JPH08110327A - Ultrasonic flaw detecting method for heterogeneous material - Google Patents

Ultrasonic flaw detecting method for heterogeneous material

Info

Publication number
JPH08110327A
JPH08110327A JP6270646A JP27064694A JPH08110327A JP H08110327 A JPH08110327 A JP H08110327A JP 6270646 A JP6270646 A JP 6270646A JP 27064694 A JP27064694 A JP 27064694A JP H08110327 A JPH08110327 A JP H08110327A
Authority
JP
Japan
Prior art keywords
delay time
transmitting
ultrasonic
receiving element
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6270646A
Other languages
Japanese (ja)
Inventor
Keiji Yokoyama
計次 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAI IRON WORKS
SAKAI TEKKOSHO KK
Original Assignee
SAKAI IRON WORKS
SAKAI TEKKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAI IRON WORKS, SAKAI TEKKOSHO KK filed Critical SAKAI IRON WORKS
Priority to JP6270646A priority Critical patent/JPH08110327A/en
Publication of JPH08110327A publication Critical patent/JPH08110327A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To provide a method for flaw detecting in which a clear echo can be observed from a defect with high resolution by using an array type probe even in the case of a test piece of a heterogeneous material like a material having high damping capacity or a centrifugal casting tube. CONSTITUTION: The frequency of a radiating ultrasonic wave is n. A delay time in which a phase correction delay time within ±1/(2n)sec or less different at each transceiver 1 and each radiation is added to the delay time of each transceiver 1 is applied, an ultrasonic wave is radiated from each transceiver into a heterogeneous test piece 6, its reflected wave is received by each transceiver 1, and the receives waves of the respective transceivers are added. The echo signal obtained by the addition is stored for the radiations of the ultrasonic waves many times, the combination of the phase correction delay time in which its echo signal becomes maximum is selected, a flaw is detected from the echo obtained by the combination of the delay times, thereby improving the flaw detecting performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧水形原子炉の一次
冷却管として用いられる遠心鋳造管の溶接部の応力腐食
割れ等の探傷に好適な探傷方法に関し、不均質な試験体
内部の探傷を的確に行うことができる超音波探傷法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detection method suitable for flaw detection such as stress corrosion cracking of a welded portion of a centrifugal casting pipe used as a primary cooling pipe of a pressurized water reactor, and a flaw detection inside a heterogeneous test body. The present invention relates to an ultrasonic flaw detection method capable of accurately performing.

【0002】[0002]

【従来の技術】従来の超音波探傷用探触子は、通常一定
の面積を有する単一の送受信子から指向性を有する超音
波ビームを試験体内に発射して、その反射波を受信する
方法により行われている。
2. Description of the Related Art A conventional ultrasonic probe for ultrasonic flaw detection is a method of emitting a directional ultrasonic beam into a test body from a single transmitter / receiver which usually has a constant area and receiving the reflected wave. Is done by.

【0003】一方、主として人体の超音波エコー診断法
に用いられる探触子として、図1に示すような細長い矩
形状振動子よりなる送受信素子を多数、並行に横に並べ
て直線状に配列したアレイ形探触子が用いられている。
その送受信素子に1個ずつ直列に電子スイッチを接続
し、振動子を1個ずつ独立にオンオフしうるようにし、
隣接する振動子に順次異なる遅延時間を与え、各送受信
素子より少しずつ位相をずらしてリニヤー走査して超音
波を発射すれば、遅延時間の選択により図2に示すよう
に任意の一定の方向に超音波を入射することができる。
更に各送受信素子を多数回走査して超音波を発射し、各
走査毎に隣接する送受信素子に与える遅延時間の差τを
走査毎に少しずつ変えて走査すると、超音波の入射角度
を連続的に変化するように走査することができる。又図
3に示すように各送受信素子に遅延時間を与えて超音波
を試験体に入射することにより、試験体内の一点に集束
するように超音波を入射することができる。
On the other hand, as a probe mainly used in the ultrasonic echo diagnostic method of the human body, an array in which a large number of transmission / reception elements composed of elongated rectangular transducers as shown in FIG. A shape probe is used.
An electronic switch is connected in series to each of the transmitting and receiving elements so that each oscillator can be turned on and off independently.
If different delay times are sequentially applied to the adjacent transducers and the ultrasonic waves are emitted by linear scanning while shifting the phase little by little from each transmitting / receiving element, the delay time can be selected to move in any given direction as shown in FIG. Ultrasonic waves can be incident.
Further, each transmitting / receiving element is scanned a number of times to emit an ultrasonic wave, and the difference in delay time τ given to the adjacent transmitting / receiving element is changed little by little for each scanning. Can be scanned to change to. Further, as shown in FIG. 3, by giving a delay time to each transmission / reception element and making the ultrasonic wave enter the test body, the ultrasonic wave can be made to be focused on one point in the test body.

【0004】更に送受信素子を平面上に格子状又は同心
円状に配列したアレイ形探触子も知られており、この2
次元のアレイ形探触子の各送受信素子に与える遅延時間
を調節することにより、試験体内で一点に集束するよう
に超音波を試験体に入射することもできる。
Further, an array type probe in which transmitting / receiving elements are arranged in a grid or concentric circles on a plane is also known.
By adjusting the delay time given to each transmitting / receiving element of the three-dimensional array type probe, the ultrasonic waves can be incident on the test body so as to be focused on one point in the test body.

