JP3674060B2 - Manufacturing method of stacked heat exchanger - Google Patents

Manufacturing method of stacked heat exchanger Download PDF

Info

Publication number
JP3674060B2
JP3674060B2 JP26058094A JP26058094A JP3674060B2 JP 3674060 B2 JP3674060 B2 JP 3674060B2 JP 26058094 A JP26058094 A JP 26058094A JP 26058094 A JP26058094 A JP 26058094A JP 3674060 B2 JP3674060 B2 JP 3674060B2
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
main
heat exchanging
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26058094A
Other languages
Japanese (ja)
Other versions
JPH08121985A (en
Inventor
恵津夫 長谷川
聡也 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP26058094A priority Critical patent/JP3674060B2/en
Publication of JPH08121985A publication Critical patent/JPH08121985A/en
Application granted granted Critical
Publication of JP3674060B2 publication Critical patent/JP3674060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は流体通路を金属薄板の積層構造により形成する積層型熱交換器において、特に流体通路内を流れる内部流体同志で熱交換を行う副熱交換部を有する積層型熱交換器の製造方法に関するもので、自動車用空調装置の冷凍サイクルの冷媒蒸発器に用いて好適なものである。
【0002】
【従来の技術】
本出願人は、特開平5−196321号公報において、流体通路内を流れる内部冷媒同志で熱交換を行う副熱交換部を有する積層型熱交換器を提案している。上記公報記載のものは、具体的には冷凍サイクルの冷媒蒸発器として適用されるものであって、通常の冷媒−空気間の熱交換をおこなう主熱交換部の他に、蒸発器入口側の冷媒と蒸発器出口側の冷媒とを熱交換させて、主熱交換部の入口タンク内に流入する冷媒の乾き度を小さくする、副熱交換部(冷媒−冷媒熱交換部)を設けている。
【0003】
この副熱交換部の作用により主熱交換部の入口タンク内に流入する冷媒の乾き度を大幅に小さくして、入口タンク内における冷媒が液単相に近い状態にすることにより、入口タンクから多数のチューブに冷媒を分配する際に、各チューブに均一に液冷媒を分配できる。しかも、各チューブ内面が液冷媒で覆われた状態となり、チューブ内面での熱伝達率が向上し、これらのことが相まって蒸発器の冷却性能を向上できるものである。
【0004】
【発明が解決しようとする課題】
ところで、上記公報記載のものは、冷媒通路を構成する金属薄板を積層してろう付けにより一体構造に接合して製造されるようになっているが、本発明者らの試作、実験検討によれば、通常の蒸発器では具備してない副熱交換部(冷媒−冷媒熱交換部)を持つため、蒸発器の製造に際し、次のごとき問題が発生することが分かった。
【0005】
すなわち、副熱交換部は、上記したように蒸発器のチューブ内面の冷媒側の伝熱作用を改善するものであるが、空調空気を冷却する蒸発器にとって、空気側伝熱には全く寄与しないデッドスペースとなる。それ故、副熱交換部は、蒸発器の製品化に際しては、極力小型化することが要求される。
ところで、主熱交換部では、その組付時に金属薄板の積層位置のズレ防止のため、2枚の金属薄板の間にコルゲートフィンを介在して、2枚の金属薄板をそのタンク部でかしめて、これらの3者を予め1ユニットとして一体化しているが、副熱交換部では上記小型化要求から、タンク部のかしめスペースを確保できず、金属薄板のかしめによる一体化を行っていないので、ろう付け炉への移送時の振動、さらにろう付け炉内でのろう材の溶融による積層組付体の高さ寸法の縮小等により金属薄板の積層位置のズレが発生しやすい。
【0006】
また、上記小型化要求のため、金属薄板相互のろう付けしろ(ろう付け面積)自体も副熱交換部では主熱交換部に比して小さく設定せざるを得ない。
以上の理由から、主熱交換部に比して、副熱交換部は金属薄板の積層位置のズレに起因するろう付け不良が発生しやすいという問題がある。この副熱交換部のろう付け不良は冷媒洩れという致命的欠陥の原因となる。
【0007】
本発明は上記点に鑑みてなされたもので、流体通路内を流れる内部流体同志で熱交換を行う副熱交換部を有する積層型熱交換器において、副熱交換部の積層位置のズレに起因するろう付け不良を良好に解消できる製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するため、以下の技術的手段を採用する。請求項1記載の発明では、流体通路(7a)内を流れる内部流体と前記流体通路(7a)の外部を流れる外部流体とを熱交換させる主熱交換部(7)と、
前記主熱交換部(7)の流体通路(7a)の入口側に流入する内部流体と、前記主熱交換部(7)の流体通路(7a)の出口側から流出する内部流体とを熱交換させる副熱交換部(8)とを有し、
前記主及び副熱交換部(7、8)の流体通路(7a、8a、8b)は複数の金属薄板(7b、8c)の積層構造により形成されており、
前記主熱交換部(7)には前記外部流体側の伝熱面積を増大するフィン部材(11)が備えられている積層型熱交換器の製造方法であって、
前記主熱交換部(7)および前記副熱交換部(8)を、それぞれ前記複数の金属薄板(7b、8c)が上下方向に積層された所定構造に仮組付するとともに、前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となるようにして、この両熱交換部を治具(A、B、C)により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部(7、8)からなる組付体を、前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備する積層型熱交換器の製造方法を特徴としている。
【0009】
請求項2記載の発明では、流体通路(7a)内を流れる内部流体と前記流体通路(7a)の外部を流れる外部流体とを熱交換させる主熱交換部(7)と、
前記主熱交換部(7)の流体通路(7a)の入口側に流入する内部流体と、前記主熱交換部(7)の流体通路(7a)の出口側から流出する内部流体とを熱交換させる副熱交換部(8)とを有し、
前記主及び副熱交換部(7、8)の流体通路(7a、8a、8b)は複数の金属薄板(7b、8c)の積層構造により形成されており、
前記主熱交換部(7)には前記外部流体側の伝熱面積を増大するフィン部材(11)が備えられている積層型熱交換器の製造方法であって、
