JPH08110494A - Stereoscopic image system - Google Patents

Stereoscopic image system

Info

Publication number
JPH08110494A
JPH08110494A JP6281070A JP28107094A JPH08110494A JP H08110494 A JPH08110494 A JP H08110494A JP 6281070 A JP6281070 A JP 6281070A JP 28107094 A JP28107094 A JP 28107094A JP H08110494 A JPH08110494 A JP H08110494A
Authority
JP
Japan
Prior art keywords
screens
stereoscopic image
stereoscopic
refraction angle
glasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6281070A
Other languages
Japanese (ja)
Inventor
Eriko Shimizu
栄理子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6281070A priority Critical patent/JPH08110494A/en
Publication of JPH08110494A publication Critical patent/JPH08110494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)

Abstract

PURPOSE: To make people easily observe a colored stereoscopic image by composing the system of a display screen vertically displaying both stereoscopic screens and a spectacle having a refraction angle for superposing both screens so as to reverse the left and right to each other in the longitudinal direction and orient them inward to each other in the lateral direction. CONSTITUTION: This system has a displaying surface 11 divided in the middle part and vertically displaying stereoscopic screens L, R and a stereoscopic image is obtained as the image in front of eyes by observing both screens through a spectacle 12 whose refraction angle is mutually reversed in the longitudinal direction, faces inward in the lateral direction and dioptor is different depending upon the viewing position. The optical axes of the displaying surface are vertically and reversely deviated for the left and right eyes in the longitudinal direction and deviated inward for the left and right eyes in the lateral direction since the axex are located in the center of eyes agaist the optical axis located just in front of eyes. Consequently, both screens of the displaying surface are observed as the stereoscopic image through an optical system having lateral ly and a vertically opposed refraction angle in the longitudinal direction and an optical system having a refraction angle refracted inward in the lateral direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は立体映像方式に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic image system.

【0002】[0002]

【従来技術】これまでの立体画像方式として最も一般的
なものは、立体画像を構成する左右2つの画像(以後立
体両画面と表す)を、立体ビュアー等の「覗きメガネ」
でのぞくことにより立体像として見るいわゆる覗き眼鏡
方式がある。これは両眼の間隔だけ左右に離して置かれ
た二つの画面を眼鏡を通してのぞき、左画面は左目で、
また右画面は右目で1対1に対応して見る事により、両
画面が重ねられた立体映像を得る方式である。画面がや
や大きな場合には、眼の重ね合わせ動作を容易にするた
め、覗きレンズにプリズムを加えて、光軸を外側に屈折
させ、眼の光軸に近ずける事により、眼の左右方向の動
きを補助するものもある。しかしこの方式は、覗き式と
言われる通り、眼鏡が立体両画面に近い距離に固定され
るので、本来一人でしか見る事が出来なかった。また、
映画やテレビのように大きな画面を複数の人が見る立体
画像方式には、各人が眼鏡をかける事により立体画像と
して見る眼鏡式立体画像方式がある。しかし従来のこの
方式に於いては、例えば赤と青の二色眼鏡を用いる方式
ではカラー画像が不可であり、また左右異なった偏光を
用いる偏光眼鏡方式ではカラー画像が可能であるが装置
が複雑でしかも画面が暗い等の問題があった。覗き眼鏡
式の場合はカラー画像が可能であるが、前述の通り一人
でしか見る事が出来ない。さらに、テレビや映画の画面
は従来横長に構成されるのが一般的であるが、これはパ
ノラマの例をあげるまでもなく、視野の横への広がりが
人間の視覚に一層の立体感をあたえる事によるものであ
る。しかしこれまでの覗き眼鏡式は、立体像を得るの
に、立体両画面を表示面に横に並べる方式であった。こ
れは、覗き眼鏡方式の場合、立体両画面を立体像として
見るのに両眼で視角調整動作を行うが、これが左右方向
のみ可能なので、プリズムによる屈折角の調整も、眼の
補助的な役割として同様に左右方向で行う事が前提とな
るので、両画面も横に並べる必要があった為である。し
かしこの方式では画面の横への広がりが遮られてしまう
ため、横長の画面が構成しにくい欠点を持っていた。
2. Description of the Related Art The most common stereoscopic image system to date is to use two viewing images (hereinafter referred to as a stereoscopic image) forming a stereoscopic image in "viewing glasses" such as a stereoscopic viewer.
There is a so-called peep glasses system in which a stereoscopic image is seen by looking in. This looks through the two screens placed left and right by the distance between both eyes through glasses, the left screen is the left eye,
In addition, the right screen is a system for obtaining a stereoscopic image in which both screens are overlapped by viewing the right screen in a one-to-one correspondence. When the screen is slightly large, a prism is added to the eyepiece lens to refract the optical axis outwards to make it easier to move the eyes so that the eye can move in the left-right direction. There are also things that help the movement of. However, with this method, the glasses are fixed at a distance close to both stereoscopic screens, as it is said to be a peep type, so it was originally only possible to see it. Also,
As a stereoscopic image system in which a plurality of people can see a large screen like a movie or a television, there is a glasses-type stereoscopic image system in which each person wears glasses to view a stereoscopic image. However, in this conventional method, for example, a color image is not possible with a method using red and blue two-color glasses, and a color image is possible with a polarized glasses method using left and right polarized lights, but the device is complicated. Moreover, there was a problem such as a dark screen. In the case of the peep glasses type, color images are possible, but as mentioned above, it can only be viewed by one person. In addition, the screens of televisions and movies are generally horizontally long, but this is not limited to the example of panoramas, and the lateral expansion of the field of view gives a more three-dimensional effect to human vision. It depends. However, the conventional spectacles type has been a system in which both stereoscopic screens are arranged side by side on the display surface to obtain a stereoscopic image. This is because in the case of the spectacles system, the viewing angle adjustment operation is performed with both eyes to see both stereoscopic images as a stereoscopic image, but since this is possible only in the left and right direction, the adjustment of the refraction angle by the prism also plays an auxiliary role for the eye. Similarly, since it is premised that it is performed in the left-right direction, it is necessary to arrange both screens side by side. However, this method has a drawback that it is difficult to construct a horizontally long screen because the horizontal spread of the screen is blocked.