【0005】「非破壊検査」第36巻、第10号、第7
63頁には、電子走査型超音波探傷法により、送受信素
子を直線状に配列したアレイ形探触子より、並行な超音
波ビームを試験体内に入射する方法及び試験体内の一点
に集束するように入射する方法により、探傷する方法が
開示されている。
"Non-destructive inspection," Vol. 36, No. 10, No. 7.
On page 63, the method of injecting parallel ultrasonic beams into the test body by an array type probe in which transmitting and receiving elements are linearly arranged by the electronic scanning ultrasonic flaw detection method and focusing on one point in the test body are described. A method for detecting flaws is disclosed by the method of incident light on.

【0006】[0006]

【発明が解決しようとする課題】上記従来の単一の送受
信子から指向性を有する超音波ビームを試験体内に発射
して、その反射波を検出する方法により、例えば加圧水
形原子炉の一次冷却管として用いられる遠心鋳造管の溶
接部の応力腐食割れ等の探傷を行うと、遠心鋳造管はそ
の鋳造の際、その表面から内部に向かって柱状に結晶が
成長し、性質の異なる柱状の結晶が並行に配列して極め
て不均質な材質となり、その結晶組織の各部分により超
音波の伝播速度が大きく異なるため、その試験体の溶接
部に隣接する表面から斜めに超音波ビームを入射する
と、欠陥部分からの反射波以外に極めて複雑な林状反射
波が観測され、探傷を行うことが不可能である。斜めに
超音波ビームを入射した場合でも、入射点から斜め方向
の欠陥からの目的とするエコーよりも、表面に垂直方向
からのエコーが大きく観測され、目的とするエコーを観
測することができない。
SUMMARY OF THE INVENTION The conventional single transmitter / receiver emits a directional ultrasonic beam into a test body and detects a reflected wave thereof, for example, primary cooling of a pressurized water reactor. When a flaw such as stress corrosion cracking of a welded portion of a centrifugally cast pipe used as a pipe is tested, the centrifugally cast pipe grows into a columnar crystal from its surface toward the inside during casting, and a columnar crystal with different properties. Are arranged in parallel and become an extremely inhomogeneous material, and since the propagation speed of ultrasonic waves greatly differs depending on each part of the crystal structure, when an ultrasonic beam is obliquely incident from the surface adjacent to the welded part of the test body, In addition to the reflected waves from the defective part, extremely complicated forest-like reflected waves are observed and it is impossible to perform flaw detection. Even when the ultrasonic beam is obliquely incident, the echo from the direction perpendicular to the surface is larger than the target echo from the defect in the oblique direction from the incident point, and the target echo cannot be observed.

【0007】又上記のアレイ形探触子を用い並行な超音
波ビーム又は一点に集束する超音波ビームを試験体に入
射しても、高減衰能材や遠心鋳造管のように極めて不均
質な材質の試験体では、各送受信素子から入射して、欠
陥から反射するエコーを各送受信素子で受信しても、各
送受信素子から欠陥までの超音波の往復路の材質の不均
一性により超音波の伝播速度が異なり、各送受信素子か
ら入射されて同じ欠陥から反射するエコーが各送受信素
子に戻ってくるまでの時間に差が生じ、超音波に位相の
差が生ずるため、各送受信素子の受信波を重ね合わせて
も、明瞭なエコーを観測することはできない。
Further, even if a parallel ultrasonic beam or an ultrasonic beam focused on one point is incident on the test body using the above-mentioned array type probe, it is extremely inhomogeneous like a high attenuation material or a centrifugal casting pipe. In the case of a test piece made of a material, even if an echo reflected from a defect is received by each transmitting / receiving element and received by each transmitting / receiving element, ultrasonic waves are generated due to the non-uniformity of the material of the ultrasonic wave reciprocating path from each transmitting / receiving element to the defect. Have different propagation speeds, and there is a difference in the time it takes for echoes that are incident from each transmitting / receiving element and reflected from the same defect to return to each transmitting / receiving element, and there is a phase difference in the ultrasonic waves. Even if the waves are superposed, a clear echo cannot be observed.