2枚の金属薄板(7b)の間に前記フィン部材(11)を介在して、前記2枚の金属薄板(7b)と前記フィン部材(11)を1ユニットに一体化し、この一体化したユニットを上下方向に所定段数積層して前記主熱交換部(7)を所定構造に仮組付する工程と、
金属薄板(8c)を上下方向に所定段数積層して前記副熱交換部(8)を所定構造に仮組付する工程と、
前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となるようにして、この両熱交換部(7、8)を治具(A、B、C)により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部(7、8)からなる組付体を、前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備する積層型熱交換器の製造方法を特徴としている。
【0010】
請求項3記載の発明では、冷媒通路(7a)内を流れる冷媒と前記冷媒通路(7a)の外部を流れる被冷却流体とを熱交換させる主熱交換部(7)と、
前記主熱交換部(7)の冷媒通路(7a)の入口側に流入する入口側冷媒と、前記主熱交換部(7)の冷媒通路(7a)の出口側から流出する出口側冷媒とを熱交換させる副熱交換部(8)とを有し、
前記主及び副熱交換部(7、8)の冷媒通路(7a、8a、8b)は複数の金属薄板(7b、8c)の積層構造により形成されており、
前記主熱交換部(7)には前記被冷却流体側の伝熱面積を増大するフィン部材(11)が備えられている積層型冷媒蒸発器の製造方法であって、
前記主熱交換部(7)および前記副熱交換部(8)を、それぞれ前記複数の金属薄板(7b、8c)が上下方向に積層された所定構造に仮組付するとともに、前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となるようにして、この両熱交換部(7、8)を治具(A、B、C)により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部(7、8)からなる組付体を、前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備する積層型冷媒蒸発器の製造方法を特徴としている。
【0011】
請求項4記載の発明では、冷媒通路(7a)内を流れる冷媒と前記冷媒通路(7a)の外部を流れる被冷却流体とを熱交換させる主熱交換部(7)と、
前記主熱交換部(7)の冷媒通路(7a)の入口側に流入する入口側冷媒と、前記主熱交換部(7)の冷媒通路(7a)の出口側から流出する出口側冷媒とを熱交換させる副熱交換部(8)とを有し、
前記主及び副熱交換部(7、8)の冷媒通路(7a、8a、8b)は複数の金属薄板(7b、8c)の積層構造により形成されており、
前記主熱交換部(7)には前記被冷却流体側の伝熱面積を増大するフィン部材(11)が備えられている積層型冷媒蒸発器の製造方法であって、
2枚の金属薄板(7b)の間に前記フィン部材(11)を介在して、前記2枚の金属薄板(7b)と前記フィン部材(11)を1ユニットに一体化し、この一体化したユニットを上下方向に所定段数積層して前記主熱交換部(7)を所定構造に仮組付する工程と、
金属薄板(8c)を上下方向に所定段数積層して前記副熱交換部(8)を所定構造に仮組付する工程と、
前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となるようにして、この両熱交換部(7、8)を治具(A、B、C)により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部(7、8)からなる組付体を、前記主熱交換部(7)が上方、前記副熱交換部(8)が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備する積層型冷媒蒸発器の製造方法を特徴としている。
【0012】
請求項5記載の発明では、請求項3または4に記載の積層型冷媒蒸発器の製造方法において、前記治具(A、B、C)により一体に保持された前記両熱交換部を、前記治具(A、B、C)を介して、移動自在なキャリアの保持棚上に載置して、前記炉への移動を行うことを特徴とする。
なお、上記各手段の括弧内の符号は、後述する実施例記載の具体的手段との対応関係を示すものである。
【0013】
【発明の作用効果】
請求項1〜5記載の発明によれば、上記技術的手段を有しているため、熱交換器(6)の組付体をろう付け炉へ搬送するときに、副熱交換部(8)は主熱交換部(7)の下方に位置しているので、副熱交換部(8)の重心が低くなっている。そのため、搬送途中に組付体に振動が加わっても、副熱交換部(8)の金属薄板(8c)の積層位置のズレが生じにくい。
【0014】
しかも、副熱交換部(8)にはその上方に載置された主熱交換部(7)の重量が加わっているので、ろう付け炉内において熱交換器組付体のろう材が溶融して、熱交換器組付体の高さ寸法が縮小して治具による組付体への押圧力が作用しなくなっても、熱交換部(8)の金属薄板(8c)の積層位置のズレが生じにくい。
【0015】
以上により副熱交換部(8)では、金属薄板(8c)の積層位置のズレに起因するろう付け不良を十分低減できる。従って、金属薄板(8c)をかしめて、隣接の金属薄板(8c)相互を一体化するとか、金属薄板(8c)のろう付けしろを拡大するといった、副熱交換部(8)の大型化につながる手法を採用する必要がない。
【0016】
その結果、副熱交換部(8)のろう付け不良の低減と、小型化とを両立させることができる。
【0017】
【実施例】
以下、本発明を図に示す実施例について説明する。図1は本発明方法により製造した冷媒蒸発器を適用した自動車用空調装置の冷凍サイクルを示しており、1は圧縮機で、電磁クラッチ2を介して自動車用エンジン(駆動源、図示せず)により駆動されるものである。3は凝縮器で、圧縮機1から吐出された高温、高圧のガス冷媒を冷却ファン(図示せず)の送風空気と熱交換して冷却し、凝縮するものである。
【0018】
4は凝縮器3で凝縮した液冷媒を溜めて液冷媒のみをサイクル下流側へ導出する受液器、5は冷媒の減圧手段を構成する温度作動式膨張弁で、5aはその感温筒である。6は本発明による積層型の冷媒蒸発器である。
この蒸発器6は、冷媒通路7a内を流れる冷媒と前記冷媒通路7aの外部を流れる空調用送風空気(被冷却流体)とを熱交換させる主熱交換部7と、
この主熱交換部7の冷媒通路7aの入口側に流入する冷媒と、前記主熱交換部7の冷媒通路7aの出口側から流出する冷媒とを熱交換させる副熱交換部8とを有している。
【0019】
ここで、副熱交換部8において、8aは前記主熱交換部7の冷媒通路7aの入口側に流入する冷媒が流れる入口側冷媒通路を示し、8bは前記主熱交換部7の冷媒通路7aの出口側から流出する冷媒が流れる出口側冷媒通路を示す。従って、副熱交換部8は冷媒−冷媒熱交換部を構成することになる。一方、主熱交換部7は送風空気から冷媒が吸熱して蒸発する冷媒蒸発部(冷媒−空気熱交換部)を構成することになる。
【0020】
9は副熱交換部8の入口側冷媒通路8aと主熱交換部7の冷媒通路7aの入口部との間に蛇行状に形成された微小断面積の絞り通路で、一般にキャピラリチューブと称されている減圧手段の役割を果たす。但し、この絞り通路9による減圧度合いは膨張弁5の減圧度合いよりも小さく設定されており、この絞り通路9はその上流側と下流側との間に冷媒の圧力差を設けて、副熱交換部8における入口側冷媒通路8aの冷媒温度と、出口側冷媒通路8bの冷媒温度との間に、高低の温度差をつけることにより、両通路8a、8b間の熱交換を良好に行わせるものである。