【0003】[0003]

【発明が解決しようとする課題】これに対し、本発明は
映画やテレビのように自由な位置から複数の人が見る事
の出来る表示画面について、明るいカラー立体画像を、
複数の人が、簡単にしかも一層立体感も持たせて見る事
を可能にする眼鏡式立体映像方式を実現し、さらにこの
原理を用いて簡易な偏光眼鏡式立体画像方式を実現する
ものである。
On the other hand, according to the present invention, a bright color stereoscopic image is displayed on a display screen that can be viewed by a plurality of people from any position such as a movie or a television.
It is intended to realize a stereoscopic image system of glasses type that enables a plurality of people to easily see it with a more stereoscopic effect, and further realize a simple stereoscopic image system of polarized glasses by using this principle. .

【0004】[0004]

【課題を解決する手段】具体的に本発明の第一の構成で
は、立体両画面を上下に表示する表示画面と、左右が縦
方向に対しては相互に逆に、また横方向に対しては相互
に内側向きに、両画面を重ね合わせる屈折角を有する眼
鏡とにより成り、該表示画面を該眼鏡を通して見る事に
より、横長画面を構成しやすい立体画像方式を実現して
いる。
Specifically, in the first configuration of the present invention, a display screen for displaying both stereoscopic screens vertically and a left and right screens are mutually opposite in the vertical direction and in the horizontal direction. Is composed of eyeglasses having a refraction angle that overlaps both screens inward with each other, and realizes a stereoscopic image system in which a landscape screen can be easily configured by viewing the display screen through the glasses.

【0005】また本発明の第二の構成では、立体両画面
を左右に表示し、かつこれを位置を変えて見る事が出来
る表示画面と、見る位置に対応して両画面を重ね合わせ
る屈折角を設定する眼鏡とにより構成し、該表示画面を
任意の位置から該眼鏡を通して見る事により立体画像を
得る方式により実現している。
In the second structure of the present invention, a display screen which displays both stereoscopic screens on the left and right, and which can be viewed by changing the position, and a refraction angle at which both screens are overlapped corresponding to the viewing position. It is realized by a method of obtaining a stereoscopic image by observing the display screen from an arbitrary position through the spectacles.

【0006】さらに本発明の第三の構成では、立体両画
面に対し各々異なる偏光を通し、さらに屈折光学系を通
して両画面をスクリーン上に重ね合わせて投影する事に
より、偏光眼鏡でこれを立休視する偏光眼鏡式立体画像
方式を実現している。
Further, in the third structure of the present invention, different polarized lights are passed through the three-dimensional screens, and the both screens are superimposed and projected on the screen through the refractive optical system. It realizes the stereoscopic image system of the polarized glasses type for viewing.

【0007】[0007]

【作用】本発明では、本来人間の両眼の角度調整動作は
左右方向のみの為、従来立体両画面は左右にしか組み込
めなかったのを、光学系により左右方向のみならず上下
方向にも角度を調整出来る本発明の眼鏡を用いる事によ
り、両画面を上下に組み込む事を可能にし、横長の立体
画面が容易に得られるようになった。また立体両画面が
上下または左右に表示された本発明の表示画面は、テレ
ビや映画のように自由な位置から見る事が出来るもので
あるが、位置により見る画面の大きさ従って角度が違っ
てくる。これら両画面を重ね合わせ立体視するために
は、眼鏡の光学系を通し両画面がそれぞれ左右両眼の正
面に見える様に光軸を変える必要がある。このため本発
明の眼鏡では、反射鏡を組み合わせその角度を調整する
方法、または可変屈折角プリズムや種々の屈折角のプリ
ズム選択組み合わせる方法により、見る位置により異な
る画面の角度が各々ちょうど両眼の正面で見えるように
角度が調整される。これによりどの位置からでも表示画
面を立体視する事を可能にしている。さらに本発明で
は、表示面に分離された両画面を別々の偏光板を通し屈
折投影する事により、偏光眼鏡で立体視出来る簡単な立
体画像方式を可能にしている。
According to the present invention, since the angle adjustment operation of both eyes of the human being is originally only in the left and right direction, the conventional stereoscopic both screens can be incorporated only in the left and right directions. By using the spectacles of the present invention capable of adjusting, both screens can be incorporated vertically, and a horizontally long stereoscopic screen can be easily obtained. Further, the display screen of the present invention in which both stereoscopic screens are displayed vertically or horizontally can be viewed from a free position like a TV or a movie, but the size of the screen to be viewed depending on the position and therefore the angle may be different. come. In order to superimpose these two screens for stereoscopic viewing, it is necessary to change the optical axis through the optical system of the glasses so that both screens can be seen in front of the left and right eyes. Therefore, in the spectacles of the present invention, the angle of the screen that differs depending on the viewing position is exactly the front of both eyes depending on the method of combining the reflecting mirrors and adjusting the angle, or the method of selectively combining the variable refraction angle prism and the prisms of various refraction angles. The angle is adjusted so that you can see. This enables the display screen to be viewed stereoscopically from any position. Further, according to the present invention, both screens separated on the display surface are refracted and projected through different polarizing plates, thereby enabling a simple stereoscopic image system in which stereoscopic viewing is possible with polarizing glasses.

