JPH08110120A - Refrigerant evaporator - Google Patents

Refrigerant evaporator

Info

Publication number
JPH08110120A
JPH08110120A JP24507894A JP24507894A JPH08110120A JP H08110120 A JPH08110120 A JP H08110120A JP 24507894 A JP24507894 A JP 24507894A JP 24507894 A JP24507894 A JP 24507894A JP H08110120 A JPH08110120 A JP H08110120A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchange
passage
tank
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24507894A
Other languages
Japanese (ja)
Other versions
JP3635689B2 (en
Inventor
Etsuo Hasegawa
恵津夫 長谷川
Toshiya Nagasawa
聡也 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24507894A priority Critical patent/JP3635689B2/en
Publication of JPH08110120A publication Critical patent/JPH08110120A/en
Application granted granted Critical
Publication of JP3635689B2 publication Critical patent/JP3635689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To improve the heat exchange performance of a subsidiary heat exchange part executing heat exchange between refrigerants, in a stacked type refrigerant evaporator which has a main heat exchange part executing heat exchange between the refrigerant and air and the subsidiary heat exchange part. CONSTITUTION: On the side of one end part of a metal thin plate 8c constituting an inlet-side refrigerant passage and an outlet-side refrigerant passage 8b of a subsidiary heat exchange part, an inlet-side tank 8f into which a gas refrigerant from the outlet side of the refrigerant passage of a main heat exchange part flows is formed, while a large number of branch passages 8b-1 to 8b-10 are formed in juxtaposition in the outlet-side refrigerant passage 8b, and a refrigerant bypass passage 8m positioned on the outer edge side of a relay tank 8i is formed additionally between the branch passages and the inlet-side tank 8f so as to increase the flow rate of the refrigerant on the side of the branch passages 8b-1 to 8b-5 into which the refrigerant does not flow smoothly. Thereby the whole of the heat transfer area of the metal thin plate 8c is used effectively and the heat exchange performance of the subsidiary heat exchange part is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷媒通路を金属薄板の積
層構造により形成する積層型の冷媒蒸発器に関するもの
で、特に冷媒通路内を流れる内部冷媒同志で熱交換を行
う副熱交換部を有する積層型の冷媒蒸発器に関するもの
であり、自動車用空調装置の冷凍サイクルの冷媒蒸発器
として好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated refrigerant evaporator in which a refrigerant passage is formed by a laminated structure of thin metal plates, and in particular, an auxiliary heat exchange portion for exchanging heat between internal refrigerants flowing in the refrigerant passage. The present invention relates to a laminated refrigerant evaporator having the same, and is suitable as a refrigerant evaporator for a refrigeration cycle of an automobile air conditioner.

【0002】[0002]

【従来の技術】本出願人は、特開平5−196321号
公報において、冷媒通路内を流れる内部冷媒同志で熱交
換を行う副熱交換部を有する積層型の冷媒蒸発器を提案
している。上記公報記載のものは、通常の冷媒−空気間
の熱交換をおこなう主熱交換部の他に、蒸発器入口側の
冷媒と蒸発器出口側の冷媒とを熱交換させて、主熱交換
部の入口タンク内に流入する冷媒の乾き度を小さくす
る、副熱交換部(冷媒−冷媒熱交換部)を設けている。
2. Description of the Related Art The applicant of the present invention has proposed, in Japanese Patent Laid-Open No. 5-196321, a laminated refrigerant evaporator having a sub heat exchange portion for exchanging heat between internal refrigerants flowing in a refrigerant passage. The one described in the above publication is a main heat exchange part that heat-exchanges the refrigerant on the evaporator inlet side and the refrigerant on the evaporator outlet side in addition to the main heat exchange part for performing heat exchange between normal refrigerant and air. An auxiliary heat exchange section (refrigerant-refrigerant heat exchange section) is provided to reduce the dryness of the refrigerant flowing into the inlet tank.

【0003】この副熱交換部の作用により主熱交換部の
入口タンク内に流入する冷媒の乾き度を大幅に小さくし
て、入口タンク内における冷媒が液単相に近い状態にす
ることにより、入口タンクから多数のチューブに冷媒を
分配する際に、各チューブに均一に液冷媒を分配でき
る。しかも、各チューブ内面が液冷媒で覆われた状態と
なり、チューブ内面での熱伝達率が向上し、これらのこ
とが相まって蒸発器の冷却性能を向上できるものであ
る。
By the action of the auxiliary heat exchange section, the dryness of the refrigerant flowing into the inlet tank of the main heat exchange section is greatly reduced so that the refrigerant in the inlet tank is in a state close to a liquid single phase. When distributing the refrigerant from the inlet tank to many tubes, the liquid refrigerant can be evenly distributed to each tube. Moreover, the inner surface of each tube is covered with the liquid refrigerant, the heat transfer coefficient on the inner surface of the tube is improved, and these factors are combined to improve the cooling performance of the evaporator.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記公報記
載のものは、冷媒通路を構成する金属薄板を積層してろ
う付けにより一体構造に接合して製造されるようになっ
ているが、本発明者らの実験、検討によれば、その製造
に際し、副熱交換部(冷媒−冷媒熱交換部)において
は、冷媒の分配、集合を行う複数のタンク部を同一の金
属薄板に形成しているので、この複数のタンク部の形成
に伴って、冷媒の流れが金属薄板の表面上で偏って流れ
ることが分かった。
By the way, according to the invention described in the above publication, the thin metal plates constituting the refrigerant passages are laminated and joined by brazing to form an integral structure. According to experiments and studies conducted by the present inventors, in manufacturing the same, in the sub heat exchange part (refrigerant-refrigerant heat exchange part), a plurality of tank parts for distributing and collecting the refrigerant are formed on the same thin metal plate. Therefore, it was found that the flow of the refrigerant was unevenly distributed on the surface of the metal thin plate due to the formation of the plurality of tank portions.