【0021】
10は定圧弁で、冬季の如く冷凍サイクル熱負荷が著しく低下して、その前後の圧力差が設定値以下になると、開弁して受液器4からの液冷媒を所定量減圧して直接主熱交換部7の冷媒通路7aの入口に流入させるものである。
冬季の低負荷条件時には、凝縮器3における冷媒圧力が低下して、蒸発器6の冷媒圧力との圧力差に占める絞り通路9の抵抗が大となって、冷媒流量が小となり、かつ車室内空気を循環させる内気循環モードでは、小流量の冷媒が比較的高温の内気から吸熱して、主熱交換部7の出口冷媒温度が入口冷媒温度より高くなってしまうことがある。その結果、副熱交換部8で、主熱交換部7の出口冷媒により入口側冷媒を加熱するという不具合が生じる。
【0022】
そこで、このような低負荷条件下では、前記定圧弁10を開弁して、上記不具合の発生を防止するようにしてある。
前記主及び副熱交換部7、8及び絞り通路9は金属薄板の積層構造により形成されており、その具体的構造は基本的には特開平5−196321号公報と同じでよいので、以下積層構造の概略を図2、3により説明すると、主熱交換部7では、金属薄板7b、具体的にはアルミニュウム心材の両面にろう材をクラッドした両面クラッド材を所定形状に成形して、これを2枚1組として多数組積層した上で、ろう付けにより接合することにより多数の冷媒通路7aを並列に形成するものである。
【0023】
この多数の冷媒通路7aはそれぞれ図1、2の上方でUターンするU形状のものであり、この各U形状の冷媒通路7aの入口部及び出口部はそれぞれ通路下方部に形成された入口側タンク部7c、出口側タンク部7dの開口部にて相互にコア奥行き方向で連通するようになっている。
また、主熱交換部7では、隣接する冷媒通路7aの外面側相互の間隙にコルゲートフィン(フィン手段)11を接合して空気側の伝熱面積の増大を図るようになっている。
【0024】
同様に、副熱交換部8においても、金属薄板8c、具体的にはアルミニュウム心材の両面にろう材をクラッドした両面クラッド材を所定形状に成形して、これを多数枚積層してろう付けにより接合することにより、この多数枚の積層構造の金属薄板8cの間に、前記入口側冷媒通路8aと、出口側冷媒通路8bを交互に形成するようになっている。
【0025】
ここで、副熱交換部8の端板12には配管コネクタ部材13が接合されるようになっており、この配管コネクタ部材13には、膨張弁5で減圧された気液2相冷媒が流入する入口管13aと、蒸発器6から圧縮機1側へ吸入されるガス冷媒が流出する出口管13bと、絞り通路9の下流側を定圧弁10の下流側に接続する接続管13cとが配設されている。
【0026】
また、上記端板12には、副熱交換部8の入口側冷媒通路8aと出口側冷媒通路8b相互間での冷媒洩れ(内部洩れ)検査用治具挿入穴(図示せず)を形成する取付座18がろう付けで接合されており、そしてこの取付座18には前記治具挿入穴を閉じるための密封部材20がねじにより脱着自在に装着されている。
そして、前記入口管13aからの冷媒は、金属薄板8cの上部に形成された、入口側冷媒通路8aの入口側タンク部8dに流入するようになっており、この入口側タンク部8dはそれ自身の開口部にてコア奥行き方向に連通している。
【0027】
一方、金属薄板8cの下部に入口側冷媒通路8aの出口側タンク部8eが形成されており、この出口側タンク部8eもそれ自身の開口部にてコア奥行き方向に連通している。そして、上部の入口側タンク部8dから下部の出口側タンク部8eに向かって、入口側冷媒通路8aが蛇行状に形成されている。
また、前記した絞り通路9は、主熱交換部7のうち最も副熱交換部8寄りの金属薄板7b′と、主、副両熱交換部7、8の中間に介在された肉厚の中間プレート14との間に形成されるようになっている。
【0028】
副熱交換部8の入口側冷媒通路8aの出口側タンク部8eから流出した冷媒は中間プレート14に形成された通路穴(図示せず)を通り、次に絞り通路9の入口部9aに流入する。そして、この絞り通路9を通過した後、絞り通路9の出口部9bから冷媒は中間プレート14に形成された別の通路穴(図示せず)を通り、再度副熱交換部8側へ流入し、その後、中継タンク部8hを通過して中間プレート14に形成されたさらに別の通路穴を通り、主熱交換部7の入口側タンク部7cに流入する。
【0029】
そして、ここから冷媒は主熱交換部7の各冷媒通路7aをUターン状に流れ、その後出口側タンク部7dに集合するようになっている。
この出口側タンク部7dに集合した冷媒は、中間プレート14に形成された別の通路穴(図示せず)を通り、副熱交換部8の金属薄板8cの下部に形成された、出口側冷媒通路8bの入口側タンク部8fに流入するようになっており、この入口側タンク部8fはそれ自身の開口部にてコア奥行き方向に連通している。一方、金属薄板8cの上部に出口側冷媒通路8bの出口側タンク部8gが形成されており、この出口側タンク部8gもそれ自身の開口部にてコア奥行き方向に連通している。そして、下部の入口側タンク部8fから上部の出口側タンク部8gに向かって、出口側冷媒通路8bが形成されている。
【0030】
副熱交換部8において、入口側冷媒通路8aと出口側冷媒通路8bは多数枚積層された金属薄板8cの表裏両側に交互に形成されている。出口側冷媒通路8bの出口側タンク部8gから冷媒は配管コネクタ部材13の出口管13bへ流出する。15は主熱交換部7の端板である。
次に、上記のごとく構成された本実施例の冷媒蒸発器の製造方法について説明する。
【0031】
本実施例では、蒸発器6をアルミニュウムの一体ろう付けで製造するようにしてあるので、冷間鍛造、切削加工等の必要な厚肉部品である配管コネクタ部材13及び取付座18、さらにはろう材の不要なコルゲートフィン11を除く他の薄板形状の部品は、すべてろう材(A4104)を心材(A3003)の両面にクラッドしたアルミニュウム両面クラッド材から成形されている。
【0032】
厚肉部品の配管コネクタ部材13および取付座18と、コルゲートフィン11はろう材をクラッドしてないアルミニュウムベア材(A3003)で成形している。
以下製造方法を工程順に説明する。
1.主熱交換部7及び副熱交換部8のそれぞれ個別の組付工程
主熱交換部7においては、まず、入口タンク部7c、出口タンク部7dのバーリング形状部7e(図4(b)参照)をかしめて口拡することによりコルゲートフィン11を挟む2つの金属薄板7b、7b(7b′)を一体化して、これらの3者11、7b、7b(7b′)を1ユニットにしておく。図4(a)はこの3者11、7b、7b(7b′)を1ユニットにした状態を示す。
【0033】
しかるのち、前記1ユニット化した金属薄板7b、7b(7b′)、コルゲートフィン11を必要段数積層し、その積層体の最上部に端板15を載せることにより、主熱交換部7の組付を終える。
一方、副熱交換部8においては、配管コネクタ部材13、取付座18等を組付た端板12を最下方にして、その上に金属薄板8cを必要段数積層し、最上段に中間プレート14を載せて、副熱交換部8の組付を終える。
2.蒸発器6全体の組付工程
次に、上記のように、それぞれ個別に組付けられた主熱交換部7と副熱交換部8を積層するに際しては、図5、6に示すように、下治具Aの上に、副熱交換部8をその端板12が最下方となるようにして載せる。
【0034】