【0008】従って本発明は、減衰能の高い材質や遠心
鋳造管のように極めて不均質な材質の試験体でも、アレ
イ形探触子を用いて、欠陥部からの明瞭なエコーを高解
像度で観測することができる探傷方法を提供することを
目的とする。
Therefore, according to the present invention, even for a test body made of a material having a high damping capacity or an extremely non-uniform material such as a centrifugally cast tube, a clear echo from a defective portion can be obtained with high resolution by using an array type probe. It is an object to provide a flaw detection method that can be observed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく、
本発明者らは鋭意研究を重ねた結果、1次元又は2次元
に送受信素子を配列したアレイ形探触子から、均質な材
質の試験体であれば一点に集束するように、各送受信素
子に適当な遅延時間を与えて、各送受信素子より超音波
を発射するとともに、更に波長の±2/1以内のな位相
差を与え位相のずれを補正するように、その各送受信素
子からの超音波発射の遅延時間に更に各送受信素子毎に
異なる位相補正遅延時間を加算した遅延時間を与えて、
各送受信素子を駆動して、多数回走査して送受信素子か
ら超音波を発射し、各送受信素子で受信したエコーを加
算したときに、最大強度のエコーが得られる位相補正遅
延時間の組合せを選択し、そのときの加算したエコーを
その試験位置でのエコーとして記録し、試験位置を順次
少しずつ移動して試験体表面を掃引することにより試験
体内の欠陥の存在とその位置を検出することができ、試
験体内部の不均一性に基づく反射ノイズが強く表れる不
均質材質よりなる試験体であっても、精密な探傷を行う
ことができることを見出し、本発明を完成するに至っ
た。
In order to achieve the above object,
As a result of intensive studies by the present inventors, the array type probe in which the transmitting and receiving elements are arranged one-dimensionally or two-dimensionally An ultrasonic wave from each transmitting / receiving element is provided so as to emit an ultrasonic wave from each transmitting / receiving element with an appropriate delay time and to further provide a phase difference within ± 2/1 of the wavelength to correct the phase shift. The delay time of emission is further added with the phase correction delay time which is different for each transmitting and receiving element,
Select a combination of phase correction delay times that drive each transmitter / receiver, scan multiple times, emit ultrasonic waves from the transmitter / receiver, and add echoes received by each transmitter / receiver to obtain the echo with maximum intensity. However, the added echo at that time is recorded as an echo at the test position, and the presence of a defect in the test body and its position can be detected by gradually moving the test position and sweeping the surface of the test body. It was found that even a test body made of an inhomogeneous material in which reflection noise strongly appears due to non-uniformity inside the test body can perform accurate flaw detection, and has completed the present invention.

【0010】即ち、本発明は線状又は面状に多数の超音
波送受信素子を配列してなるアレイ形探触子の各送受信
素子から発射した超音波ビームが、均質な媒体中では一
点に集束するように各送受信素子に異なる遅延時間を与
えて、順次各送受信素子から位相を少しずつずらした超
音波を試験体内に発射し、その反射波を受信することを
多数回繰り返す超音波探傷法において、発射する超音波
の振動数をnとしたとき、各送受信素子の該遅延時間に
更に各送受信素子毎に且つ発射毎に異なる±1/(2
n)秒以内の位相補正遅延時間を加算した遅延時間を与
えて各送受信素子より超音波を不均質試験体中に発射し
て反射波を各送受信素子で受信して各送受信素子の受信
波を加算し、加算して得られたエコー信号を多数回の超
音波発射について記憶し、そのエコー信号が最大となる
位相補正遅延時間の組合せを選択し、その遅延時間の組
合せで得られたエコーより欠陥を見出し、探傷性能を向
上させることを特徴とする不均質材の超音波探傷法を要
旨とする。
That is, according to the present invention, an ultrasonic beam emitted from each transmitting / receiving element of an array type probe in which a large number of ultrasonic transmitting / receiving elements are arranged linearly or in a plane is focused on one point in a homogeneous medium. By giving different delay times to each transmitting and receiving element, sequentially emitting ultrasonic waves whose phases are slightly shifted from each transmitting and receiving element into the test body, and repeating the reception of the reflected wave many times in the ultrasonic flaw detection method. , Where n is the frequency of ultrasonic waves to be emitted, the delay time of each transmission / reception element is further different for each transmission / reception element and for each emission ± 1 / (2
n) A delay time obtained by adding the phase correction delay time within seconds is applied to each transmitting / receiving element to emit an ultrasonic wave into the inhomogeneous test body, the reflected wave is received by each transmitting / receiving element, and the received wave of each transmitting / receiving element is received. Add, and store the echo signal obtained by adding for multiple ultrasonic emission, select the combination of phase correction delay time that maximizes the echo signal, from the echo obtained by the combination of the delay time The gist is the ultrasonic flaw detection method for heterogeneous materials, which is characterized by finding defects and improving flaw detection performance.

【0011】次に本発明の超音波による固体表面の探傷
方法の一例について、図面により具体的に説明する。図
4は本発明の不均質材の超音波探傷法の説明図である。
図1に示すような1次元又は図5に示すように2次元に
配列した送受信素子1にそれぞれ独立したパルス発生器
2を接続し、更に同じトリガー信号発生器3からデジタ
ルの可変遅延回路4及び位相補正遅延回路5を経てパル
ス発生器2にトリガーパルスが入力されるようになって
いる。トリガー信号発生器3からは一定の周期で繰り返
しトリガーパルスが発信される。可変遅延回路4は、各
送受信素子1から発射された超音波が、試験体6が均質
であれば、試験体6に入射した超音波が所定の深さの一
点に集束するように遅延時間を与えてトリガーパルスを
各送受信素子1に印加する。各可変遅延回路4の遅延量
は上記集束条件がみたされるようにコンピュータで演算
したデジタル量により制御される。
Next, an example of the ultrasonic flaw detection method for a solid surface according to the present invention will be specifically described with reference to the drawings. FIG. 4 is an explanatory view of the ultrasonic flaw detection method for a heterogeneous material of the present invention.
Independent pulse generators 2 are connected to transmitting / receiving elements 1 arranged one-dimensionally as shown in FIG. 1 or two-dimensionally as shown in FIG. 5, and the same trigger signal generator 3 is connected to a digital variable delay circuit 4 and A trigger pulse is input to the pulse generator 2 via the phase correction delay circuit 5. The trigger signal generator 3 repeatedly emits a trigger pulse at a constant cycle. The variable delay circuit 4 delays the ultrasonic wave emitted from each transmitting / receiving element 1 so that the ultrasonic wave incident on the test body 6 is focused at a predetermined depth if the test body 6 is homogeneous. A trigger pulse is applied to each transmitting / receiving element 1. The delay amount of each variable delay circuit 4 is controlled by a digital amount calculated by a computer so that the focusing condition is satisfied.