【0008】[0008]

【実施例】図1には本発明の第1の構成の実施例を示
し、また図4には本実施例の眼鏡の構成をプリズムを用
いる場合を例に示す。図1は中央で分割され上下に立体
両画面L,Rを表示する表示面11を持ち、この両画面
を屈折角が相互に縦方向に対しては逆で、横方向に対し
ては内側に向かい、かつ見る位置により度合いの異なる
眼鏡12を通して、それぞれ両眼の正面に来る像として
見る事により立体像を得るものである。なお図1では、
該眼鏡として見る位置により異なる屈折角を有するプリ
ズムを用いる場合を例として示している。次にこの表示
面を見る眼鏡の機能が図4に示される。即ち眼鏡を通し
両画面を重ね合わせて見る場合については、この表示面
の光軸1aはこれを見る両眼の正面に来る光軸1bに対
し、縦方向には左右の眼に対し上下逆にズレ、また横方
向には両眼の中央にあるので左右の眼に対し内側にズレ
ている。従ってこの表示面の両画面は、縦方向には左右
各々上下に反対の屈折角α1を有する光学系12aを、
横方向には各々内側に屈折する屈折角α2を有する光学
系12bを通し、左右の眼のそれぞれ正面に見る事によ
り重ね合わされた立体像として見える事になる。同図か
らも分かるように、表示面が大きく距離が短いほど眼鏡
の上下方向および横方向への屈折角が大きくなるので、
見る位置により画像の重ね合せに必要な屈折角が異なっ
てくる。従ってこの屈折角を変え調整する事の出来る光
学系の眼鏡を用いる事により任意の位置で立体像を見る
事が可能となる。以上述べた上下および左右に屈折する
プリズムは実際には同図の12L、12Rに於いて矢印
で示される様に一体化されたものをプラスチック成形な
どにより容易に実現する事が出来る。また表示面との距
離が遠い場合またはそれほど奥行き感を要しない場合な
どは、この横方向の各々の内側への屈折は無くても良い
場合が有る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the first structure of the present invention, and FIG. 4 shows an example of the structure of the glasses of this embodiment using prisms. FIG. 1 has a display surface 11 that is divided at the center and displays three-dimensional screens L and R on the upper and lower sides. The refraction angles of these two screens are opposite to each other in the vertical direction and inward in the horizontal direction. A stereoscopic image is obtained by viewing as images coming in front of both eyes through the glasses 12 facing each other and having different degrees depending on the viewing position. In addition, in FIG.
An example is shown in which prisms having different refraction angles are used as the eyeglasses depending on the viewing position. Next, the function of the glasses for looking at this display surface is shown in FIG. That is, when viewing both screens through glasses, the optical axis 1a of this display surface is upside down with respect to the left and right eyes in the vertical direction with respect to the optical axis 1b which is in front of the eyes of the viewer. There is a shift, and since it is in the center of both eyes in the lateral direction, it is shifted inward with respect to the left and right eyes. Therefore, both screens of this display surface are provided with the optical system 12a having the opposite refraction angle α1 vertically in the vertical direction.
In the lateral direction, through the optical system 12b having the refraction angle α2 for inward refraction, and looking in front of each of the left and right eyes, the images can be seen as a superimposed stereoscopic image. As can be seen from the figure, the larger the display surface and the shorter the distance, the larger the vertical and lateral refraction angles of the glasses, so
The refraction angle required for superimposing images differs depending on the viewing position. Therefore, it is possible to see a stereoscopic image at an arbitrary position by using glasses of an optical system capable of changing and adjusting the refraction angle. The above-described prisms that bend vertically and horizontally can actually be easily realized by plastic molding or the like, which are integrated as indicated by arrows in 12L and 12R in the figure. Further, when the distance from the display surface is long, or when the depth feeling is not required so much, there may be a case where the inward refraction in each lateral direction may not be necessary.