このとき、下治具Aには、端板12上に突出している取付座18および配管コネクタ部材13等を回避するように段部A1、A2が上面両端部に設けてあり、さらに配管コネクタ部材13の各管13a、13b、13cが嵌合する穴部A3が設けてあるので、この段部A1、A2内に取付座18および配管コネクタ部材13等が納まるようにして、換言すれば、取付座18および配管コネクタ部材13等との干渉を避けるようにして、下治具Aの上に、副熱交換部8を載せる。
【0035】
その後に、副熱交換部8の上方に主熱交換部7をその端板15が最上方となるようにして載せる。そして、この端板15の上方に上治具Bを載せた後、コ字状に形成された2枚の縦治具Cを、所定の間隔を開けて、下治具Aの下側面と上治具Bの上側面の間に組付け、この縦治具Cにより下治具Aと上治具Bとの間に所定の押圧力を加えて、蒸発器6全体の積層状態を維持する。
【0036】
なお、縦治具Cの上部曲げ片C1は、上治具Bの上側面に一体に設けられたガイド片B1に嵌入されて保持されている。また、縦治具Cの下部曲げ片C2は、下治具Aの下側面に一体に設けられたガイド片A4に嵌入されて保持されている。ここで、各ガイド片A4、B1は図示のような2枚1組として構成され、その2枚の間隔は、縦治具Cの板厚に対応して設定されている。
3.蒸発器6全体の一体ろう付け工程
縦治具Cにより上記両熱交換部7、8の積層状態を維持しながら、蒸発器6の組付体を図7に示すキャリアDの保持棚Eの上に載置する。このとき、縦治具Cの下端部を保持棚Eの嵌合溝(穴)Fに嵌合することにより、組付体の載置姿勢を保つ。
【0037】
キャリアDはその上部に配置されたハンガGにて吊り下げられて移動自在となっているので、キャリアDを真空炉中に搬入して、組付体をアルミニュウムクラッド材のろう材融点以上に加熱して、組付体各部の接合部分をろう付けにより一体に接合し、蒸発器6全体を一体構造にする。
ところで、蒸発器6の組付体をキャリアDの保持棚E上に載置して真空炉へ搬送するときに、副熱交換部8は主熱交換部7の下方に位置しているので、副熱交換部8の重心が低くなっている。そのため、搬送途中にキャリアDから組付体に振動が加わっても、副熱交換部8の金属薄板8cの積層位置のズレが生じにくい。
【0038】
しかも、ろう付け炉内において蒸発器組付体のろう材が溶融して、熱交換器組付体の高さ寸法が図8(a)に示す組付当初のHから図8(b)に示すH′に縮小して、隙間Iが発生し、縦治具Cによる組付体への押圧力が作用しなくなっても、副熱交換部8にはその上方に載置された主熱交換部7および上治具Bの重量が加わっているので、副熱交換部8の金属薄板8cの密着状態が継続され、金属薄板8cの積層位置のズレが生じにくい。
【0039】
以上により副熱交換部8では、金属薄板8cの積層位置のズレに起因するろう付け不良を十分低減できる。従って、金属薄板8cのタンク部(8d、8e、8f、8g)をかしめて、隣接の金属薄板8c相互を一体化するとか、金属薄板8cのろう付けしろを拡大するといった、副熱交換部8の大型化につながる手法を採用する必要がない。
【0040】
その結果、副熱交換部8のろう付け不良の低減と、小型化とを両立させることができる。
4.冷媒の外部洩れ検査工程
次に、蒸発器6を密閉室内に搬入し、洩れ検査用流体(例えばヘリウムガス)を所定圧力に加圧して蒸発器6の主、副両熱交換部7、8の冷媒通路7a、8a、8b内に供給し、蒸発器6外への流体洩れ(密閉室内への流体洩れ)の有無を検査する。
5.冷媒の内部洩れ検査工程
副熱交換部8においてろう付け不良等により入口側冷媒通路8aと出口側冷媒通路8bとが直接連通する状態が内部洩れ(図1の矢印Xはこの内部洩れを模式的に示す)であり、この内部洩れによる連通状態と、入口側冷媒通路8aと出口側冷媒通路8bとが主熱交換部7の冷媒通路7aを介して連通している正規の連通状態は、蒸発器6の本来の構成のままでは区別することができない。
【0041】
そこで、本例では、主熱交換部7の冷媒通路7aの入口部を閉鎖(図1のY部はその閉鎖部を示す)することにより、冷媒の内部洩れの検査を可能としている。すなわち、冷媒の外部洩れ検査工程で装着した蓋体20を取付座18から取り外して、その代わりに図示しない検査治具の先端の弁体を取付座18の治具挿入穴(図示せず)から副熱交換部8内に挿入して、検査治具の先端の弁体17により図1のY部に相当する冷媒入口穴を閉鎖する。
【0042】
そして、接続管13cは適宜の盲蓋で閉塞し、出口管13bは開口したままにしておく。
しかるのち、蒸発器6を密閉室内に搬入し、入口管13aに洩れ検査用流体(例えばヘリウムガス)の供給装置を接続して、この検査用流体を所定圧力に加圧して入口管13aから蒸発器6の副熱交換部8の入口側冷媒通路8a内に供給し、副熱交換部8の入口側冷媒通路8aから出口側冷媒通路8bへの流体洩れ(出口管13bを通して密閉室内への流体洩れ)の有無を検査する。
【0043】
つまり、図1の矢印Xのような内部洩れがあるときは、出口管13bを通して密閉室内へ流体が洩れてくるので、内部洩れの発生を検知できる。
6.蓋体装着工程
外部洩れ検査及び内部洩れ検査により、洩れなしと判定された良品については、検査治具を取付座18から取り外して、その代わりに蓋体20を取付座18にねじ込みで装着する。
【0044】
以上により蒸発器6の骨格構造の製造を終了でき、この後は表面処理等の仕上げを行うことにより、蒸発器6の製造を完了できる。
【図面の簡単な説明】
【図1】本発明方法を適用する蒸発器を含む冷凍サイクル図である。
【図2】本発明方法を適用する蒸発器を示す斜視図である。
【図3】図2の蒸発器の分解斜視図である。
【図4】(a)は上記蒸発器の主熱交換部の金属薄板積層ユニットの斜視図、(b)は(a)のタンク部拡大断面図である。
【図5】図2、3に示す蒸発器の組付体を保持する組付用治具を示す分解状態の斜視図である。
【図6】図2、3に示す蒸発器の組付体を組付用治具により保持した状態を示す斜視図である。
【図7】(a)は蒸発器組付体搬送用キャリアの概要構成図、(b)は(a)の一部拡大図である。
【図8】(a)は蒸発器組付体の組付当初(ろう付け前)の概要側面図、(b)は蒸発器組付体のろう付け後の概要側面図である。
【符号の説明】
6…蒸発器、7…主熱交換部、7a…冷媒通路、7b…金属薄板、
8…副熱交換部、8a…入口側冷媒通路、8b…出口側冷媒通路、
8c…金属薄板、11…コルゲートフィン、12…端板、
13…配管コネクタ部材、A…下治具、B…上治具、C…縦治具、
D…キャリア、E…保持棚。
[0001]
[Industrial application fields]
The present invention relates to a stacked heat exchanger in which a fluid passage is formed by a laminated structure of thin metal plates, and more particularly to a method for manufacturing a stacked heat exchanger having a sub heat exchange section that exchanges heat between internal fluids flowing in a fluid passage. Therefore, it is suitable for use in a refrigerant evaporator of a refrigeration cycle of an automotive air conditioner.