【0012】位相補正遅延回路5は超音波の振動数をn
とするとき、±1/(2n)秒以下の遅延量をランダム
に発生して、可変遅延回路4から出力され、位相補正遅
延回路5に入力するトリガーパルスに更にこのランダム
な遅延時間を与えて、これをパルス発生器2に印加す
る。パルス発生器2はトリガーパルスを受けて、例えば
1〜10MHzの超音波発生用高周波パルスを送受信素子
1に印加する。
The phase correction delay circuit 5 changes the frequency of ultrasonic waves to n.
Then, a delay amount of ± 1 / (2n) seconds or less is randomly generated, and the random delay time is further given to the trigger pulse output from the variable delay circuit 4 and input to the phase correction delay circuit 5. , Which is applied to the pulse generator 2. The pulse generator 2 receives the trigger pulse and applies, for example, a high frequency pulse for ultrasonic wave generation of 1 to 10 MHz to the transmitting / receiving element 1.

【0013】2次元アレイ形探触子は送受信素子1を格
子状に配列したもの、同心円状に配列したもの等が用い
られる。どちらの場合も探触子7の中心からの距離に応
じて、可変遅延回路4の遅延時間を制御して、試験体6
がその超音波伝播速度が全体として試験体6全体の平均
値に略等しい均質な試験体であると仮定した場合に、多
数の各送受信素子1から発射される超音波の波の先端の
包絡面が球面状に進行して、超音波が試験体6内の所定
の深さの一点に集束するように遅延時間を制御する。例
えば試験体6表面から超音波ビームの焦点迄の深さを
H、焦点から各送受信素子1までの水平距離をD、試験
体内の平均の超音波伝播速度をVとすると、各送受信素
子1の可変遅延回路4の遅延時間Tは、 T=T0 −((H2 +D2 1/2 −H)/V となるように制御する。但しT0 は各可変遅延回路4の
遅延時間のうちの最大の遅延時間に相当する定数であ
る。
As the two-dimensional array type probe, the one in which the transmitting / receiving elements 1 are arranged in a lattice, the one in which they are concentrically arranged, or the like is used. In either case, the delay time of the variable delay circuit 4 is controlled according to the distance from the center of the probe 7,
Is a homogeneous test body whose ultrasonic wave propagation velocity is approximately equal to the average value of the entire test body 6 as a whole, the envelope surface of the tip of the wave of the ultrasonic waves emitted from a large number of transmission / reception elements 1 Travels spherically, and the delay time is controlled so that the ultrasonic waves are focused on one point of a predetermined depth in the test body 6. For example, assuming that the depth from the surface of the test body 6 to the focal point of the ultrasonic beam is H, the horizontal distance from the focal point to each transmitting / receiving element 1 is D, and the average ultrasonic wave propagation velocity in the test body is V, each transmitting / receiving element 1 delay time T of the variable delay circuit 4, T = T 0 - controlled to be ((H 2 + D 2) 1/2 -H) / V. However, T 0 is a constant corresponding to the maximum delay time of the delay times of the variable delay circuits 4.

【0014】上記の各実施例では分かりやすく説明する
ために、可変遅延回路4と位相補正遅延回路5を独立に
設け、両遅延回路を直列に配列して示したが、実際には
可変遅延回路4のみを設け、その可変の遅延時間を制御
するデジタル信号として、均質材の場合に1点に集束す
る遅延時間に応じたデジタル量に更にランダムな位相補
正遅延時間に応じたデジタル量を加算したデジタル量を
用い、これを制御信号として可変遅延回路4に入力し
て、可変遅延回路4の遅延時間を制御するのが望まし
い。そうすれば可変遅延回路4のみで前記と同じ遅延時
間の制御を行うことができる。
In each of the above embodiments, the variable delay circuit 4 and the phase correction delay circuit 5 are independently provided and both delay circuits are arranged in series for the sake of easy understanding, but in reality, the variable delay circuit is shown. 4 is provided, and as a digital signal for controlling the variable delay time, in the case of a homogeneous material, a digital amount corresponding to the delay time focused on one point is further added to a digital amount corresponding to the random phase correction delay time. It is desirable to control the delay time of the variable delay circuit 4 by using a digital amount and inputting this as a control signal to the variable delay circuit 4. Then, the variable delay circuit 4 alone can control the same delay time as described above.