【0009】この屈折角調整を反射鏡を用いて行う場合
は、図5に示される左右それぞれの対物、接眼の2枚の
反射鏡13a、13bを用いて構成する事が出来る。角
度の調整は対物鏡で上下角を、また接眼鏡で横方向の角
度調整を行うなど、対物および接眼の何れの鏡でも可能
である。また図6に示される通り、上または下の方向か
ら見る構成にすれば、反転像ではあるが、角度の異なっ
た左右各々1枚の対物鏡13aでも可能となる。この場
合には撮影時に同様に1枚の鏡を通し反転像を記録すれ
ば、画像再生の時に反転され正位像が得られる。もちろ
んこれらは反射プリズムの組み合わせでも全く同じ原理
であり、同様に構成する事が出来る。更に簡単な手法と
しては図7に示される通り、対物および接眼の2枚の鏡
による眼鏡の片方のみを用いて実現する事が可能であ
る。この場合撮影時に生ずる距離の誤差は、見る時反対
側の画面を鏡を通して見る事により補正が出来る。
When this refraction angle adjustment is performed using a reflecting mirror, it can be configured by using two reflecting mirrors 13a and 13b for each of the left and right objectives and eyepieces shown in FIG. The angle can be adjusted with either the objective or eyepiece mirror by adjusting the vertical angle with the objective mirror and adjusting the horizontal angle with the eyepiece. Further, as shown in FIG. 6, if the configuration is viewed from above or below, it is possible to use one objective mirror 13a for each of the left and right sides, although the image is a reverse image. In this case, if a reverse image is recorded through one mirror in the same manner at the time of photographing, a normal image is obtained by reversing the image during image reproduction. Of course, these are the same principle even if a combination of reflecting prisms is used, and they can be configured in the same manner. As a simpler method, as shown in FIG. 7, it is possible to realize it by using only one of spectacles having two mirrors, an objective and an eyepiece. In this case, the distance error that occurs during shooting can be corrected by looking at the screen on the opposite side through a mirror.

【0010】眼鏡の左右レンズとして屈折プリズムを用
いる場合は、基本的にはくさび形の角度に合わせた透明
板で透明な流動体を挟んだ形のプリズムで、この透明板
の角度を変え屈折角を可変に出来る構成の可変屈折角プ
リズムを使う事により実現出来る。しかしこれはやや複
雑な機構のプリズムになるので、より容易な実現方法と
しては、屈折角の異なったプリズムを組み合わせる事に
より構成する方法がある。眼鏡には、左右が縦方向には
各々上下反対に屈折し、横方向には各々内側に屈折する
特性を有するプリズムが組み込まれる。即ちこれら屈折
角の異なるプリズムによる複数の左右レンズベアを作
り、これを切り換えて使う事になる。具体的は図8では
例えばL1 R1、L2 R2、L3 R3、の複数の
レンズベアを縦方向に移動させ切り換える構造、図9で
はこれらレンズベアを横方向に移動し切り換える構造、
図10では複数のレンズを差し替え組み合わせる構造、
図11ではこれらレンズベアを円盤状に並べ回転させて
切り換える構造、さらに図12では円盤を左右別にした
構造等の方法がある。またこれら別々のプリズムが順序
よく並ぶ場合は、これを並べる代わりに屈折角を連続的
に変えたプリズムを用いれば無段階で任意の屈折角を得
る事ができ、更にこれらのレンズベア板を多段に重ねれ
ばより多種類の屈折角の組み合わせを得る事が出来る。
さらに表示面がテレビ画面のように数種類の画面サイズ
に標準化されており、これらのサイズと見る距離の組み
合わせがほぼ決まってくる場合、または映画のように一
定の画面に対し見る位置や席が決まっている場合には、
その各々の位置に合わせた専用の屈折角を持った眼鏡を
選択設定し用いる事が可能になる。
When a refraction prism is used as the left and right lenses of spectacles, basically, a prism having a transparent fluid sandwiched between wedge-shaped transparent plates is used. This can be realized by using a variable refraction angle prism having a configuration capable of making variable. However, since this is a prism having a slightly complicated mechanism, there is a method in which it is configured by combining prisms having different refraction angles as an easier realization method. A pair of prisms having a characteristic that left and right are refracted vertically in the vertical direction and inward in the horizontal direction are incorporated in the eyeglasses. That is, a plurality of left and right lens bears are formed by the prisms having different refraction angles, and these are switched and used. Specifically, in FIG. 8, for example, a structure in which a plurality of lens bears L1 R1, L2 R2, and L3 R3 are vertically moved and switched, and in FIG. 9, a structure in which these lens bears are horizontally moved and switched,
In FIG. 10, a structure in which a plurality of lenses are replaced and combined,
In FIG. 11, there is a method of arranging these lens bears in a disk shape and rotating them to switch over, and in FIG. 12, there is a method of separating the disks into left and right. Also, when these separate prisms are lined up in order, it is possible to obtain an arbitrary refraction angle steplessly by using prisms whose refraction angles are continuously changed instead of arranging them, and further stack these lens bare plates in multiple stages. If so, more combinations of refraction angles can be obtained.
In addition, the display surface is standardized to several screen sizes such as TV screens, and when the combination of these sizes and viewing distance is almost decided, or the position and seat to watch on a certain screen is decided like a movie. If
It becomes possible to selectively set and use eyeglasses having a dedicated refraction angle according to each position.