【0005】このような冷媒流れの偏りによって、副熱
交換部の伝熱面積を有効に活用できず、熱交換性能が低
下するという問題があった。本発明は上記点に鑑みてな
されたもので、冷媒通路内を流れる冷媒同志で熱交換を
行う副熱交換部を有する積層型の冷媒蒸発器において、
冷媒の流れの偏りを低減して、副熱交換部の熱交換性能
を向上させることを目的とする。
Due to such uneven flow of the refrigerant, there is a problem that the heat transfer area of the sub heat exchange portion cannot be effectively utilized and the heat exchange performance is deteriorated. The present invention has been made in view of the above points, in a laminated refrigerant evaporator having a sub-heat exchange portion that performs heat exchange by the refrigerant flowing in the refrigerant passage,
It is an object of the present invention to reduce the bias of the flow of the refrigerant and improve the heat exchange performance of the sub heat exchange section.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するため、以下の技術的手段を採用する。請求項1記載
の発明では、冷媒通路(7a)内を流れる冷媒と前記冷
媒通路(7a)の外部を流れる被冷却流体とを熱交換さ
せる主熱交換部(7)と、前記主熱交換部(7)の冷媒
通路(7a)の入口側に流入する入口側冷媒と、前記主
熱交換部(7)の冷媒通路(7a)の出口側から流出す
る出口側冷媒とを熱交換させる副熱交換部(8)とを有
し、前記主及び副熱交換部(7、8)の冷媒通路(7
a、8a、8b)は金属薄板(7b、8c)の積層構造
により形成されており、前記副熱交換部(8)には、前
記入口側冷媒が流れる入口側冷媒通路(8a)と、前記
出口側冷媒が流れる出口側冷媒通路(8b)が前記金属
薄板(8c)の表裏両側に交互に形成されており、前記
副熱交換部(8)の前記金属薄板(8c)の一端部側
に、前記主熱交換部(7)の冷媒通路(7a)の出口側
から流出する出口側冷媒を前記出口側冷媒通路(8b)
に流入させる入口側タンク(8f)が形成されており、
また前記副熱交換部(8)の前記金属薄板(8c)の一
端部側には、前記入口側タンク(8f)に隣接して、前
記入口側冷媒通路(8a)の出口側タンク(8e)およ
び中継タンク(8i)が形成されており、前記出口側冷
媒通路(8b)は、前記入口側タンク(8f)から流入
する出口側冷媒が並列に流れる多数の分岐通路(8b−
1〜8b−10)を有しており、前記入口側タンク(8
f)と前記分岐通路(8b−1〜8b−10)との間の
冷媒流路は、前記出口側タンク(8e)および前記中継
タンク(8i)の部分を除いて、前記金属薄板(8c)
の一端部側の幅方向の略全域にわたって形成されている
冷媒蒸発器を特徴としている。
In order to achieve the above object, the present invention employs the following technical means. In the invention according to claim 1, the main heat exchange part (7) for exchanging heat between the refrigerant flowing in the refrigerant passage (7a) and the cooled fluid flowing outside the refrigerant passage (7a), and the main heat exchange part. Sub heat for exchanging heat between the inlet side refrigerant flowing into the inlet side of the refrigerant passage (7a) of (7) and the outlet side refrigerant flowing out of the outlet side of the refrigerant passage (7a) of the main heat exchange section (7). An exchange part (8) and a refrigerant passage (7) of the main and auxiliary heat exchange parts (7, 8).
a, 8a, 8b) is formed by a laminated structure of thin metal plates (7b, 8c), and the auxiliary heat exchange section (8) has an inlet side refrigerant passage (8a) through which the inlet side refrigerant flows, and The outlet side refrigerant passages (8b) through which the outlet side refrigerant flows are alternately formed on both front and back sides of the metal thin plate (8c), and at one end side of the metal thin plate (8c) of the sub heat exchange section (8). The outlet side refrigerant flowing out from the outlet side of the refrigerant passage (7a) of the main heat exchange part (7) is transferred to the outlet side refrigerant passage (8b).
An inlet side tank (8f) is formed to let
Further, on one end side of the thin metal plate (8c) of the sub heat exchange section (8), adjacent to the inlet side tank (8f), the outlet side tank (8e) of the inlet side refrigerant passageway (8a). And a relay tank (8i) are formed, and the outlet side refrigerant passage (8b) has a large number of branch passages (8b-) in which the outlet side refrigerant flowing from the inlet side tank (8f) flows in parallel.
1-8b-10), and the inlet side tank (8
The coolant flow path between the f) and the branch passages (8b-1 to 8b-10) has the metal thin plate (8c) except for the outlet side tank (8e) and the relay tank (8i).
Is characterized in that the refrigerant evaporator is formed over substantially the entire width direction on the one end side.

【0007】請求項2記載の発明では、請求項1に記載
の冷媒蒸発器において、前記金属薄板(8c)の一端部
側の幅方向において、前記出口側タンク(8e)が略中
央部に位置し、前記入口側タンク(8f)が一方の端部
に位置し、前記中継タンク(8i)が他方の端部に位置
しており、前記入口側タンク(8f)と前記分岐通路
(8b−1〜8b−10)との間の冷媒流路が、前記幅
方向において前記出口側タンク(8e)および前記中継
タンク(8i)のそれぞれ両側に形成されていることを
特徴とする。
According to a second aspect of the present invention, in the refrigerant evaporator according to the first aspect, the outlet side tank (8e) is located at a substantially central portion in the width direction on the one end side of the thin metal plate (8c). However, the inlet side tank (8f) is located at one end, the relay tank (8i) is located at the other end, the inlet side tank (8f) and the branch passage (8b-1). To 8b-10), the refrigerant flow paths are formed on both sides of the outlet side tank (8e) and the relay tank (8i) in the width direction.

【0008】なお、上記各手段の括弧内の符号は、後述
する実施例記載の具体的手段との対応関係を示すもので
ある。
The reference numerals in parentheses of the above-mentioned means indicate the correspondence with the concrete means described in the embodiments described later.

【0009】[0009]

【発明の作用効果】請求項1、2記載の発明によれば、
上記技術的手段を有しているため、主熱交換部(7)の
冷媒通路(7a)の出口側から流出する出口側冷媒を入
口側タンク(8f)から出口側冷媒通路(8b)の多数
の分岐通路(8b−1〜8b−10)に流入させると
き、出口側タンク(8e)および中継タンク(8i)の
部分を除いて、金属薄板(8c)の一端部側の幅方向の
略全域にわたって形成された流路を通して、多数の分岐
通路(8b−1〜8b−10)に流入させることができ
る。
According to the inventions of claims 1 and 2,
Due to having the above technical means, the outlet side refrigerant flowing out from the outlet side of the refrigerant passage (7a) of the main heat exchange part (7) is supplied from the inlet side tank (8f) to the outlet side refrigerant passages (8b). When flowing into the branch passages (8b-1 to 8b-10) of the metal thin plate (8c), substantially the entire widthwise direction of the one end portion except the outlet tank (8e) and the relay tank (8i). A large number of branch passages (8b-1 to 8b-10) can be caused to flow through the flow passage formed over.