【0015】トリガー信号発生器3から発生する1つの
トリガーパルスにより、各送受信素子1から、一点に集
束するように計算された遅延時間にランダムな位相補正
遅延時間を加えた遅延時間で順次超音波を発射する。試
験体6内部からの反射波を送受信素子1で受信して検出
する。トリガー信号発生器3から一定の周期で極めて多
数回トリガーパルスを発生し、各トリガーパルス毎に一
点に集束するように各送受信素子1毎に計算された遅延
時間と各送受信素子1毎に異なるランダムな遅延時間の
和に等しい遅延時間を与える。送受信素子1で検出した
信号を記憶し、一定回数の極めて多数回(例えば数百
回)異なるランダムな位相補正遅延時間を与えて、各送
受信素子1から超音波を発射し、各送受信素子1で反射
波を受信し、この受信波を重ね合わせて加算し、エコー
を観測する。検出したエコーを記憶しておき、多数回の
試験で検出したエコーのうち最大のエコーについて、ト
リガーパルス発射からそのエコーの検出までの時間と、
エコーの強度を記録し、オシロスコープ等の表示装置上
に表示して読み取ることにより、その試験個所から欠陥
までの距離(深さ)と欠陥の程度を知ることができる。
試験位置を順次少しずつ移動して試験体表面を走査する
ことにより試験体内の欠陥の存在とその位置を検出する
ことができる。
With a single trigger pulse generated from the trigger signal generator 3, ultrasonic waves are sequentially transmitted from each transmitting / receiving element 1 at a delay time calculated by adding a random phase correction delay time to the delay time calculated so as to focus on one point. Fire. The reflected wave from the inside of the test body 6 is received and detected by the transmission / reception element 1. The trigger signal generator 3 generates a trigger pulse a very large number of times at a constant cycle, and a delay time calculated for each transmission / reception element 1 so that each trigger pulse is focused to one point and a random number different for each transmission / reception element 1 Gives a delay time equal to the sum of all delay times. The signals detected by the transmission / reception elements 1 are stored, given a random number of times of random phase correction that are different a certain number of times (for example, several hundred times), and each transmission / reception element 1 emits an ultrasonic wave. The reflected waves are received, the received waves are superimposed and added, and the echo is observed. The detected echo is stored in memory, and for the largest echo among the echoes detected in many tests, the time from the trigger pulse emission to the detection of that echo,
By recording the intensity of the echo, displaying it on a display device such as an oscilloscope, and reading it, the distance (depth) from the test point to the defect and the degree of the defect can be known.
By moving the test position little by little and scanning the surface of the test body, it is possible to detect the presence and position of a defect in the test body.

【0016】上記説明では、位相補正遅延時間は各送受
信素子1にどのような遅延時間を与える組合せが最適か
は予め全く不明であるから、その位相補正遅延時間の組
合せをランダムに選択して、極めて多数回超音波の送受
信を繰り返すことにより、最適な位相補正遅延時間の組
合せを見出す方法を説明したが、実際には、この方法で
最適組合せを見出すのは、アレイ形探触子の送受信素子
1の数が10〜20個程度の数であっても、天文学的回
数の試行が必要となり、能率がよくない。
In the above description, it is completely unknown in advance what kind of combination of the phase correction delay times is given to each transmitting / receiving element 1, so that the combination of the phase correction delay times is selected at random. Although the method of finding the optimum combination of phase correction delay times by repeating the transmission and reception of ultrasonic waves a very large number of times has been described, in reality, the optimum combination is found by the transmitting and receiving elements of the array type probe. Even if the number of 1 is about 10 to 20, it is necessary to try the astronomical number of times and the efficiency is not good.

【0017】そのため最適組合せを見出すための手法と
して、この種の最適組合せを能率よく求めるための公知
のあらゆる実験計画法を適用することができる。例えば
アレイ形探触子の複数の送受信素子を幾つかの群に区分
し、その群のうち1つの群に属する送受信素子1につい
てのみ、その位相補正遅延時間を±1/(2n)秒の範
囲でランダムに設定し、他の群の送受信素子1の位相補
正遅延時間は固定したままで試験をして、ランダムに設
定した群についてのみ、最適位相補正遅延時間の組合せ
を求め、この操作を順次各群について行い、全体として
暫定的な最適組合せを求め、これを更に何度も繰り返す
ことにより、最終的に全体として最も最適な組合せを求
めることができる。
Therefore, as a method for finding the optimum combination, any known experimental design method for efficiently obtaining this kind of optimum combination can be applied. For example, a plurality of transmitting / receiving elements of the array type probe are divided into several groups, and only for the transmitting / receiving elements 1 belonging to one group of the groups, the phase correction delay time is within a range of ± 1 / (2n) seconds. , The phase correction delay time of the transmission / reception elements 1 of the other groups is fixed and the test is performed. Only for the randomly set groups, the optimum phase correction delay time combination is obtained, and this operation is sequentially performed. It is possible to finally obtain the most optimal combination as a whole by performing each group, obtaining a temporary optimal combination as a whole, and repeating this many times.