[0002]
[Prior art]
In Japanese Patent Application Laid-Open No. 5-196321, the applicant of the present application has proposed a stacked heat exchanger having a sub heat exchange section that exchanges heat between internal refrigerants flowing in a fluid passage. The above-mentioned publication is specifically applied as a refrigerant evaporator of a refrigeration cycle, and in addition to a main heat exchange unit that performs heat exchange between a normal refrigerant and air, A sub heat exchange unit (refrigerant-refrigerant heat exchange unit) is provided to reduce the dryness of the refrigerant flowing into the inlet tank of the main heat exchange unit by exchanging heat between the refrigerant and the refrigerant at the evaporator outlet side. .
[0003]
By the action of this sub heat exchange part, the dryness of the refrigerant flowing into the inlet tank of the main heat exchange part is greatly reduced, so that the refrigerant in the inlet tank is in a state close to a liquid single phase. When distributing the refrigerant to a large number of tubes, the liquid refrigerant can be uniformly distributed to each tube. In addition, the inner surface of each tube is covered with the liquid refrigerant, the heat transfer coefficient on the inner surface of the tube is improved, and these can be combined to improve the cooling performance of the evaporator.
[0004]
[Problems to be solved by the invention]
By the way, although the thing of the said gazette is laminated | stacked and manufactured by laminating | stacking the metal thin plate which comprises a refrigerant path, and joining to integral structure by brazing, it is based on trial manufacture and experiment examination of these inventors. For example, since it has a sub heat exchange part (refrigerant-refrigerant heat exchange part) which is not provided in a normal evaporator, it has been found that the following problems occur when the evaporator is manufactured.
[0005]
That is, the auxiliary heat exchange part improves the heat transfer action on the refrigerant side of the inner surface of the evaporator tube as described above, but does not contribute to the air side heat transfer at all for the evaporator that cools the conditioned air. It becomes dead space. Therefore, the auxiliary heat exchange part is required to be as small as possible when commercializing the evaporator.
By the way, in the main heat exchanging part, in order to prevent displacement of the stacking position of the thin metal plates during the assembly, corrugated fins are interposed between the two thin metal plates and the two thin metal plates are caulked by the tank portion. These three are integrated as a unit in advance, but the auxiliary heat exchange part cannot secure the caulking space of the tank part from the above-mentioned miniaturization request, and is not integrated by caulking the metal thin plate. Deviations in the stacking position of the thin metal plates are likely to occur due to vibration during transfer to the brazing furnace and reduction in the height dimension of the laminated assembly due to melting of the brazing material in the brazing furnace.
[0006]
In addition, because of the above demand for miniaturization, the brazing margin (brazing area) between the thin metal plates itself must be set smaller in the sub heat exchange section than in the main heat exchange section.
For the above reasons, there is a problem in that the sub heat exchange part is more likely to cause brazing defects due to misalignment of the lamination positions of the metal thin plates than the main heat exchange part. This poor brazing of the auxiliary heat exchange part causes a fatal defect of refrigerant leakage.
[0007]
The present invention has been made in view of the above points, and in a stacked heat exchanger having a sub heat exchange section that exchanges heat between internal fluids flowing in a fluid passage, the stack heat position of the sub heat exchange section is caused by a shift. An object of the present invention is to provide a production method that can satisfactorily eliminate brazing defects.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following technical means. In the invention according to claim 1, a main heat exchange part (7) for exchanging heat between the internal fluid flowing in the fluid passage (7a) and the external fluid flowing outside the fluid passage (7a),
Heat exchange is performed between the internal fluid flowing into the inlet side of the fluid passage (7a) of the main heat exchanging portion (7) and the internal fluid flowing out from the outlet side of the fluid passage (7a) of the main heat exchanging portion (7). An auxiliary heat exchange section (8)
The fluid passages (7a, 8a, 8b) of the main and sub heat exchange sections (7, 8) are formed by a laminated structure of a plurality of thin metal plates (7b, 8c),
The main heat exchanging part (7) is a manufacturing method of a laminated heat exchanger provided with a fin member (11) for increasing the heat transfer area on the external fluid side,
The main heat exchange part (7) and the sub heat exchange part (8) are temporarily assembled in a predetermined structure in which the plurality of thin metal plates (7b, 8c) are stacked in the vertical direction , respectively, and the main heat exchange And holding the two heat exchanging parts in a vertical direction with jigs (A, B, C) so that the part (7) is on the upper side and the auxiliary heat exchanging part (8) on the lower side. ,
Next, the assembly composed of the two heat exchange parts (7, 8) is maintained while maintaining the positional relationship in which the main heat exchange part (7) is above and the sub heat exchange part (8) is below. The present invention is characterized by a method of manufacturing a laminated heat exchanger comprising a step of integrally brazing in a furnace.