【0010】そのため、この多数の分岐通路(8b−1
〜8b−10)に流入する冷媒流量の偏りを僅少にでき
る。これにより、金属薄板(8c)の伝熱面積全体を有
効に活用して、出口側冷媒通路(8b)のガス冷媒と、
入口側冷媒通路(8a)内の冷媒(乾き度の小さい気液
2相冷媒)との熱交換を効率よく行うことができ、副熱
交換部(8)の熱交換性能を向上できる。
Therefore, this large number of branch passages (8b-1
8b-10), the deviation of the flow rate of the refrigerant flowing in can be minimized. As a result, the entire heat transfer area of the thin metal plate (8c) is effectively utilized, and the gas refrigerant in the outlet side refrigerant passage (8b) is
The heat exchange with the refrigerant (gas-liquid two-phase refrigerant having a low degree of dryness) in the inlet side refrigerant passageway (8a) can be efficiently performed, and the heat exchange performance of the sub heat exchange section (8) can be improved.

【0011】[0011]

【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明による冷媒蒸発器を適用した自動車
用空調装置の冷凍サイクルを示しており、1は圧縮機
で、電磁クラッチ2を介して自動車用エンジン(駆動
源、図示せず)により駆動されるものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigeration cycle of an automobile air conditioner to which a refrigerant evaporator according to the present invention is applied. Reference numeral 1 denotes a compressor, which is driven by an automobile engine (driving source, not shown) via an electromagnetic clutch 2. It is something.

【0012】3は凝縮器で、圧縮機1から吐出された高
温、高圧のガス冷媒を冷却ファン(図示せず)の送風空
気と熱交換して冷却し、凝縮するものである。4は凝縮
器3で凝縮した液冷媒を溜めて液冷媒のみをサイクル下
流側へ導出する受液器、5は冷媒の減圧手段を構成する
温度作動式膨張弁で、5aはその感温筒である。6は本
発明による積層型の冷媒蒸発器である。
Reference numeral 3 denotes a condenser, which cools and condenses the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 by exchanging heat with the air blown by a cooling fan (not shown). Reference numeral 4 is a liquid receiver for accumulating the liquid refrigerant condensed in the condenser 3 and discharging only the liquid refrigerant to the downstream side of the cycle. Reference numeral 5 is a temperature-operated expansion valve that constitutes a pressure reducing means for the refrigerant. is there. Reference numeral 6 is a laminated refrigerant evaporator according to the present invention.

【0013】この蒸発器6は、冷媒通路7a内を流れる
冷媒と前記冷媒通路7aの外部を流れる空調用送風空気
(被冷却流体)とを熱交換させる主熱交換部7と、この
主熱交換部7の冷媒通路7aの入口側に流入する冷媒
と、前記主熱交換部7の冷媒通路7aの出口側から流出
する冷媒とを熱交換させる副熱交換部8とを有してい
る。
The evaporator 6 has a main heat exchange section 7 for exchanging heat between the refrigerant flowing in the refrigerant passage 7a and the air-conditioning blast air (fluid to be cooled) flowing outside the refrigerant passage 7a, and the main heat exchange. It has a sub-heat exchange section 8 for exchanging heat between the refrigerant flowing into the inlet side of the refrigerant passage 7a of the section 7 and the refrigerant flowing out from the outlet side of the refrigerant passage 7a of the main heat exchange section 7.

【0014】ここで、副熱交換部8において、8aは前
記主熱交換部7の冷媒通路7aの入口側に流入する冷媒
が流れる入口側冷媒通路を示し、8bは前記主熱交換部
7の冷媒通路7aの出口側から流出する冷媒が流れる出
口側冷媒通路を示す。従って、副熱交換部8は冷媒−冷
媒熱交換部を構成することになる。一方、主熱交換部7
は送風空気から冷媒が吸熱して蒸発する冷媒蒸発部(冷
媒−空気熱交換部)を構成することになる。
Here, in the sub heat exchange section 8, reference numeral 8a denotes an inlet side refrigerant passage through which the refrigerant flowing into the inlet side of the refrigerant passage 7a of the main heat exchange section 7 flows, and 8b denotes the main heat exchange section 7. The outlet side refrigerant passage through which the refrigerant flowing out from the outlet side of the refrigerant passage 7a flows is shown. Therefore, the sub heat exchange section 8 constitutes a refrigerant-refrigerant heat exchange section. On the other hand, the main heat exchange section 7
Constitutes a refrigerant evaporating section (refrigerant-air heat exchange section) in which the refrigerant absorbs heat from the blown air and evaporates.

【0015】9は副熱交換部8の入口側冷媒通路8aと
主熱交換部7の冷媒通路7aの入口部との間に蛇行状に
形成された微小断面積の絞り通路で、一般にキャピラリ
チューブと称されている減圧手段の役割を果たす。但
し、この絞り通路9による減圧度合いは膨張弁5の減圧
度合いよりも小さく設定されており、この絞り通路9は
その上流側と下流側との間に冷媒の圧力差を設けて、副
熱交換部8における入口側冷媒通路8aの冷媒温度と、
出口側冷媒通路8bの冷媒温度との間に、高低の温度差
をつけることにより、両通路8a、8b間の熱交換を良
好に行わせるものである。
Reference numeral 9 is a throttle passage having a small cross-sectional area formed in a meandering shape between the inlet side refrigerant passage 8a of the sub heat exchange portion 8 and the inlet portion of the refrigerant passage 7a of the main heat exchange portion 7, and is generally a capillary tube. Plays the role of decompression means. However, the degree of pressure reduction by the throttle passage 9 is set to be smaller than the degree of pressure reduction of the expansion valve 5, and the throttle passage 9 is provided with a pressure difference of the refrigerant between the upstream side and the downstream side of the throttle valve 9 so that the auxiliary heat exchange is performed. The refrigerant temperature of the inlet side refrigerant passage 8a in the portion 8,
By providing a high and low temperature difference with the refrigerant temperature of the outlet side refrigerant passage 8b, heat exchange between both passages 8a and 8b can be favorably performed.