【0011】なお表示面の上下に立体両画面を組み込み
撮影する装置は、原理的には画面を見る場合と同じであ
り、具体例として図13に示される通り各画面ごと対物
33a,接眼33bの2枚の鏡を用いて構成する事が出
来る。これはもちろん同じ原理で反射プリズムを用いて
構成する事もできる。このような装置32を写真や映画
・ビデオなどのカメラ34の前に装着し、被写体30を
撮影する事により容易に所期の表示面を得る事が出来
る。
An apparatus for taking a picture by incorporating both stereoscopic screens on the upper and lower sides of the display surface is the same as that for viewing the screen in principle. As a concrete example, as shown in FIG. 13, each screen has an objective 33a and an eyepiece 33b. It can be constructed using two mirrors. Of course, this can also be configured by using a reflecting prism on the same principle. The desired display surface can be easily obtained by mounting the device 32 in front of the camera 34 for photographs, movies, videos and the like and photographing the subject 30.

【0012】図14には本発明の第1の構成の他の実施
例として、表示面を覗き式眼鏡で一人で見るいわゆる覗
き眼鏡方式の場合を示す。表示面11と眼鏡との距離が
近くに固定されるので、左右の眼鏡は、両画面に対し上
下方向には各々反対の方向に屈折し更に左右方向には従
来の左右画面方式とは反対に光軸が内側に屈折する、固
定プリズム12L,12Rにより構成される。
FIG. 14 shows, as another embodiment of the first configuration of the present invention, a case of so-called spectacles type in which the display surface is viewed by oneself with spectacles. Since the distance between the display surface 11 and the eyeglasses is fixed close to each other, the left and right eyeglasses are refracted in opposite directions in the vertical direction with respect to both screens, and further in the left-right direction as opposed to the conventional left-right screen method. It is composed of fixed prisms 12L and 12R whose optical axes are refracted inward.

【0013】図2に本発明の第2の構成の実施例を示
し、また図15にこの実施例に於ける眼鏡の構造を示
す。図2は中央で左右に分割されそれぞれ左右の立体両
画面L、Rを表示する表示面21と、見る位置により各
々異なる屈折角を有する眼鏡22とより成り、該表示面
を該眼鏡を通して見る事により立体像を得るものであ
る。なおこの図では、該眼鏡としてプリズムを用いる場
合を例として示している。次に図15によりプリズムを
用いる場合を例にこの眼鏡の機能を説明する。まず眼鏡
を通し、両画面を重ね合わせて立体像として見るには、
同図の表示面21の両画面L、Rからの光軸2aを眼鏡
のプリズム光学系22aで左右各々外側に屈折させ、両
眼の正面に来る光軸2bに合わせる事が必要である。こ
のとき表示面が大きいほど、またこの表示面と眼鏡との
距離が短いほど眼鏡に必要な屈折角βは大きくなる。即
ちこの場合、レンズが画面の近くに固定される覗き眼鏡
式の場合と異なり、見る位置により画像を重ね合わせる
のに必要な屈折角βが異なってくるので、この光軸の屈
折角を可変とし位置により調整出来る眼鏡を実現する事
によりその立体視が可能になる。
FIG. 2 shows an embodiment of the second constitution of the present invention, and FIG. 15 shows the structure of the eyeglasses in this embodiment. 2 is composed of a display surface 21 that is divided into left and right stereoscopic images L and R at the center and eyeglasses 22 having different refraction angles depending on the viewing position, and viewing the display surface through the eyeglasses. To obtain a stereoscopic image. In addition, in this figure, the case where prisms are used as the glasses is shown as an example. Next, the function of the spectacles will be described with reference to FIG. 15 using a prism as an example. First, through glasses, to see both images as a stereoscopic image,
It is necessary to refract the optical axes 2a from both screens L and R on the display surface 21 in the same figure to the outside by the prism optical system 22a of the spectacles so as to be aligned with the optical axes 2b coming to the front of both eyes. At this time, the larger the display surface and the shorter the distance between the display surface and the spectacles, the larger the refraction angle β required for the spectacles. That is, in this case, unlike the case of the spectacles type in which the lens is fixed near the screen, the refraction angle β necessary for superimposing images differs depending on the viewing position, so the refraction angle of this optical axis is made variable. Realization of glasses that can be adjusted depending on the position enables stereoscopic viewing.

【0014】屈折角の調整を反射鏡により行う場合は、
図16に示される眼鏡22の左右各々の22L,22R
について対物鏡23a,接眼鏡23bの2枚の鏡を用い
て実現できる。角度の調整は対物および接眼の何れの鏡
でも可能である。もちろんこれは反射プリズムの組み合
わせでも原理的には同じであり構成可能である。また先
の図6、図7で用いられた簡易手法も、この左右組み込
みの場合でも上下方向が左右方向になるだけで、同様に
実現出来る事は説明するまでもない。
When the refraction angle is adjusted by a reflecting mirror,
Left and right 22L and 22R of the glasses 22 shown in FIG.
Can be realized by using two mirrors, the objective mirror 23a and the eyepiece 23b. The angle can be adjusted with either the objective or eyepiece mirror. Of course, this is the same in principle and can be configured by a combination of reflecting prisms. Further, it goes without saying that the simple method used in FIGS. 6 and 7 can also be realized in the same way, even in the case of the left and right assembling, only the vertical direction is the horizontal direction.