[0009]
In the invention according to claim 2, the main heat exchange section (7) for exchanging heat between the internal fluid flowing in the fluid passage (7a) and the external fluid flowing outside the fluid passage (7a),
Heat exchange is performed between the internal fluid flowing into the inlet side of the fluid passage (7a) of the main heat exchanging portion (7) and the internal fluid flowing out from the outlet side of the fluid passage (7a) of the main heat exchanging portion (7). An auxiliary heat exchange section (8)
The fluid passages (7a, 8a, 8b) of the main and sub heat exchange sections (7, 8) are formed by a laminated structure of a plurality of thin metal plates (7b, 8c),
The main heat exchanging part (7) is a manufacturing method of a laminated heat exchanger provided with a fin member (11) for increasing the heat transfer area on the external fluid side,
The fin member (11) is interposed between two thin metal plates (7b), and the two thin metal plates (7b) and the fin member (11) are integrated into one unit. Stacking a predetermined number of layers in the vertical direction and temporarily assembling the main heat exchange part (7) to a predetermined structure;
A step of laminating a predetermined number of metal thin plates (8c) in a vertical direction and temporarily attaching the auxiliary heat exchange part (8) to a predetermined structure;
The main heat exchanging part (7) is on the upper side and the sub heat exchanging part (8) is on the lower side, and both the heat exchanging parts (7, 8) are vertically moved by jigs (A, B, C). Tightening to hold together,
Next, the assembly composed of the two heat exchange parts (7, 8) is maintained while maintaining the positional relationship in which the main heat exchange part (7) is above and the sub heat exchange part (8) is below. The present invention is characterized by a method of manufacturing a laminated heat exchanger comprising a step of integrally brazing in a furnace.
[0010]
In the invention according to claim 3, the main heat exchange section (7) for exchanging heat between the refrigerant flowing in the refrigerant passage (7a) and the fluid to be cooled flowing outside the refrigerant passage (7a);
An inlet side refrigerant flowing into the inlet side of the refrigerant passage (7a) of the main heat exchange part (7) and an outlet side refrigerant flowing out from the outlet side of the refrigerant path (7a) of the main heat exchange part (7). A secondary heat exchange section (8) for heat exchange,
The refrigerant passages (7a, 8a, 8b) of the main and sub heat exchange sections (7, 8) are formed by a laminated structure of a plurality of thin metal plates (7b, 8c),
The main heat exchanging part (7) is a manufacturing method of a laminated refrigerant evaporator provided with a fin member (11) that increases a heat transfer area on the cooled fluid side,
The main heat exchange part (7) and the sub heat exchange part (8) are temporarily assembled in a predetermined structure in which the plurality of thin metal plates (7b, 8c) are stacked in the vertical direction , respectively, and the main heat exchange The two heat exchange parts (7, 8) are tightened up and down by jigs (A, B, C) so that the part (7) is at the top and the auxiliary heat exchange part (8) is at the bottom. A step of holding
Next, the assembly composed of the two heat exchange parts (7, 8) is maintained while maintaining the positional relationship in which the main heat exchange part (7) is above and the sub heat exchange part (8) is below. The present invention is characterized by a method for manufacturing a laminated refrigerant evaporator comprising a step of integrally brazing in a furnace.
[0011]
In the invention according to claim 4, the main heat exchanging part (7) for exchanging heat between the refrigerant flowing in the refrigerant passage (7a) and the fluid to be cooled flowing outside the refrigerant passage (7a),
An inlet side refrigerant flowing into the inlet side of the refrigerant passage (7a) of the main heat exchange part (7) and an outlet side refrigerant flowing out from the outlet side of the refrigerant path (7a) of the main heat exchange part (7). A secondary heat exchange section (8) for heat exchange,
The refrigerant passages (7a, 8a, 8b) of the main and sub heat exchange sections (7, 8) are formed by a laminated structure of a plurality of thin metal plates (7b, 8c),
The main heat exchanging part (7) is a manufacturing method of a laminated refrigerant evaporator provided with a fin member (11) that increases a heat transfer area on the cooled fluid side,
The fin member (11) is interposed between two thin metal plates (7b), and the two thin metal plates (7b) and the fin member (11) are integrated into one unit. Stacking a predetermined number of layers in the vertical direction and temporarily assembling the main heat exchange part (7) to a predetermined structure;
A step of laminating a predetermined number of metal thin plates (8c) in a vertical direction and temporarily attaching the auxiliary heat exchange part (8) to a predetermined structure;
The main heat exchanging part (7) is on the upper side and the sub heat exchanging part (8) is on the lower side, and both the heat exchanging parts (7, 8) are vertically moved by jigs (A, B, C). Tightening to hold together,
Next, the assembly composed of the two heat exchange parts (7, 8) is maintained while maintaining the positional relationship in which the main heat exchange part (7) is above and the sub heat exchange part (8) is below. The present invention is characterized by a method for manufacturing a laminated refrigerant evaporator comprising a step of integrally brazing in a furnace.
[0012]
According to a fifth aspect of the present invention, in the method for manufacturing a stacked refrigerant evaporator according to the third or fourth aspect, the heat exchange parts held integrally by the jigs (A, B, C) are It is mounted on a holding shelf of a movable carrier via a jig (A, B, C) and moved to the furnace.
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of the Example description described later.
[0013]
[Effects of the invention]
According to invention of Claims 1-5, since it has the said technical means, when conveying the assembly | attachment body of a heat exchanger (6) to a brazing furnace, a sub heat exchange part (8) Is located below the main heat exchange section (7), the center of gravity of the sub heat exchange section (8) is low. For this reason, even if vibration is applied to the assembly in the middle of conveyance, the stacking position of the thin metal plate (8c) of the auxiliary heat exchange section (8) is not easily displaced.
[0014]
Moreover, since the weight of the main heat exchange part (7) placed above the auxiliary heat exchange part (8) is added, the brazing material of the heat exchanger assembly is melted in the brazing furnace. Even if the height dimension of the heat exchanger assembly is reduced and the pressing force applied to the assembly by the jig does not act, the stacking position of the metal thin plate (8c) of the heat exchange section (8) is shifted. Is unlikely to occur.
[0015]
As described above, in the sub heat exchange section (8), it is possible to sufficiently reduce the brazing failure due to the deviation of the lamination position of the metal thin plates (8c). Therefore, it is possible to increase the size of the auxiliary heat exchanging portion (8) by caulking the metal thin plate (8c) and integrating the adjacent metal thin plates (8c) with each other or expanding the brazing margin of the metal thin plate (8c). There is no need to adopt a connected approach.
[0016]
As a result, it is possible to achieve both a reduction in the brazing failure of the auxiliary heat exchange section (8) and a reduction in size.
[0017]
【Example】
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 shows a refrigeration cycle of an automobile air conditioner to which a refrigerant evaporator manufactured by the method of the present invention is applied. Reference numeral 1 denotes a compressor, which is an automobile engine (drive source, not shown) via an electromagnetic clutch 2. It is driven by. Reference numeral 3 denotes a condenser, which cools and condenses the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 by exchanging heat with blown air from a cooling fan (not shown).