【0018】またランダムな位相補正遅延時間は、完全
にランダムに設定するのではなく、±1/(2n)秒の
範囲で複数の水準を等間隔に設定し、その水準のうちの
どれかをランダムに選択する方法を用いるのが望まし
い。例えばmを自然数とするとき、水準の数を2m+1
とする場合は、+m/(2mn)、+(m−1)/(2
mn)、+(m−2)/(2mn)、・・・・・、+1
/(2mn)、0、−1/(2mn)、−2/(2m
n)、・・・・・−m/(2mn)秒のように等間隔に
2m+1個の水準の位相補正遅延時間を設定する。この
ように設定した水準からランダムに位相補正遅延時間を
選択して設定すると、最適値の組合せを見出すための繰
り返し試験回数を少なくすることができる。
The random phase correction delay time is not set completely at random, but a plurality of levels are set at equal intervals within a range of ± 1 / (2n) seconds, and one of the levels is set. It is desirable to use a random selection method. For example, when m is a natural number, the number of levels is 2m + 1
In case of, + m / (2mn), + (m-1) / (2
mn), + (m-2) / (2mn), ..., +1
/ (2mn), 0, -1 / (2mn), -2 / (2m
n), ..., 2m + 1 levels of phase correction delay time are set at equal intervals such as −m / (2mn) seconds. If the phase correction delay time is randomly selected and set from the levels thus set, it is possible to reduce the number of repeated tests for finding the optimum value combination.

【0019】最適組合せを見出す他の方法の例として次
のような方法を用いることもできる。先ずアレイ形探触
子の複数の送受信素子を2つの群に区分し、その一方の
群の全ての送受信素子の位相補正遅延時間を同じ値に固
定したままで、他方の群の全ての送受信素子の位相補正
遅延時間を同じ遅延時間に保ちながら、その全部の遅延
時間を一斉に±1/(2n)秒の範囲で一定間隔で少し
ずつ変えて、受信されるエコーが最も大きくなる遅延時
間を見つける。次にいま最適遅延時間を見つけた方の群
の遅延時間はその最適値に固定したままで、他方の群に
ついて同様にその群の全ての送受信素子について遅延時
間を同一に保ちながら一斉に±1/(2n)秒の間で一
定間隔で少しずつ変えて、受信されるエコーが最も大き
くなる遅延時間を見つける。これで第1段階が終了す
る。次にその送受信素子の各群を更に2つの群に分割
し、合計4つの群に分け、その3つの群については先に
見つけた最適遅延時間に固定したままで残りの1つの群
について、先と同様にその群の全送受信素子についてそ
の群の全ての送受信素子の遅延時間を同一に保ちながら
一斉に±1/(2n)秒の範囲で一定間隔で少しずつ変
えて、受信されるエコーが最も大きくなる遅延時間を見
つけその遅延時間に固定する。今度は他の3つの群の1
つについて同様に一斉に遅延時間を少しずつ変えて、最
適値を見つけその値に固定する。次いで残りの2つの群
のうち1つについて同様に一斉に遅延時間を少しずつ変
えて、最適値を見つけその値に固定する。最後に残りの
1つの群について同様に少しずつ一斉に遅延時間を変え
て最適値に固定する。これで第2段階が終了する。次に
上記4つの群を更にそれぞれ2つの群に分割して合計8
つの群に分け、7つの群の遅延時間は固定したままで、
1つの群について上と同様に一斉に少しずつ遅延時間を
変えて最適値に固定する。・・・・この様な操作を続け
る。各段階毎に次々に群を1/2ずつに分割して、群の
数を2、4、8、16というように増やして、同様な操
作を繰り返し、最後には、各群が1つの送受信素子によ
り構成されるまで繰り返す。上記の方法で各段階で各群
の遅延時間を一回づつ走査しただけでは、他の群の遅延
時間を変えた時に、その影響によりすでに最適遅延時間
を探して固定した群の遅延時間の最適値が変化している
可能性があるので、各段階で各群について遅延時間を1
回だけ走査するのではなく、順繰りに複数回各群を廻る
ように、各群について複数回遅延時間の走査を繰り返す
こともできる。
As another example of the method of finding the optimum combination, the following method can be used. First, a plurality of transmission / reception elements of the array type probe are divided into two groups, and the phase correction delay time of all the transmission / reception elements of one group is fixed to the same value, while all the transmission / reception elements of the other group are fixed. While maintaining the same phase correction delay time, the total delay time is changed all at once at a fixed interval within a range of ± 1 / (2n) seconds to set the delay time at which the received echo becomes the largest. locate. Next, the delay time of the group that has just found the optimum delay time remains fixed at that optimum value, and the same delay time is maintained for all the transmission / reception elements of the other group in the same manner within ± 1. By gradually changing at regular intervals during / (2n) seconds, the delay time at which the received echo becomes maximum is found. This completes the first stage. Next, each group of the transmission / reception elements is further divided into two groups, into a total of four groups, and the three groups are fixed to the optimum delay time found earlier, and the remaining one group is Similarly, for all the transmission / reception elements of the group, the echoes received by changing all the transmission / reception elements of the group at the same time gradually at a constant interval within ± 1 / (2n) seconds while keeping the same delay time. Find the largest delay time and fix it. Now one of the other three groups
In the same way, the delay time is changed little by little in the same way, and the optimum value is found and fixed to that value. Then, the delay time is gradually changed all at once for one of the remaining two groups, and the optimum value is found and fixed to that value. Finally, for the remaining one group, the delay time is similarly changed little by little and fixed to the optimum value. This completes the second stage. Next, each of the above four groups is further divided into two groups for a total of 8
Divided into 1 group, the delay time of 7 groups remains fixed,
For one group, the delay time is gradually changed all at once and fixed to the optimum value as in the above. .... Continue this kind of operation. Each group is divided into halves one after another, the number of groups is increased to 2, 4, 8, 16 and the same operation is repeated. Finally, each group has one transmission / reception. Repeat until configured with elements. By scanning the delay time of each group once at each stage by the above method, when the delay time of other groups is changed, the optimum delay time of the fixed group is already searched for by finding the optimum delay time due to its influence. Since the value may have changed, delay time is set to 1 for each group at each stage.
Instead of scanning only once, it is also possible to repeat the scanning of the delay time for each group a plurality of times so that each group is sequentially rotated a plurality of times.