【0015】屈折プリズムを用いる場合は、基本的には
前述の両画面を上下に組み込む場合と同じく、くさび形
の角度に合わせた透明板で透明な流動体を挟んだ形の可
変屈折角プリズムを使う事により実現出来る。しかし、
より簡易な手法としては、屈折角の異なったプリズムを
組み合わせる事により実現する事が出来る。眼鏡として
は、各々外側に屈折し距離により異なる屈折角を有する
プリズムによる複数の右レンズベアを作り、これを切り
換えて使える構成にする。この為には、図8〜図12に
示された上下方向に両画面を並べる場合と全く同様な構
成が可能である。立体両画面を上下に表示する場合と同
様に、左右に表示する場合も画面のサイズや見る位置等
の組み合わせが決まってくる場合は、その各々の位置に
合わた専用の屈折角を持った眼鏡を選択設定し用いる事
が出来る。なお表示面に左右画面を組み込む方法も画面
を見る場合と原理的に同じであり、図16の構成で反射
鏡を固定した構造で実現出来る。もちろんこの場合も同
じ原理で反射プリズムを用い構成する事も出来る。
In the case of using a refraction prism, basically, as in the case of incorporating both screens above and below, a variable refraction angle prism in which a transparent fluid is sandwiched between transparent plates matched to the wedge-shaped angle is used. It can be realized by using it. But,
A simpler method can be realized by combining prisms with different refraction angles. As the spectacles, a plurality of right lens bears are formed by prisms each having an outward refraction and a refraction angle different depending on the distance, and the right lens bears are switched to be usable. For this purpose, a configuration exactly the same as that of arranging both screens in the vertical direction shown in FIGS. 8 to 12 is possible. As in the case of displaying both stereoscopic screens vertically, when the combination of screen size and viewing position is decided when displaying horizontally, glasses with a dedicated refraction angle adapted to each position. Can be selected and set for use. The method of incorporating the left and right screens on the display surface is the same in principle as when viewing the screen, and can be realized by the structure in which the reflecting mirror is fixed in the configuration of FIG. Of course, also in this case, a reflecting prism can be used for the same principle.

【0016】また本発明に含まれる各々の眼鏡について
は、従来の覗き眼鏡式の場合と同様、凸レンズの機能を
加えて、表示面を拡大して見る事により立体感を増す事
が出来る。またプリズムを組み合わせる場合には、プリ
ズムの屈折機能と凸レンズの機能の一体化も可能であ
り、現在はプラスチック成形等によりこれら複合化され
たレンズを容易に実現する事が出来る。
As for each pair of eyeglasses included in the present invention, the stereoscopic effect can be increased by enlarging the display surface by adding the function of a convex lens, as in the case of the conventional eyeglass type. Further, when the prisms are combined, the refraction function of the prisms and the function of the convex lens can be integrated, and at present, it is possible to easily realize the compound lens by plastic molding or the like.

【0017】更に本発明の第三の構成として、立体両画
面を持つ表示面をテレビ液晶プロジェクター画面や映画
のフィルム画面のようにスクリーンに投影させて見る映
像方式に適用すれば、簡単な構成の偏光眼鏡式立体画像
方式を実現する事ができる。図3にその構成例を示す。
この場合は立体両画面を上下に組み込む場合を例に示し
ている。即ち、この表示面41をCRT発光画面または
液晶画面で別光源により照明するなどにより光画像とし
て、これをそれぞれ別の偏光フィルター43L,43R
を通すなどにより各々異なる偏光面とし、更にプリズム
42L,42Rによりスクリーン面で両画面が重ね合わ
さるように光軸を屈折させレンズ44を通し投影する事
により、それぞれ別々の偏光を持ちかつ重ね合わされ投
影された両画面45を得る事が出来る。このスクリーン
面を通常の偏光眼鏡を通して見る事により、立体画面が
得られる。即ち本構成により、従来のように偏光面の異
なる2台のブロジェクターにより投影するなど、複雑な
構成を取る事無く、著しく簡単な偏光眼鏡式立体画像方
式を構成する事が出来るのである。
Further, as a third structure of the present invention, if it is applied to a video system in which a display surface having both stereoscopic screens is projected on a screen such as a television liquid crystal projector screen or a film screen of a movie, a simple structure is obtained. It is possible to realize a stereoscopic image system using polarized glasses. FIG. 3 shows an example of the configuration.
In this case, an example is shown in which both stereoscopic screens are incorporated vertically. That is, by illuminating the display surface 41 with another light source on the CRT light emitting screen or the liquid crystal screen, an optical image is formed, which is used as a separate polarizing filter 43L, 43R.
To make different polarization planes, and to further project the images through the lens 44 by refracting the optical axis so that both screens are superposed on the screen surfaces by the prisms 42L and 42R. Both screens 45 can be obtained. A stereoscopic screen can be obtained by viewing this screen surface through normal polarizing glasses. That is, with this configuration, it is possible to construct a remarkably simple stereoscopic image system of the polarized glasses without taking a complicated configuration such as projection by two projectors having different polarization planes as in the prior art.