[0018]
4 is a liquid receiver that stores the liquid refrigerant condensed in the condenser 3 and leads only the liquid refrigerant to the downstream side of the cycle, 5 is a temperature-actuated expansion valve that constitutes a pressure reducing means for the refrigerant, and 5a is a temperature sensing cylinder. is there. Reference numeral 6 denotes a stacked refrigerant evaporator according to the present invention.
The evaporator 6 includes a main heat exchanging unit 7 for exchanging heat between the refrigerant flowing in the refrigerant passage 7a and the air-conditioning blown air (cooled fluid) flowing outside the refrigerant passage 7a.
A sub heat exchanging portion 8 for exchanging heat between the refrigerant flowing into the inlet side of the refrigerant passage 7a of the main heat exchanging portion 7 and the refrigerant flowing out from the outlet side of the refrigerant passage 7a of the main heat exchanging portion 7; ing.
[0019]
Here, in the auxiliary heat exchange unit 8, 8 a denotes an inlet side refrigerant passage through which refrigerant flows into the inlet side of the refrigerant passage 7 a of the main heat exchange unit 7, and 8 b denotes the refrigerant passage 7 a of the main heat exchange unit 7. 2 shows an outlet side refrigerant passage through which refrigerant flowing out from the outlet side of the refrigerant flows. Accordingly, the auxiliary heat exchange unit 8 constitutes a refrigerant-refrigerant heat exchange unit. On the other hand, the main heat exchange unit 7 constitutes a refrigerant evaporation unit (refrigerant-air heat exchange unit) in which the refrigerant absorbs heat from the blown air and evaporates.
[0020]
9 is a narrow passage having a minute cross-sectional area formed in a meandering manner between the inlet side refrigerant passage 8a of the auxiliary heat exchange section 8 and the inlet portion of the refrigerant passage 7a of the main heat exchange section 7, and is generally called a capillary tube. Serves as a decompression means. However, the degree of pressure reduction by the throttle passage 9 is set to be smaller than the degree of pressure reduction of the expansion valve 5, and this throttle passage 9 provides a pressure difference of the refrigerant between the upstream side and the downstream side so that sub heat exchange is performed. By making a difference in temperature between the refrigerant temperature of the inlet side refrigerant passage 8a in the section 8 and the refrigerant temperature of the outlet side refrigerant passage 8b, heat exchange between both the passages 8a and 8b is favorably performed. It is.
[0021]
10 is a constant pressure valve. When the heat load of the refrigeration cycle is significantly reduced as in winter, and the pressure difference before and after that is less than a set value, the valve is opened and the liquid refrigerant from the liquid receiver 4 is depressurized by a predetermined amount directly. It is made to flow into the inlet of the refrigerant passage 7a of the main heat exchange part 7.
Under low load conditions in winter, the refrigerant pressure in the condenser 3 decreases, the resistance of the throttle passage 9 occupying the pressure difference from the refrigerant pressure in the evaporator 6 increases, the refrigerant flow rate decreases, and the passenger compartment In the inside air circulation mode in which air is circulated, a small flow amount of refrigerant may absorb heat from a relatively high temperature inside air, and the outlet refrigerant temperature of the main heat exchange unit 7 may become higher than the inlet refrigerant temperature. As a result, the sub heat exchange unit 8 has a problem that the inlet side refrigerant is heated by the outlet refrigerant of the main heat exchange unit 7.
[0022]
Therefore, under such a low load condition, the constant pressure valve 10 is opened to prevent the occurrence of the above problem.
The main and auxiliary heat exchanging portions 7 and 8 and the throttle passage 9 are formed by a laminated structure of thin metal plates, and the specific structure may be basically the same as that of JP-A-5-196321. 2 and 3, the main heat exchanging unit 7 forms a metal thin plate 7b, specifically, a double-sided clad material in which a brazing material is clad on both sides of an aluminum core material into a predetermined shape. A large number of refrigerant passages 7a are formed in parallel by laminating a large number of two sheets as one set and joining them by brazing.
[0023]
Each of the plurality of refrigerant passages 7a has a U-shape that makes a U-turn in the upper direction in FIGS. 1 and 2, and the inlet portion and the outlet portion of each U-shaped refrigerant passage 7a are respectively formed on the inlet side formed in the lower portion of the passage. The tank portion 7c and the outlet side tank portion 7d communicate with each other in the core depth direction.
In the main heat exchanging section 7, corrugated fins (fin means) 11 are joined to the gaps between the outer surfaces of the adjacent refrigerant passages 7a to increase the heat transfer area on the air side.
[0024]
Similarly, in the auxiliary heat exchanging section 8, a thin metal plate 8c, specifically, a double-sided clad material in which a brazing material is clad on both sides of an aluminum core is formed into a predetermined shape, and a large number of these are laminated and brazed. By joining, the inlet side refrigerant passages 8a and the outlet side refrigerant passages 8b are alternately formed between the multiple thin metal plates 8c having a laminated structure.
[0025]
Here, a pipe connector member 13 is joined to the end plate 12 of the auxiliary heat exchange unit 8, and the gas-liquid two-phase refrigerant decompressed by the expansion valve 5 flows into the pipe connector member 13. An inlet pipe 13a, an outlet pipe 13b from which the gas refrigerant sucked from the evaporator 6 to the compressor 1 flows out, and a connection pipe 13c that connects the downstream side of the throttle passage 9 to the downstream side of the constant pressure valve 10 are arranged. It is installed.
[0026]
Further, a jig insertion hole (not shown) for inspecting refrigerant leakage (internal leakage) between the inlet-side refrigerant passage 8a and the outlet-side refrigerant passage 8b of the auxiliary heat exchange section 8 is formed in the end plate 12. A mounting seat 18 is joined by brazing, and a sealing member 20 for closing the jig insertion hole is detachably attached to the mounting seat 18 with a screw.
The refrigerant from the inlet pipe 13a flows into the inlet side tank portion 8d of the inlet side refrigerant passage 8a formed in the upper part of the thin metal plate 8c, and the inlet side tank portion 8d itself The opening communicates in the core depth direction.
[0027]
On the other hand, an outlet side tank portion 8e of the inlet side refrigerant passage 8a is formed in the lower part of the thin metal plate 8c, and this outlet side tank portion 8e is also communicated in the core depth direction at its own opening. An inlet-side refrigerant passage 8a is formed in a meandering manner from the upper inlet-side tank portion 8d toward the lower outlet-side tank portion 8e.
Further, the throttle passage 9 described above is formed between the thin metal plate 7 b ′ closest to the sub heat exchanging portion 8 in the main heat exchanging portion 7 and the intermediate thickness between the main and sub heat exchanging portions 7, 8. It is formed between the plate 14.
