一例を示す構成図である。第7図において第2図と同
一部分は同一符号をもって示していろ。タンク形避雷器
は変圧器内蔵用や絶縁ガス封入機器(GIS)用に用い
られるもので、同図に示すように、避雷器2lは、酸化
亜鉛素子22をモールド・スベーサ23に接続してタン
ク24内に収容しているが、本実施例では、振動子と結
合コイルで成る水晶振動子センサ25を萌記酸化亜鉛素
子22に装着したのち密封するものとする。
FIG. 7 is a configuration diagram showing an example of a tank type lightning arrester implementing the invention of claim (2). In FIG. 7, the same parts as in FIG. 2 are designated by the same reference numerals. Tank-type lightning arresters are used for built-in transformers and insulating gas filled equipment (GIS).As shown in the figure, the lightning arrester 2l is installed inside a tank 24 by connecting a zinc oxide element 22 to a molded spacer 23. However, in this embodiment, a crystal oscillator sensor 25 consisting of an oscillator and a coupling coil is attached to the zinc oxide element 22 and then sealed.

この場合前述した電磁波結合の方式では電磁波が金属タ
ンク24によって遮蔽されるため、検出用のプローブを
タンク内に設置する必要があるが、超音波結合による方
式では第6図と同様にタンクの外側に超音波プローブ4
lおよび温度検出装置36を設置すればよい。
In this case, in the electromagnetic wave coupling method described above, the electromagnetic waves are shielded by the metal tank 24, so it is necessary to install a detection probe inside the tank, but in the ultrasonic coupling method, the detection probe must be installed outside the tank as shown in Fig. 6. Ultrasonic probe 4
1 and a temperature detection device 36 may be installed.

第8図は上記の実施例に使用される温度検出装置36の
構成図である。図中、41は超音波プローブ、32は発
振回路,33は共振点検出回路、34は周波数/温度変
換回路、35は表示回路である。同図において、温度検
出装置は、発振回路32で作成した高周波を超音波プロ
ーブ4Iより水晶振動子に印加し、水晶振動子に吸収さ
れて反射してこない共振周波数を共振点検出回路33で
検出し、その共振周波数を周波数/温度変換回路34で
温度データに変換することにより、酸化亜鉛素子の温度
を検出して、表示回路35に出力するものである。上記
実施例では超音波の振動伝達によって温度測定が行われ
るので、超音波プローブ4lおよび温度検出装置36の
設置位置は、避雷器外部の接地端子、フランジ、かい管
基部等でも良い。
FIG. 8 is a configuration diagram of the temperature detection device 36 used in the above embodiment. In the figure, 41 is an ultrasonic probe, 32 is an oscillation circuit, 33 is a resonance point detection circuit, 34 is a frequency/temperature conversion circuit, and 35 is a display circuit. In the figure, the temperature detection device applies a high frequency generated by an oscillation circuit 32 to a crystal oscillator from an ultrasonic probe 4I, and detects a resonance frequency that is absorbed by the crystal oscillator and not reflected by a resonance point detection circuit 33. The temperature of the zinc oxide element is detected by converting the resonant frequency into temperature data by the frequency/temperature conversion circuit 34 and output to the display circuit 35. In the embodiment described above, temperature measurement is performed by transmitting ultrasonic vibrations, so the ultrasonic probe 4l and temperature detection device 36 may be installed at a ground terminal outside the lightning arrester, a flange, a tube base, etc.

本発明の実施例では下記の効果がある。The embodiments of the present invention have the following effects.

(1)高電圧が印加されている酸化亜鉛素子の温度を直
接かつ高精度に測定できる。
(1) The temperature of a zinc oxide element to which a high voltage is applied can be measured directly and with high precision.

(2)避雷器の外部から測定できる。温度検出装置は超
音波を発信し、共振周波数を検出するだけで、センサに
接続する必要がない。またタンク形避雷器の場合もリー
ド線なしで外部から測定できる。
(2) Can be measured from outside the arrester. The temperature detection device only emits ultrasonic waves and detects the resonant frequency, and does not need to be connected to a sensor. In the case of tank-type arresters, measurements can also be made from the outside without lead wires.

(3)ワイヤレスなので、センサからのリード線を避雷
器外へ引き出す必要かなく、避雷器の気密性を妨げない
(3) Since it is wireless, there is no need to pull out the lead wire from the sensor to the outside of the lightning arrester, and it does not interfere with the airtightness of the lightning arrester.

(4)同一のセンサを各避雷器に内蔵しておけば、!台
の検出装置で複数の避雷器が測定できる。
(4) If the same sensor is built into each lightning arrester! Multiple lightning arresters can be measured with one detection device.