【0018】[0018]

【発明の効果】本発明により、これまでの眼鏡方式では
実現出来なかった、複数の人が自由な位置で見られる映
画やテレビの様な画面を、カラーでしかも明るい立体画
像として簡単に見る事が出来る立体画像方式を実現出来
る。さらに立体両画面を上下に組み込む方式では、横長
画面が構成し易くなり、一層立体感を持たせる事が可能
になる。これは一人で見る覗き眼鏡式の場合でも、従来
の横並べ構成に比べ格段の立体感を与えるものである。
また本発明は投影式テレビ等と組み合わせて、簡易型の
偏光眼鏡式立体映像方式を実現した事により、この方式
の応用領域を大きく広げる事を可能にした。なお、本発
明はすべてその構造が簡単な方式なので、家庭用テレビ
ででも、家庭用ビデオカメラと組み合わて手軽に立体ビ
デオを実現する事が可能であり、その一般社会への影響
力と波及効果はきわめて大きい。
According to the present invention, it is possible to easily view a screen such as a movie or a television, which can be viewed by a plurality of people at any position, which is not possible with the conventional eyeglass system, as a color and bright stereoscopic image. It is possible to realize a stereoscopic image system that can perform. Further, in the method of incorporating both stereoscopic screens in the upper and lower directions, a horizontally long screen can be easily configured, and a more stereoscopic effect can be obtained. Even in the case of the spectacles type that can be viewed by one person, this gives a marked three-dimensional effect compared to the conventional side-by-side configuration.
In addition, the present invention realizes a simple type stereoscopic image system with polarized glasses by combining with a projection television and the like, which makes it possible to greatly expand the application area of this system. Since the present invention has a simple structure, it is possible to easily realize a stereoscopic video even in a home TV by combining it with a home video camera, and its influence on the general public and its ripple effect. Is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の構成の実施例である。FIG. 1 is an example of a first configuration of the present invention.

【図2】本発明の第2の構成の実施例である。FIG. 2 is an example of a second configuration of the present invention.

【図3】本発明の第3の構成の実施例である。FIG. 3 is an example of the third configuration of the present invention.

【図4】図1の実施例の眼鏡の構成例である。FIG. 4 is a structural example of the glasses of the embodiment of FIG.

【図5】図1での眼鏡に反射鏡を用いる構成例である。5 is an example of a configuration in which a reflecting mirror is used for the spectacles in FIG.

【図6】図5の他の実施例である。FIG. 6 is another embodiment of FIG.

【図7】図5のさらに他の実施例である。FIG. 7 is still another embodiment of FIG.

【図8】複数レンズベアを組み合わせる眼鏡を縦に並べ
る構成例である。
FIG. 8 is an example of a configuration in which eyeglasses in which a plurality of lens bears are combined are vertically arranged.

【図9】複数レンズベアを横に並べる構成例であるFIG. 9 is a configuration example in which a plurality of lens bears are arranged side by side.

【図10】複数レンズベアを差し替え組み合わせる構成
例である。
FIG. 10 is an example of a configuration in which a plurality of lens bears are replaced and combined.

【図11】複数レンズベアを円盤状に並べる構成例であ
る。
FIG. 11 is a configuration example in which a plurality of lens bears are arranged in a disc shape.

【図12】複数レンズベアを持つ円盤を左右別にした構
成例である。
FIG. 12 is a configuration example in which disks having a plurality of lens bears are separated into right and left.

【図13】本発明の第1の構成の立体両画面を撮影する
装置の構成例である。
FIG. 13 is a structural example of a device for photographing both stereoscopic screens according to the first structure of the present invention.

【図14】本発明の第1の構成の他の実施例である。FIG. 14 is another embodiment of the first configuration of the present invention.

【図15】図2の実施例の眼鏡の構成例である。15 is a structural example of the glasses of the embodiment of FIG.

【図16】図2での眼鏡に反射鏡を用いる構成例であ
る。
16 is a structural example in which a reflecting mirror is used for the spectacles in FIG.

【符号の説明】 1a、1b、2a、2b 光軸 11 表示面 12 眼鏡 12a,12b 屈折光学系 12L、12R 眼鏡の左および右の光学系 13a、13b 反射鏡 21 表示面 22 眼鏡 22a 屈折光学系 30 被写体 32 撮影装置 33a、33b 反射鏡 34 カメラ 41 表示面 43L、43R 左および右の偏光フィルター 44 投影レンズ 45 重ね合わされた投影両画面 L、R 左および右の立体画面 L1 R1、L2 R2、L3 R3 左右レンズベ
ア α1、α2、β 光軸の屈折角
[Description of Reference Signs] 1a, 1b, 2a, 2b Optical axis 11 Display surface 12 Eyeglasses 12a, 12b Refractive optical system 12L, 12R Left and right optical system of eyeglasses 13a, 13b Reflector 21 Display surface 22 Eyeglass 22a Refractive optical system 30 subject 32 photographing device 33a, 33b reflecting mirror 34 camera 41 display surface 43L, 43R left and right polarization filter 44 projection lens 45 superimposed projection screens L, R left and right stereoscopic screens L1 R1, L2 R2, L3 R3 Left and right lens bears α1, α2, β Refraction angle of optical axis