【0020】超音波探触子7を試験体6表面に沿って機
械的に順次移動走査しつつ探傷を行う。管の環状溶接部
を探傷する場合には溶接部に沿って環状のガイドを設
け、ガイド上を自動的に探触子7が移動するようにする
ことができる。
The ultrasonic probe 7 is mechanically sequentially moved and scanned along the surface of the test body 6 to detect flaws. When flaw detection is performed on an annular welded portion of a pipe, an annular guide can be provided along the welded portion, and the probe 7 can be automatically moved on the guide.

【0021】[0021]

【作用】本発明の不均質材の超音波探傷法によれば、ア
レイ形探触子の送受信素子1から欠陥まで超音波が往復
する伝播経路の材質が、試験体の不均質性により、不均
一なため、超音波の伝播速度が異なり、均一な材質であ
れば、欠陥部分に焦点を結び且つ揃った位相の反射波が
各送受信素子1に戻ってくるような条件で超音波を発射
しても、途中の超音波伝播媒体の不均質性により、各送
受信素子1に戻る反射波の位相がずれてしまう。各送受
信素子1からの超音波入射時に、種々の位相補正遅延時
間を与えて試みることにより、その受信超音波の位相が
揃うような位相補正遅延時間の最適な組合せを選択する
ことができ、その結果試験体の材質の不均一があって
も、これによる反射波の位相を揃えるように補正をし
て、欠陥からのエコーを明瞭に観測することができる。
According to the ultrasonic flaw detection method for a heterogeneous material of the present invention, the material of the propagation path through which the ultrasonic waves reciprocate from the transmitting / receiving element 1 of the array type probe to the defect is not uniform due to the heterogeneity of the test piece. Since they are uniform, the propagation speed of ultrasonic waves is different, and if they are made of a uniform material, ultrasonic waves are emitted under the condition that the reflected waves having a focused phase on the defective portion and returning to each transmitting / receiving element 1 are returned. However, the phase of the reflected wave returning to each transmission / reception element 1 is shifted due to the inhomogeneity of the ultrasonic wave propagation medium in the middle. By giving various phase correction delay times and attempting to input the ultrasonic waves from each transmitting / receiving element 1, it is possible to select the optimum combination of the phase correction delay times such that the phases of the received ultrasonic waves are aligned. As a result, even if there is unevenness in the material of the test body, it is possible to make a correction so that the phases of the reflected waves due to the unevenness are made uniform, and to clearly observe the echo from the defect.

【0022】[0022]

【発明の効果】本発明の超音波による不均質材の超音波
探傷法によれば、高減衰能材や遠心鋳造管のような不均
質材質の試験体であっても、精密な探傷を行うことがで
きる。
EFFECTS OF THE INVENTION According to the ultrasonic flaw detection method for inhomogeneous materials by ultrasonic waves of the present invention, precise flaw detection can be performed even on a test piece made of an inhomogeneous material such as a high attenuation material or a centrifugal casting pipe. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】1次元アレイ形探触子の一例の斜視図である。FIG. 1 is a perspective view of an example of a one-dimensional array type probe.

【図2】1次元アレイ形探触子の電子走査原理図であ
る。
FIG. 2 is a diagram illustrating an electronic scanning principle of a one-dimensional array type probe.

【図3】1次元アレイ形探触子からの超音波ビームの集
束法の原理図である。
FIG. 3 is a principle diagram of a method of focusing an ultrasonic beam from a one-dimensional array type probe.

【図4】本発明の不均質材の超音波探傷法の説明図であ
る。
FIG. 4 is an explanatory diagram of an ultrasonic flaw detection method for a heterogeneous material of the present invention.

【図5】2次元アレイ形探触子の一例の斜視図である。FIG. 5 is a perspective view of an example of a two-dimensional array type probe.