【0016】10は定圧弁で、冬季の如く冷凍サイクル
熱負荷が著しく低下して、その前後の圧力差が設定値以
下になると、開弁して受液器4からの液冷媒を所定量減
圧して直接主熱交換部7の冷媒通路7aの入口に流入さ
せるものである。冬季の低負荷条件時には、凝縮器3で
の冷媒圧力が低下して、凝縮器3と蒸発器6との間の圧
力差に占める絞り通路9の抵抗が大となって、冷媒流量
が小となる。しかも、車室内空気を循環させる内気循環
モードでは、小流量の冷媒が比較的高温の内気から吸熱
して、主熱交換部7の出口冷媒温度が入口冷媒温度より
高くなってしまうことがある。その結果、副熱交換部8
で、主熱交換部7の出口冷媒により入口側冷媒を加熱す
るという不具合が生じる。
Reference numeral 10 is a constant pressure valve, which opens when the heat load of the refrigeration cycle is remarkably reduced as in winter and the pressure difference before and after that is less than a set value to depressurize the liquid refrigerant from the receiver 4 by a predetermined amount. Then, it is made to flow directly into the inlet of the refrigerant passage 7a of the main heat exchange portion 7. Under low load conditions in winter, the refrigerant pressure in the condenser 3 decreases, and the resistance of the throttle passage 9 in the pressure difference between the condenser 3 and the evaporator 6 becomes large, so that the refrigerant flow rate becomes small. Become. Moreover, in the inside air circulation mode in which the air in the vehicle compartment is circulated, the refrigerant having a small flow rate may absorb heat from the inside air having a relatively high temperature, and the outlet refrigerant temperature of the main heat exchange section 7 may become higher than the inlet refrigerant temperature. As a result, the sub heat exchange section 8
Then, there occurs a problem that the outlet side refrigerant of the main heat exchange section 7 heats the inlet side refrigerant.

【0017】そこで、このような低負荷条件下では、前
記定圧弁10を開弁して、上記不具合の発生を防止する
ようにしてある。前記主及び副熱交換部7、8及び絞り
通路9は金属薄板の積層構造により形成されており、そ
の具体的構造は基本的には特開平5−196321号公
報と同じでよいので、以下積層構造の概略を図2、3、
4により説明すると、主熱交換部7では、金属薄板7
b、具体的にはアルミニュウム心材(A3003)の両
面にろう材(A4104)をクラッドした両面クラッド
材を所定形状に成形して、これを2枚1組として多数組
積層した上で、ろう付けにより接合することにより多数
の冷媒通路7aを並列に形成するものである。
Therefore, under such a low load condition, the constant pressure valve 10 is opened to prevent the occurrence of the above trouble. The main and auxiliary heat exchange parts 7 and 8 and the throttle passage 9 are formed by a laminated structure of thin metal plates, and the specific structure thereof may be basically the same as that in Japanese Patent Laid-Open No. 5-196321. A schematic structure is shown in FIGS.
4, the main heat exchange section 7 has a metal thin plate 7
b. Specifically, a double-sided clad material in which a brazing material (A4104) is clad on both surfaces of an aluminum core material (A3003) is formed into a predetermined shape, and a large number of two sheets are laminated and then brazed. A large number of refrigerant passages 7a are formed in parallel by joining.

【0018】この多数の冷媒通路7aはそれぞれ図1、
2の上方でUターンするU形状のものであり、この各U
形状の冷媒通路7aの入口部及び出口部はそれぞれ通路
下方部に形成された入口側タンク部7c、出口側タンク
部7dの開口部にて相互にコア奥行き方向で連通するよ
うになっている。また、主熱交換部7では、隣接する冷
媒通路7aの外面側相互の間隙にコルゲートフィン(フ
ィン手段)11を接合して空気側の伝熱面積の増大を図
るようになっている。
The plurality of refrigerant passages 7a are respectively shown in FIG.
It has a U shape that makes a U-turn above 2, and each U
The inlet and the outlet of the shaped refrigerant passage 7a communicate with each other in the core depth direction at the openings of the inlet-side tank portion 7c and the outlet-side tank portion 7d formed in the lower portion of the passage. Further, in the main heat exchange section 7, corrugated fins (fin means) 11 are joined to the gaps between the outer surfaces of the adjacent refrigerant passages 7a to increase the heat transfer area on the air side.

【0019】同様に、副熱交換部8においても、金属薄
板8c、具体的にはアルミニュウム心材の両面にろう材
をクラッドした両面クラッド材を所定形状に成形して、
これを多数枚積層してろう付けにより接合することによ
り、この多数枚の積層構造の金属薄板8cの間に、前記
入口側冷媒通路8aと、出口側冷媒通路8bを交互に形
成するようになっている。
Similarly, in the sub heat exchange section 8, a metal thin plate 8c, more specifically, a double-sided clad material in which a brazing material is clad on both sides of an aluminum core material is formed into a predetermined shape,
By laminating a large number of these and joining them by brazing, the inlet side refrigerant passages 8a and the outlet side refrigerant passages 8b are alternately formed between the plurality of laminated metal thin plates 8c. ing.

【0020】ここで、副熱交換部8の端板12には配管
コネクタ部材13が接合されるようになっており、この
配管コネクタ部材13には、膨張弁5で減圧された気液
2相冷媒が流入する入口管13aと、蒸発器6から圧縮
機1側へ吸入されるガス冷媒が流出する出口管13b
と、絞り通路9の下流側を定圧弁10の下流側に接続す
る接続管13cとが配設されている。
Here, a pipe connector member 13 is joined to the end plate 12 of the auxiliary heat exchange section 8, and the pipe connector member 13 has a gas-liquid two-phase decompressed by the expansion valve 5. An inlet pipe 13a into which the refrigerant flows, and an outlet pipe 13b from which the gas refrigerant sucked from the evaporator 6 to the compressor 1 side flows out.
And a connecting pipe 13c that connects the downstream side of the throttle passage 9 to the downstream side of the constant pressure valve 10.