H.発明の効果 以上のように請求項(1)の発明によれば、高電圧が印
加されている酸化亜鉛素子の温度を避雷器の外郎から直
接ワイヤレスで測定し、避雷器の劣化把握と熱安定性の
評価を能率的かつ高精度に行う避雷器の劣化検出方法を
提供することができる。
H. Effects of the Invention As described above, according to the invention of claim (1), the temperature of the zinc oxide element to which high voltage is applied can be directly wirelessly measured from the outboard of the lightning arrester, and it is possible to understand the deterioration of the lightning arrester and to check its thermal stability. It is possible to provide a method for detecting deterioration of a lightning arrester that performs evaluation efficiently and with high accuracy.

また請求項(2)の発明によれば、タンク形避雷器のよ
うに酸化亜鉛素子が金属タンク内に収納されている場合
であっても、酸化亜鉛素子の温度を避雷器の外郎から直
接ワイヤレスで測定し、避雷器の劣化把握と熱安定性の
評価を能率的かつ高精度に行う避雷器の劣化検出方法を
提供することができる。
Furthermore, according to the invention of claim (2), even when the zinc oxide element is housed in a metal tank like in a tank-type lightning arrester, the temperature of the zinc oxide element can be measured wirelessly directly from the outer part of the lightning arrester. In addition, it is possible to provide a method for detecting deterioration of a lightning arrester that efficiently and accurately assesses the deterioration of the lightning arrester and evaluates its thermal stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項(1)の発明の一実施例の構成図、第2
図は請求項(1)の発明の別な一実施例の構成図、第3
図は請求項(1)の発明の各実施例の温度検出装置の構
成図、第4図は水晶振動子センサの説明図、第5図はカ
ット角と温度係数の特性図、第6図は請求項(2)の発
明の一実施例の構成図、第7図は請求項(2)の発明の
別な一実施例の構成図、第8図は請求項(2)の発明の
各実施例の温度検出装置の構成図、第9図は避雷器の熱
バランスの特性図である。 11.21・・・避雷器、12.22・・・酸化亜鉛素
子、15.25・・・水晶振動子センサ、16,26.
36・・・温度検出装置、4l・・・超音波ブローブ。 第1図 請求項(1)の発明の一実施例の構成図第3図 温度検出装置の構成図 請求項(1)の発明の別な一実施例の構成図第4図 水晶振動子センサの説明図 (b) 第5図 カット角と温度係数の特性図 請求項(2)の発明の一実竜例の構成図第7図 請求項(2)の発明の別な一実施例の構成図第8 図 温度検出装置の構成図
Fig. 1 is a configuration diagram of an embodiment of the invention of claim (1);
The figure is a configuration diagram of another embodiment of the invention as claimed in claim (1).
The figure is a configuration diagram of the temperature detection device of each embodiment of the invention of claim (1), Figure 4 is an explanatory diagram of the crystal resonator sensor, Figure 5 is a characteristic diagram of cut angle and temperature coefficient, and Figure 6 is A block diagram of one embodiment of the invention of claim (2), FIG. 7 is a block diagram of another embodiment of the invention of claim (2), and FIG. 8 shows each implementation of the invention of claim (2). FIG. 9, which is a configuration diagram of the example temperature detection device, is a characteristic diagram of the heat balance of the lightning arrester. 11.21...Lightning arrester, 12.22...Zinc oxide element, 15.25...Crystal oscillator sensor, 16,26.
36...Temperature detection device, 4l...Ultrasonic probe. Figure 1 is a diagram showing the configuration of an embodiment of the invention as claimed in claim (1). Figure 3 is a diagram showing the configuration of a temperature detection device. Explanatory diagram (b) Fig. 5 Characteristic diagram of cut angle and temperature coefficient Fig. 7 A structural diagram of an example of the invention of claim (2) Fig. 7 A structural diagram of another embodiment of the invention of claim (2) Figure 8 Configuration diagram of temperature detection device

Claims (2)