【符号の説明】[Explanation of symbols]

1 送受信素子 2 パルス発生器 3 トリガー信号発生器 4 可変遅延回路 5 位相補正遅延回路 6 試験体 7 探触子 1 Transmitting / receiving element 2 Pulse generator 3 Trigger signal generator 4 Variable delay circuit 5 Phase correction delay circuit 6 Specimen 7 Probe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】線状又は面状に多数の超音波送受信素子を
配列してなるアレイ形探触子の各送受信素子から発射し
た超音波ビームが、均質な媒体中では一点に集束するよ
うに各送受信素子に異なる遅延時間を与えて、順次各送
受信素子から位相を少しずつずらした超音波を試験体内
に発射し、その反射波を受信することを多数回繰り返す
超音波探傷法において、発射する超音波の振動数をnと
したとき、各送受信素子の該遅延時間に更に各送受信素
子毎に且つ発射毎に異なる±1/(2n)秒以内の位相
補正遅延時間を加算した遅延時間を与えて各送受信素子
より超音波を不均質試験体中に発射して反射波を各送受
信素子で受信して各送受信素子の受信波を加算し、加算
して得られたエコー信号を多数回の超音波発射について
記憶し、そのエコー信号が最大となる位相補正遅延時間
の組合せを選択し、その遅延時間の組合せで得られたエ
コーより欠陥を見出し、探傷性能を向上させることを特
徴とする不均質材の超音波探傷法。
1. An ultrasonic beam emitted from each transmitting / receiving element of an array type probe in which a large number of ultrasonic transmitting / receiving elements are arranged linearly or in a plane form so as to converge at one point in a homogeneous medium. By giving different delay times to each transmitting and receiving element, sequentially emitting ultrasonic waves whose phases are slightly shifted from each transmitting and receiving element into the test body, and emitting in the ultrasonic flaw detection method in which the reflected wave is repeated many times When the frequency of ultrasonic waves is n, a delay time is added to the delay time of each transmission / reception element and a phase correction delay time within ± 1 / (2n) seconds, which is different for each transmission / reception element and for each emission. Then, ultrasonic waves are emitted from each transmitting / receiving element into the inhomogeneous test body, reflected waves are received by each transmitting / receiving element, the received waves of each transmitting / receiving element are added, and the echo signal obtained by adding is echoed over multiple times. Memorize about sound wave emission, its eco Signal selects the combination of the maximum phase correction delay time, finding the defect from the obtained echo combination of the delay time, ultrasonic flaw detection method of heterogeneous material, characterized in that to improve the flaw detection performance.
【請求項2】該探触子を試験体表面に沿って移動して、
走査する請求項1記載の不均質材の超音波探傷法。
2. The probe is moved along the surface of the test body,
The ultrasonic flaw detection method for a heterogeneous material according to claim 1, wherein scanning is performed.
【請求項3】該不均質試験体が高減衰能材又は遠心鋳造
管である請求項1記載の不均質材の超音波探傷法。
3. The ultrasonic flaw detection method for a heterogeneous material according to claim 1, wherein the heterogeneous specimen is a high damping material or a centrifugal casting tube.
JP6270646A 1994-10-07 1994-10-07 Ultrasonic flaw detecting method for heterogeneous material Pending JPH08110327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6270646A JPH08110327A (en) 1994-10-07 1994-10-07 Ultrasonic flaw detecting method for heterogeneous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270646A JPH08110327A (en) 1994-10-07 1994-10-07 Ultrasonic flaw detecting method for heterogeneous material

Publications (1)

Publication Number Publication Date
JPH08110327A true JPH08110327A (en) 1996-04-30

Family

ID=17488995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270646A Pending JPH08110327A (en) 1994-10-07 1994-10-07 Ultrasonic flaw detecting method for heterogeneous material

Country Status (1)

Country Link
JP (1) JPH08110327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263780A (en) * 2006-03-29 2007-10-11 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and device
JP2008151543A (en) * 2006-12-14 2008-07-03 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and ultrasonic flaw detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263780A (en) * 2006-03-29 2007-10-11 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and device
JP4644621B2 (en) * 2006-03-29 2011-03-02 株式会社日立エンジニアリング・アンド・サービス Ultrasonic inspection method and ultrasonic inspection apparatus
JP2008151543A (en) * 2006-12-14 2008-07-03 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and ultrasonic flaw detection method

Similar Documents

Publication Publication Date Title
US10895557B2 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
RU2682983C1 (en) Ultrasonic flaw detector, method of ultrasound flaw detection and method of production
JP6989416B2 (en) Linear scan ultrasonic flaw detector and linear scan ultrasonic flaw detector method
WO1993015415A1 (en) Ultrasonic imaging system and method with focusing correction
JP2005121660A (en) Two-dimensional phased array for volume ultrasonic inspection and method for using the same
PL211835B1 (en) Ultrasound sensor for non-destructive control of metallurgical products
WO1991002247A1 (en) Ultrasonic inspection apparatus
US3895339A (en) Acoustic camera apparatus
CN1199862A (en) Method and device for processing signals representative of waves reflected, transmitted or refracted by volume structure with view to exploring and analyzing this structure
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
CN113994204B (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JPH08110327A (en) Ultrasonic flaw detecting method for heterogeneous material
JPS6326343B2 (en)
US6640633B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JPH06237930A (en) Ultrasonic diagnostic device
JPS59126952A (en) Ultrasonic flaw detection of round bar
JP2008298454A (en) Ultrasonic flaw inspection device and method
JP2001228128A (en) Sizing ultrasonic flaw detector and sizing flaw detecting method
JPH09133657A (en) Method and apparatus for ultrasonic flaw detection
Shulgina et al. Method of processing data of acoustic array
RU2799111C1 (en) Ultrasonic tomography device
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JP2612890B2 (en) Ultrasonic flaw detection method
Bardouillet Application of electronic focussing and scanning systems to ultrasonic testing