【0021】そして、この入口管13aからの冷媒は、
金属薄板8cの上部に形成された、入口側冷媒通路8a
の入口側タンク部8dに流入するようになっており、こ
の入口側タンク部8dはそれ自身の開口部にてコア奥行
き方向に連通している。一方、金属薄板8cの下部に入
口側冷媒通路8aの出口側タンク部8eが形成されてお
り、この出口側タンク部8eもそれ自身の開口部にてコ
ア奥行き方向に連通している。そして、上部の入口側タ
ンク部8dから下部の出口側タンク部8eに向かって、
入口側冷媒通路8aが蛇行状に形成されている。
The refrigerant from the inlet pipe 13a is
Inlet side refrigerant passage 8a formed in the upper part of the thin metal plate 8c
Of the inlet side tank portion 8d, and the inlet side tank portion 8d communicates with the core depth direction at its own opening portion. On the other hand, an outlet side tank portion 8e of the inlet side refrigerant passage 8a is formed in the lower portion of the metal thin plate 8c, and the outlet side tank portion 8e also communicates in the core depth direction with its own opening portion. Then, from the upper inlet side tank portion 8d toward the lower outlet side tank portion 8e,
The inlet side refrigerant passage 8a is formed in a meandering shape.

【0022】また、前記した絞り通路9は、主熱交換部
7のうち最も副熱交換部8寄りの金属薄板7b′と、
主、副両熱交換部7、8の中間に介在された肉厚の中間
プレート14との間に形成されるようになっている。副
熱交換部8の入口側冷媒通路8aの出口側タンク部8e
から流出した冷媒は中間プレート14に形成された通路
穴(図示せず)を通り、次に絞り通路9の入口部9aに
流入する。
Further, the throttle passage 9 and the metal thin plate 7b 'closest to the sub heat exchange portion 8 of the main heat exchange portion 7 are provided in the throttle passage 9,
It is formed between the main and sub heat exchanging portions 7 and 8 and a thick intermediate plate 14 interposed between them. Outlet side tank section 8e of inlet side refrigerant passage 8a of sub heat exchange section 8
The refrigerant flowing out of the passage passes through a passage hole (not shown) formed in the intermediate plate 14, and then flows into the inlet portion 9 a of the throttle passage 9.

【0023】そして、上記絞り通路9を通過した後、絞
り通路9の出口部9bから冷媒は中間プレート14に形
成された別の通路穴14a(図4参照)を通り、再度副
熱交換部8側へ流入し、その後、中継タンク部8iを通
過して中間プレート14に形成された、さらに別の通路
穴である冷媒入口穴16を通り、主熱交換部7の入口側
タンク部7cに流入する。
After passing through the throttle passage 9, the refrigerant from the outlet portion 9b of the throttle passage 9 passes through another passage hole 14a (see FIG. 4) formed in the intermediate plate 14 and again passes through the auxiliary heat exchange portion 8. Side, then passes through the relay tank portion 8i, passes through the refrigerant inlet hole 16 which is another passage hole formed in the intermediate plate 14, and flows into the inlet side tank portion 7c of the main heat exchange portion 7. To do.

【0024】そして、ここから冷媒は主熱交換部7の各
冷媒通路7aをUターン状に流れ、その後出口側タンク
部7dに集合するようになっている。この出口側タンク
部7dに集合した冷媒は、中間プレート14に形成され
た別の通路穴(図示せず)を通り、副熱交換部8の金属
薄板8cの下部に形成された、出口側冷媒通路8bの入
口側タンク部8fに流入するようになっており、この入
口側タンク部8fはそれ自身の開口部にてコア奥行き方
向に連通している。
From here, the refrigerant flows in a U-turn shape through the respective refrigerant passages 7a of the main heat exchange section 7, and then gathers in the outlet side tank section 7d. The refrigerant collected in the outlet side tank portion 7d passes through another passage hole (not shown) formed in the intermediate plate 14, and is formed in the lower portion of the metal thin plate 8c of the sub heat exchange portion 8 so as to meet the outlet side refrigerant. It is adapted to flow into the inlet side tank portion 8f of the passage 8b, and the inlet side tank portion 8f communicates with the core depth direction at its own opening.

【0025】一方、金属薄板8cの上部に出口側冷媒通
路8bの出口側タンク部8gが形成されており、この出
口側タンク部8gもそれ自身の開口部にてコア奥行き方
向に連通している。そして、下部の入口側タンク部8f
から上部の出口側タンク部8gに向かって、出口側冷媒
通路8bが形成されている。副熱交換部8において、入
口側冷媒通路8aと出口側冷媒通路8bは多数枚積層さ
れた金属薄板8cの表裏両側に交互に形成されている。
出口側冷媒通路8bの出口側タンク部8gから冷媒は配
管コネクタ部材13の出口管13bへ流出する。15は
主熱交換部7の端板である。
On the other hand, an outlet-side tank portion 8g of the outlet-side refrigerant passage 8b is formed on the upper portion of the metal thin plate 8c, and the outlet-side tank portion 8g also communicates in the core depth direction with its own opening portion. . And the lower inlet side tank portion 8f
An outlet side refrigerant passage 8b is formed from the upper side toward the outlet side tank portion 8g. In the sub heat exchange section 8, the inlet side refrigerant passages 8a and the outlet side refrigerant passages 8b are alternately formed on both front and back sides of the metal thin plates 8c laminated.
From the outlet side tank portion 8g of the outlet side refrigerant passage 8b, the refrigerant flows out to the outlet pipe 13b of the pipe connector member 13. Reference numeral 15 is an end plate of the main heat exchange section 7.

【0026】一方、副熱交換部8の端板12において
は、上記冷媒入口穴16に対向する部位に穴12aが開
けられており、この端板12の穴12aに、内部洩れ検
査用検査治具(図示せず)の取付座18が一体に接合さ
れている。この取付座18は雌ねじ18aを有し、この
雌ねじ18aにより、上記冷媒入口穴16を閉塞可能な
検査治具を挿入できる大きさを持った治具挿入穴19を
設定している。
On the other hand, the end plate 12 of the auxiliary heat exchange section 8 is provided with a hole 12a at a position facing the refrigerant inlet hole 16, and the hole 12a of the end plate 12 is provided with an internal leak inspection inspection jig. A mounting seat 18 of a tool (not shown) is integrally joined. The mounting seat 18 has an internal thread 18a, and the internal thread 18a sets a jig insertion hole 19 having a size into which an inspection jig capable of closing the refrigerant inlet hole 16 can be inserted.