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】立体両画面を上下に表示する表示画面と、
縦方向に対しては相互に逆の、また横方向に対しては相
互に内側に向き、両画面を重ね合わせて見る屈折角を有
する眼鏡とにより成る立体画像方式
1. A display screen for displaying both stereoscopic screens vertically.
Stereoscopic image system consisting of glasses that are opposite to each other in the vertical direction and inward to each other in the horizontal direction and that have a refraction angle for viewing both screens in an overlapping manner.
【請求項2】立体両画面を左右に表示し、かつ位置を変
えて見る事が出来る表示画面と、見る位置に対応して両
画面を重ね合わせて見る屈折角を設定する眼鏡とにより
構成され、該表示画面を任意の位置から該眼鏡を通して
見る立体画像方式
2. A display screen which displays both stereoscopic images on the left and right and can be viewed at different positions, and eyeglasses for setting a refraction angle for superimposing both screens corresponding to the viewing position. , A stereoscopic image system for viewing the display screen through the glasses from an arbitrary position
【請求項3】光学系に反射鏡を含み、反射鏡の角度を変
える事により屈折角を調整する機能を有する眼鏡により
構成される請求項1または請求項2の立体画像方式
3. The stereoscopic image system according to claim 1, wherein the optical system includes a reflecting mirror, and the spectacles have a function of adjusting the refraction angle by changing the angle of the reflecting mirror.
【請求項4】光学系に屈折角を変えられる可変屈折角プ
リズムを含み、該プリズムにより屈折角を調整する機能
を有する眼鏡により構成される請求項1または請求項2
の立体画像方式
4. An optical system including a variable refraction angle prism capable of changing a refraction angle, and the spectacles having a function of adjusting the refraction angle by the prism.
3D image system
【請求項5】複数対備えられた屈折角の異なる眼鏡レン
ズを切り換える構造のプリズム眼鏡により構成される請
求項1または請求項2の立体画像方式
5. The stereoscopic image system according to claim 1, wherein the stereoscopic image system comprises prism glasses having a structure for switching a plurality of pairs of spectacle lenses having different refraction angles.
【請求項6】表示面に表示される上下または左右の両画
面が、各々別の偏光位相を持ち、かつスクリーン上で重
なる屈折角を持った光学系を通しスクリーンに重ね合わ
せて投影される機能を有し、この投影画面をそれぞれ対
応する位相の偏光眼鏡を通し立体像として見る構成の偏
光眼鏡式立体画像方式。
6. A function of projecting both upper and lower screens or left and right screens displayed on the display surface through an optical system having different polarization phases and overlapping refraction angles on the screen so as to be superimposed on the screen. A polarizing glasses type stereoscopic image system in which the projection screens are viewed as stereoscopic images through polarizing glasses having corresponding phases.
JP6281070A 1994-10-11 1994-10-11 Stereoscopic image system Pending JPH08110494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6281070A JPH08110494A (en) 1994-10-11 1994-10-11 Stereoscopic image system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6281070A JPH08110494A (en) 1994-10-11 1994-10-11 Stereoscopic image system

Publications (1)

Publication Number Publication Date
JPH08110494A true JPH08110494A (en) 1996-04-30

Family

ID=17633902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6281070A Pending JPH08110494A (en) 1994-10-11 1994-10-11 Stereoscopic image system

Country Status (1)

Country Link
JP (1) JPH08110494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174658A (en) * 2018-03-28 2019-10-10 株式会社クエイザーテクノロジー Stereoscopic viewer
CN114152145A (en) * 2021-12-21 2022-03-08 湖南华南光电(集团)有限责任公司 Compact wide-field white light sighting telescope optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174658A (en) * 2018-03-28 2019-10-10 株式会社クエイザーテクノロジー Stereoscopic viewer
CN114152145A (en) * 2021-12-21 2022-03-08 湖南华南光电(集团)有限责任公司 Compact wide-field white light sighting telescope optical system

Similar Documents

Publication Publication Date Title
JP3978515B2 (en) 3D image display method and apparatus
KR101641479B1 (en) Apparatus for displaying a stereoscopic image
JP4421673B2 (en) 3D image display device
JP2012118529A (en) Three-dimensional conversion projection system
US5225861A (en) Apparatus for projection of three-dimensional images
JP3453086B2 (en) Three-dimensional display method and head-mounted display device
JP2002365589A (en) Three-dimensional display device
US5146246A (en) Apparatus for presentation of three-dimensional images
KR100580218B1 (en) Projection type 3d image display using a single projector
KR101406793B1 (en) Color wheel, illumination unit employing the color wheel, and 2D/3D compatible image display apparatus employing the color wheel
JP3462796B2 (en) Three-dimensional display method and device
JP3790226B2 (en) 3D display device
JP3756481B2 (en) 3D display device
JPH08110494A (en) Stereoscopic image system
JP2513403B2 (en) Projection type stereoscopic display device
JPS6389820A (en) Liquid crystal display device
JP2004279743A (en) Three dimensional display device
JP2500420B2 (en) Projection type stereoscopic display device
JP3422760B2 (en) 3D display method
WO1991018314A1 (en) Optical system for intensifying feeling of presence at sites of various images
JP2004294817A (en) Three-dimensional display
WO2022247001A1 (en) Naked-eye three-dimensional display device
JPS59202456A (en) Stereoscopic viewer
JP2999953B2 (en) Stereoscopic image display using polarized glasses
KR20190054245A (en) Virtual Reality 3D Image Expansion Device with High Brightness

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214