【特許請求の範囲】[Claims] (1)酸化亜鉛素子を内蔵する避雷器の劣化検出方法に
おいて、固有振動数が温度により変化する水晶振動子を
酸化亜鉛素子に装着するか、もしくは酸化亜鉛素子と共
に避雷器に内蔵させ、該振動子の共振周波数を検出する
温度検出装置を避雷器の外部に配設することを特徴とす
る避雷器の劣化検出方法。
(1) In a method for detecting deterioration of a lightning arrester with a built-in zinc oxide element, a crystal oscillator whose natural frequency changes with temperature is attached to the zinc oxide element, or it is built into the arrester together with the zinc oxide element, and the oscillator is A method for detecting deterioration of a lightning arrester, comprising disposing a temperature detection device for detecting a resonant frequency outside the lightning arrester.
(2)酸化亜鉛素子を内蔵する避雷器の劣化検出方法に
おいて、固有振動数が温度により変化する水晶振動子を
酸化亜鉛素子に装着するか、もしくは酸化亜鉛素子と共
に避雷器に内蔵させ、該振動子の共振周波数を検出する
温度検出装置を超音波プローブを介して避雷器の外部に
配設することを特徴とする避雷器の劣化検出方法。
(2) In a method for detecting deterioration of a lightning arrester with a built-in zinc oxide element, a crystal oscillator whose natural frequency changes with temperature is attached to the zinc oxide element, or it is built into the arrester together with the zinc oxide element, and the oscillator is A method for detecting deterioration of a lightning arrester, comprising disposing a temperature detection device for detecting a resonance frequency outside the lightning arrester via an ultrasonic probe.
JP1009990A 1989-02-07 1990-01-19 Detection of deterioration of arrester Pending JPH02290571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009990A JPH02290571A (en) 1989-02-07 1990-01-19 Detection of deterioration of arrester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2785889 1989-02-07
JP1-27858 1989-07-27
JP1009990A JPH02290571A (en) 1989-02-07 1990-01-19 Detection of deterioration of arrester

Publications (1)

Publication Number Publication Date
JPH02290571A true JPH02290571A (en) 1990-11-30

Family

ID=26345292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009990A Pending JPH02290571A (en) 1989-02-07 1990-01-19 Detection of deterioration of arrester

Country Status (1)

Country Link
JP (1) JPH02290571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001877A1 (en) * 1997-06-30 1999-01-14 Siemens Aktiengesellschaft Overvoltage protector for high or medium voltage
WO1999050865A1 (en) * 1998-03-31 1999-10-07 Siemens Aktiengesellschaft High voltage device, especially a surge diverter
DE102010050684A1 (en) * 2010-11-06 2012-05-10 Reinhausen Power Composites Gmbh High-voltage insulator
WO2020240694A1 (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Deterioration determination device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001877A1 (en) * 1997-06-30 1999-01-14 Siemens Aktiengesellschaft Overvoltage protector for high or medium voltage
AU744855B2 (en) * 1997-06-30 2002-03-07 Siemens Aktiengesellschaft Overvoltage protector for high or medium voltage
US6433989B1 (en) 1997-06-30 2002-08-13 Siemens Aktiengesellschaft Overvoltage protector for high or medium voltage
WO1999050865A1 (en) * 1998-03-31 1999-10-07 Siemens Aktiengesellschaft High voltage device, especially a surge diverter
DE102010050684A1 (en) * 2010-11-06 2012-05-10 Reinhausen Power Composites Gmbh High-voltage insulator
WO2012059198A1 (en) * 2010-11-06 2012-05-10 Reinhausen Power Composites Gmbh High-voltage insulator comprising a monitoring device
DE102010050684B4 (en) * 2010-11-06 2015-01-22 Reinhausen Power Composites Gmbh High-voltage insulator
WO2020240694A1 (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Deterioration determination device

Similar Documents

Publication Publication Date Title
US7795997B2 (en) Apparatus and method for measuring an environmental condition
US7977609B2 (en) Temperature measuring device using oscillating frequency signals
US4103224A (en) Micro-wave hygrometer
JPH04230599A (en) Apparatus for detecting and transmitting measured value
CN112345405B (en) Sulfur hexafluoride gas density monitoring device and method
US3918306A (en) System for measuring fluid levels in a vehicle transmission
CN110261001A (en) Cable intermediate joint temperature measurement system
CN211477483U (en) Electromechanical dual-mode pressure gauge
CN210180558U (en) SAW resonance-based cable intermediate joint temperature measuring device and cable intermediate joint
JPH02290571A (en) Detection of deterioration of arrester
US2721267A (en) Electronic temperature indicator
KR820001828B1 (en) Acoustic waveguides for sensing and locating corona dischages
JP2003149058A (en) Temperature sensor and plant temperature measuring device
CN103256964B (en) A kind of capacitance liquid level measurement mechanism
US3828251A (en) Portable microwave radiation sensing and measuring device
CN109163655A (en) A kind of shaft strain detecting method and system with temperature-compensating
JPH05508021A (en) High potential current transformer
CN209784477U (en) Insulating multiplexer utensil insulating properties detection device of live working
Anderson et al. The propagation of sound in carbon dioxide near the critical point
JPH0317090B2 (en)
US10281511B2 (en) Passive wireless sensor for the measurement of AC electric field in the vicinity of high voltage apparatus
Thomas The determination of the meteorological conditions of the atmosphere by the use of radio-sounding balloons
US9625338B2 (en) Passive pressure sensing using sensor with resonator having bridged ends
CN217156180U (en) Acoustic measurement system for measuring air viscosity coefficient
CN211121520U (en) High-temperature-resistant boundary liquid double-path magnetostrictive liquid level meter