【0027】20は治具挿入穴19を密封するための密
封部材をなす蓋体で、雄ねじ20aを有し、この雄ねじ
20aにより蓋体20は取付座18の雌ねじ18aに脱
着可能に取付けられる。また、21は取付座18と蓋体
20との間のシール用Oリング(シール部材)である。
本実施例では、蒸発器6をアルミニュウムの一体ろう付
けで製造するようにしてあるので、冷間鍛造、切削加工
等の必要な厚肉部品である配管コネクタ部材13及び取
付座18、さらにはろう材の不要なコルゲートフィン1
1を除く他の薄板形状の部品は、すべてろう材(A41
04)を心材(A3003)の両面にクラッドしたアル
ミニュウム両面クラッド材から成形されている。
Reference numeral 20 denotes a lid body which is a sealing member for sealing the jig insertion hole 19 and has a male screw 20a. The male screw 20a attaches the lid body 20 to the female screw 18a of the mounting seat 18 in a removable manner. Reference numeral 21 is an O-ring (sealing member) for sealing between the mounting seat 18 and the lid 20.
In this embodiment, since the evaporator 6 is manufactured by integrally brazing aluminum, the pipe connector member 13 and the mounting seat 18, which are thick parts required for cold forging, cutting, etc., and further brazing. Corrugated fin that does not require wood 1
All other thin plate-shaped parts except 1 are brazing filler metal (A41
04) is clad on both sides of a core material (A3003) to form an aluminum double-sided clad material.

【0028】厚肉部品の配管コネクタ部材13および取
付座18と、コルゲートフィン11はろう材をクラッド
してないアルミニュウムベア材(A3003)で成形し
ている。蒸発器6の製造にあたっては、主熱交換部7と
副熱交換部8とを、主熱交換部7が下方、その上方に副
熱交換部8が位置するように、この両者7、8を積層し
て、この両者7、8の積層組付体を縦方向の組付治具に
より保持して、蒸発器6全体の積層状態を維持する。
The pipe connector member 13 and the mounting seat 18, which are thick parts, and the corrugated fins 11 are formed of an aluminum bare material (A3003) in which a brazing material is not clad. In manufacturing the evaporator 6, the main heat exchange section 7 and the sub heat exchange section 8 are arranged so that the main heat exchange section 7 is located below and the sub heat exchange section 8 is located above the main heat exchange section 7 and the sub heat exchange section 7. After being laminated, the laminated assembly of both 7 and 8 is held by a vertical assembly jig to maintain the laminated state of the entire evaporator 6.

【0029】その後、前記縦方向の組付治具により上記
両熱交換部7、8の積層状態を維持しながら、この組付
体を真空炉中に搬入して、アルミニュウムクラッド材の
ろう材融点以上に加熱して、組付体各部の接合部分をろ
う付けにより一体に接合し、蒸発器6全体を一体構造に
する。ところで、本発明者らは、副熱交換部8の冷媒通
路8a、8bを構成する金属薄板8cの形状について、
先ず最初に、図5に示す形状のものを試作、検討した。
すなわち、図5(a)は金属薄板8cのうち、出口側冷
媒通路8b側の面の一端側を示しており、この出口側冷
媒通路8bの入口側タンク8fからガス冷媒が冷媒通路
8bに流入し、この通路8bを流れるのであるが、この
通路8bは、並列に形成された多数(図示の例は10
本)の分岐通路8b−1〜8b−10に分岐している。
Thereafter, while maintaining the laminated state of both the heat exchanging parts 7 and 8 by the vertical assembling jig, the assembled body is carried into a vacuum furnace and the melting point of the brazing material of the aluminum clad material is melted. By heating as described above, the joint portions of the respective parts of the assembly are integrally joined by brazing, so that the entire evaporator 6 is made into an integral structure. By the way, the present inventors have described the shape of the thin metal plate 8c forming the refrigerant passages 8a and 8b of the auxiliary heat exchange section 8 as follows.
First, a prototype having the shape shown in FIG. 5 was made and studied.
That is, FIG. 5A shows one end side of the surface of the thin metal plate 8c on the outlet side refrigerant passage 8b side, and the gas refrigerant flows into the refrigerant passage 8b from the inlet side tank 8f of the outlet side refrigerant passage 8b. However, the passages 8b flow through the passages 8b, but the passages 8b are formed in parallel (10 in the illustrated example).
Main) branch passages 8b-1 to 8b-10.

【0030】一方、上記入口側タンク8fと、分岐通路
8b−1〜8b−10との間には、上記タンク8f以外
の他のタンク8e、8iが存在しており、この他のタン
ク8e、8iとの冷媒通路の区画のために、隔壁8j、
8kを形成している。ところが、この隔壁8jの形成に
より、図示上半部の通路8b−1〜8b−5に向かうガ
ス冷媒は、通路断面積の狭い通路8mを通過しなければ
ならず、この狭い通路8mの存在によって、上半部の分
岐通路8b−1〜8b−5を通過する冷媒流量が図5
(c)に示すように著しく減少することが分かった。
On the other hand, between the inlet side tank 8f and the branch passages 8b-1 to 8b-10, there are tanks 8e and 8i other than the above tank 8f, and the other tanks 8e and 8e. Partition 8j for partitioning the refrigerant passage with 8i,
Forming an 8k. However, due to the formation of the partition wall 8j, the gas refrigerant flowing toward the passages 8b-1 to 8b-5 in the upper half of the drawing must pass through the passage 8m having a narrow passage cross-sectional area, and due to the existence of the narrow passage 8m. , The refrigerant flow rate passing through the upper half branch passages 8b-1 to 8b-5 is shown in FIG.
It was found that as shown in (c), it was significantly reduced.

【0031】なお、図5(b)の矢印の大きさは各分岐
通路8b−1〜8b−10の冷媒流量を模式的に示して
いる。以上の結果、出口側冷媒通路8bの各分岐通路8
b−1〜8b−10の冷媒流量に、図5(c)に示す大
きな差(偏り)が発生するので、金属薄板8cの伝熱面
積全体を有効に活用することができない。そのため、出
口側冷媒通路8bのガス冷媒と、入口側冷媒通路8a内
の冷媒(乾き度の小さい気液2相冷媒)との熱交換を効
率よく行うことができず、副熱交換部8の熱交換性能の
低下を招く。
The size of the arrow in FIG. 5 (b) schematically indicates the flow rate of the refrigerant in each of the branch passages 8b-1 to 8b-10. As a result, each branch passage 8 of the outlet side refrigerant passage 8b
Since a large difference (bias) shown in FIG. 5C occurs in the refrigerant flow rates of b-1 to 8b-10, the entire heat transfer area of the thin metal plate 8c cannot be effectively utilized. Therefore, heat exchange between the gas refrigerant in the outlet side refrigerant passage 8b and the refrigerant in the inlet side refrigerant passage 8a (a gas-liquid two-phase refrigerant having a small dryness) cannot be efficiently performed, and the auxiliary heat exchange portion 8 This causes deterioration of heat exchange performance.

【0032】そこで、本発明においては、図6(a)に
示すように、隔壁8jの形状を改良して、中継タンク8
iの外縁側に冷媒迂回通路8nを形成するようにしたも
のである。すなわち、金属薄板8cの一端部側におい
て、中継タンク8i、出口側タンク8eの部分を除い
て、幅方向(図5、6の上下方向)の略全域にわたっ
て、入口側タンク8fと分岐通路8b−1〜8b−10
との間の冷媒流路を形成している。
Therefore, in the present invention, as shown in FIG. 6 (a), the shape of the partition wall 8j is improved so that the relay tank 8 is formed.
The refrigerant bypass passage 8n is formed on the outer edge side of i. That is, on one end side of the thin metal plate 8c, except for the relay tank 8i and the outlet side tank 8e, the inlet side tank 8f and the branch passage 8b− are formed over substantially the entire width direction (vertical direction in FIGS. 5 and 6). 1-8b-10
To form a refrigerant flow path between them.

【0033】従って、金属薄板8cの幅方向において、
中継タンク8iおよび出口側タンク8eの両側に、入口
側タンク8fと分岐通路8b−1〜8b−10との間の
冷媒流路が形成されることになる。特に、上記冷媒迂回
通路8nの追加により、前述の冷媒流量の少ない上半部
の分岐通路8b−1〜8b−5に対して、ガス冷媒は、
前記通路断面積の狭い通路8mの他に、通路8nも同時
に通って流れることがてきる。そのため、上半部の分岐
通路8b−1〜8b−5に向かう冷媒流量を大幅に増加
でき、図6(c)に示すように、各分岐通路8b−1〜
8b−10の冷媒流量の差(偏り)を僅少にできる。
Therefore, in the width direction of the thin metal plate 8c,
A refrigerant flow path between the inlet side tank 8f and the branch passages 8b-1 to 8b-10 is formed on both sides of the relay tank 8i and the outlet side tank 8e. In particular, due to the addition of the refrigerant bypass passage 8n, the gas refrigerant is supplied to the upper half branch passages 8b-1 to 8b-5 having a small refrigerant flow rate.
In addition to the passage 8m having a narrow passage cross-sectional area, the passage 8n can also flow through at the same time. Therefore, the refrigerant flow rate toward the upper half of the branch passages 8b-1 to 8b-5 can be significantly increased, and as shown in FIG. 6C, the respective branch passages 8b-1 to 8b-1.
The difference (deviation) in the refrigerant flow rate of 8b-10 can be made small.

【0034】これにより、金属薄板8cの伝熱面積全体
を有効に活用して、出口側冷媒通路8bのガス冷媒と、
入口側冷媒通路8a内の冷媒(乾き度の小さい気液2相
冷媒)との熱交換を効率よく行うことができ、熱交換性
能を向上できる。
As a result, the entire heat transfer area of the thin metal plate 8c is effectively utilized, and the gas refrigerant in the outlet side refrigerant passage 8b
The heat exchange with the refrigerant (gas-liquid two-phase refrigerant having a low degree of dryness) in the inlet-side refrigerant passage 8a can be efficiently performed, and the heat exchange performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明蒸発器を含む冷凍サイクル図である。FIG. 1 is a refrigeration cycle diagram including an evaporator of the present invention.

【図2】本発明蒸発器の一実施例を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of the evaporator of the present invention.

【図3】図2の蒸発器の分解斜視図である。FIG. 3 is an exploded perspective view of the evaporator shown in FIG.

【図4】図2、3の蒸発器において、検査治具用取付座
部分の断面構造を示す要部断面図である。
FIG. 4 is a cross-sectional view of an essential part showing a cross-sectional structure of a mounting portion for an inspection jig in the evaporator of FIGS.

【図5】(a)は本発明に至る前段階で検討した副熱交
換部の金属薄板の要部正面図、(b)はこの金属薄板積
層後の通路断面形状を示す断面図、(c)は(a)、
(b)の金属薄板における冷媒流量の説明図である。
FIG. 5 (a) is a front view of a main part of a metal thin plate of a sub heat exchange part studied in the stage before reaching the present invention, FIG. ) Is (a),
It is explanatory drawing of the refrigerant flow rate in the metal thin plate of (b).

【図6】(a)は本発明による副熱交換部の金属薄板の
位置実施例を示す要部正面図、(b)はこの金属薄板積
層後の通路断面形状を示す断面図、(c)は(a)、
(b)の金属薄板における冷媒流量の説明図である。
FIG. 6 (a) is a front view of a main part showing an embodiment of the position of a metal thin plate of a sub heat exchange part according to the present invention, FIG. Is (a),
It is explanatory drawing of the refrigerant flow rate in the metal thin plate of (b).

【符号の説明】[Explanation of symbols]

6…蒸発器、7…主熱交換部、7a…冷媒通路、7b…
金属薄板、8…副熱交換部、8a…入口側冷媒通路、8
b…出口側冷媒通路、8b−1〜8b−10…分岐通
路、8c…金属薄板、8d、8f…入口側タンク、8
e、8g…出口側タンク、8i…中継タンク。
6 ... Evaporator, 7 ... Main heat exchange part, 7a ... Refrigerant passage, 7b ...
Metal thin plate, 8 ... Sub heat exchange part, 8a ... Inlet side refrigerant passage, 8
b ... outlet side refrigerant passage, 8b-1 to 8b-10 ... branch passage, 8c ... thin metal plate, 8d, 8f ... inlet side tank, 8
e, 8g ... outlet side tank, 8i ... relay tank.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒通路内を流れる冷媒と前記冷媒通路
の外部を流れる被冷却流体とを熱交換させる主熱交換部
と、 前記主熱交換部の冷媒通路の入口側に流入する入口側冷
媒と、前記主熱交換部の冷媒通路の出口側から流出する
出口側冷媒とを熱交換させる副熱交換部とを有し、 前記主及び副熱交換部の冷媒通路は金属薄板の積層構造
により形成されており、 前記副熱交換部には、前記入口側冷媒が流れる入口側冷
媒通路と、前記出口側冷媒が流れる出口側冷媒通路が前
記金属薄板の表裏両側に交互に形成されており、 前記副熱交換部の前記金属薄板の一端部側に、前記主熱
交換部の冷媒通路の出口側から流出する出口側冷媒を前
記出口側冷媒通路に流入させる入口側タンクが形成され
ており、 また前記副熱交換部の前記金属薄板の一端部側には、前
記入口側タンクに隣接して、前記入口側冷媒通路の出口
側タンクおよび中継タンクが形成されており、 前記出口側冷媒通路は、前記入口側タンクから流入する
出口側冷媒が並列に流れる多数の分岐通路を有してお
り、 前記入口側タンクと前記分岐通路との間の冷媒流路は、
前記出口側タンクおよび前記中継タンクの部分を除い
て、前記金属薄板の一端部側の幅方向の略全域にわたっ
て形成されていることを特徴とする冷媒蒸発器。
1. A main heat exchange section for exchanging heat between a refrigerant flowing in a refrigerant passage and a fluid to be cooled flowing outside the refrigerant passage, and an inlet side refrigerant flowing into an inlet side of the refrigerant passage of the main heat exchange section. And a sub heat exchange part for exchanging heat between the outlet side refrigerant flowing out from the outlet side of the refrigerant passage of the main heat exchange part, and the refrigerant passages of the main and sub heat exchange parts are formed by a laminated structure of metal thin plates. Is formed, the auxiliary heat exchange portion, an inlet side refrigerant passage through which the inlet side refrigerant flows, and an outlet side refrigerant passage through which the outlet side refrigerant flows are alternately formed on both front and back sides of the metal thin plate, On the one end side of the metal thin plate of the sub heat exchange section, an inlet side tank for causing an outlet side refrigerant flowing out from an outlet side of the refrigerant passage of the main heat exchange section to flow into the outlet side refrigerant passage is formed, Also, one end of the thin metal plate of the sub heat exchange section The outlet side tank of the inlet side refrigerant passage and the relay tank are formed adjacent to the inlet side tank, and the outlet side refrigerant passage has the outlet side refrigerant flowing from the inlet side tank in parallel. Having a large number of branch passages flowing, the refrigerant flow passage between the inlet side tank and the branch passage,
A refrigerant evaporator, which is formed over substantially the entire width direction of one end of the thin metal plate except for the outlet side tank and the relay tank.
【請求項2】 前記金属薄板の一端部側の幅方向におい
て、前記出口側タンクが略中央部に位置し、前記入口側
タンクが一方の端部に位置し、前記中継タンクが他方の
端部に位置しており、 前記入口側タンクと前記分岐通路との間の冷媒流路が、
前記幅方向において前記出口側タンクおよび前記中継タ
ンクのそれぞれ両側に形成されていることを特徴とする
請求項1に記載の冷媒蒸発器。
2. The outlet-side tank is located substantially at the center, the inlet-side tank is located at one end, and the relay tank is located at the other end in the width direction on the one end side of the thin metal plate. Is located, the refrigerant flow path between the inlet side tank and the branch passage,
The refrigerant evaporator according to claim 1, wherein the refrigerant evaporator is formed on both sides of the outlet side tank and the relay tank in the width direction.
JP24507894A 1994-10-11 1994-10-11 Refrigerant evaporator Expired - Fee Related JP3635689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24507894A JP3635689B2 (en) 1994-10-11 1994-10-11 Refrigerant evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24507894A JP3635689B2 (en) 1994-10-11 1994-10-11 Refrigerant evaporator

Publications (2)

Publication Number Publication Date
JPH08110120A true JPH08110120A (en) 1996-04-30
JP3635689B2 JP3635689B2 (en) 2005-04-06

Family

ID=17128274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24507894A Expired - Fee Related JP3635689B2 (en) 1994-10-11 1994-10-11 Refrigerant evaporator

Country Status (1)

Country Link
JP (1) JP3635689B2 (en)

Also Published As

Publication number Publication date
JP3635689B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
JPH10238896A (en) Lamination type evaporator
EP3875878B1 (en) Heat exchanger and refrigeration cycle device
US6814135B2 (en) Stacked-type evaporator
JP3797109B2 (en) Evaporator
US7013952B2 (en) Stack type heat exchanger
JPH10325645A (en) Refrigerant evaporator
US7051796B2 (en) Heat exchanger
JPH0814702A (en) Laminate type evaporator
JPH10288480A (en) Plate type heat-exchanger
JP3674058B2 (en) Manufacturing method of stacked heat exchanger
JPH05215482A (en) Heat exchanger
JP3674060B2 (en) Manufacturing method of stacked heat exchanger
JP3812021B2 (en) Laminate heat exchanger
JP4106718B2 (en) Heat exchanger
JPH08110120A (en) Refrigerant evaporator
JP2000055573A (en) Refrigerant evaporator
JP3805665B2 (en) Heat exchanger
US5778974A (en) Laminated type heat exchanger having small flow resistance
JP2000105095A (en) Heat exchanger
JP3674057B2 (en) Refrigerant evaporator
JPH0814703A (en) Refrigerant evaporator
JP2000105091A (en) Lamination type evaporator
JP3969830B2 (en) Capacitor with liquid tank
JP2004069258A (en) Flat tube, and method of manufacturing heat exchanger using flat tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110114

LAPS Cancellation because of no payment of annual fees