[0028]
The refrigerant flowing out from the outlet side tank portion 8e of the inlet side refrigerant passage 8a of the auxiliary heat exchange portion 8 passes through a passage hole (not shown) formed in the intermediate plate 14, and then flows into the inlet portion 9a of the throttle passage 9. To do. After passing through the throttle passage 9, the refrigerant flows from the outlet portion 9 b of the throttle passage 9 through another passage hole (not shown) formed in the intermediate plate 14 and again flows into the auxiliary heat exchange portion 8 side. After that, it passes through the relay tank portion 8h, passes through another passage hole formed in the intermediate plate 14, and flows into the inlet side tank portion 7c of the main heat exchange portion 7.
[0029]
And from here, a refrigerant | coolant flows through each refrigerant path 7a of the main heat exchange part 7 in the shape of a U-turn, and it collects in the outlet side tank part 7d after that.
The refrigerant gathered in the outlet side tank portion 7d passes through another passage hole (not shown) formed in the intermediate plate 14 and is formed in the lower portion of the thin metal plate 8c of the auxiliary heat exchanging portion 8. It flows into the inlet side tank part 8f of the passage 8b, and this inlet side tank part 8f communicates in the core depth direction at its own opening. On the other hand, an outlet side tank portion 8g of the outlet side refrigerant passage 8b is formed on the upper part of the thin metal plate 8c, and this outlet side tank portion 8g is also communicated in the core depth direction at its own opening. An outlet side refrigerant passage 8b is formed from the lower inlet side tank portion 8f toward the upper outlet side tank portion 8g.
[0030]
In the auxiliary heat exchanging section 8, the inlet side refrigerant passages 8a and the outlet side refrigerant passages 8b are alternately formed on both front and back sides of the laminated metal thin plates 8c. The refrigerant flows out from the outlet side tank portion 8g of the outlet side refrigerant passage 8b to the outlet pipe 13b of the pipe connector member 13. Reference numeral 15 denotes an end plate of the main heat exchange unit 7.
Next, the manufacturing method of the refrigerant evaporator of the present Example configured as described above will be described.
[0031]
In this embodiment, the evaporator 6 is manufactured by integrally brazing aluminum, so that the pipe connector member 13 and the mounting seat 18 which are thick parts necessary for cold forging, cutting, etc. All of the thin plate-like components other than the corrugated fins 11 that do not require the material are formed from an aluminum double-sided clad material in which a brazing material (A4104) is clad on both sides of the core material (A3003).
[0032]
The thick-walled pipe connector member 13 and mounting seat 18 and the corrugated fin 11 are formed of an aluminum bare material (A3003) that is not clad with a brazing material.
Hereinafter, the production method will be described in the order of steps.
1. In the individual assembly process main heat exchange section 7 for each of the main heat exchange section 7 and the sub heat exchange section 8, first, the burring shape section 7e of the inlet tank section 7c and the outlet tank section 7d (see FIG. 4B) The two metal thin plates 7b and 7b (7b ') sandwiching the corrugated fin 11 are integrated by caulking and the three members 11, 7b and 7b (7b') are set as one unit. FIG. 4A shows a state in which the three parties 11, 7b, 7b (7b ′) are made into one unit.
[0033]
After that, the required number of stages of the thin metal plates 7b and 7b (7b ') and the corrugated fins 11 made into one unit are laminated, and the end plate 15 is placed on the uppermost part of the laminated body, thereby assembling the main heat exchange unit 7. Finish.
On the other hand, in the auxiliary heat exchanging portion 8, the end plate 12 assembled with the pipe connector member 13, the mounting seat 18 and the like is placed at the lowermost position, and the required number of thin metal plates 8c are laminated thereon, and the intermediate plate 14 is placed at the uppermost row. To finish the assembly of the auxiliary heat exchanging unit 8.
2. Next, as shown in FIGS. 5 and 6, when stacking the main heat exchange unit 7 and the sub heat exchange unit 8 individually assembled as described above, as shown in FIGS. On the jig A, the auxiliary heat exchanging portion 8 is placed so that the end plate 12 is at the lowest position.
[0034]
At this time, the lower jig A is provided with stepped portions A1 and A2 at both ends of the upper surface so as to avoid the mounting seat 18 and the pipe connector member 13 projecting on the end plate 12, and the pipe connector member. 13 is provided with a hole A3 into which the pipes 13a, 13b and 13c are fitted. In other words, the mounting seat 18 and the pipe connector member 13 are accommodated in the stepped parts A1 and A2. The sub heat exchange unit 8 is placed on the lower jig A so as to avoid interference with the seat 18 and the pipe connector member 13.
[0035]
Thereafter, the main heat exchanging part 7 is placed above the auxiliary heat exchanging part 8 so that the end plate 15 is at the uppermost position. Then, after placing the upper jig B above the end plate 15, the two vertical jigs C formed in a U-shape are separated from the lower side of the lower jig A and the upper side by a predetermined interval. The vertical jig C is assembled between the upper side surfaces of the jig B, and a predetermined pressing force is applied between the lower jig A and the upper jig B to maintain the laminated state of the entire evaporator 6.
[0036]
The upper bending piece C1 of the vertical jig C is fitted and held in a guide piece B1 provided integrally on the upper side surface of the upper jig B. Further, the lower bending piece C2 of the vertical jig C is fitted and held in a guide piece A4 integrally provided on the lower side surface of the lower jig A. Here, each guide piece A4, B1 is configured as a set of two pieces as shown in the figure, and the interval between the two pieces is set corresponding to the plate thickness of the vertical jig C.
3. The assembly of the evaporator 6 is mounted on the holding shelf E of the carrier D shown in FIG. 7 while maintaining the stacked state of the heat exchange parts 7 and 8 by the vertical brazing process vertical jig C of the entire evaporator 6. Placed on. At this time, the mounting posture of the assembly is maintained by fitting the lower end portion of the vertical jig C into the fitting groove (hole) F of the holding shelf E.
[0037]
Since the carrier D is suspended by a hanger G disposed on the top thereof and is movable, the carrier D is loaded into a vacuum furnace and the assembly is heated to the melting point of the brazing material of the aluminum clad material or higher. Then, the joint portions of the respective parts of the assembly are joined together by brazing, and the entire evaporator 6 is made into an integral structure.
By the way, when the assembly of the evaporator 6 is placed on the holding shelf E of the carrier D and transported to the vacuum furnace, the auxiliary heat exchange unit 8 is located below the main heat exchange unit 7, The center of gravity of the auxiliary heat exchange unit 8 is low. For this reason, even if vibration is applied from the carrier D to the assembly in the middle of conveyance, the stacking position of the metal thin plates 8c of the auxiliary heat exchange unit 8 is unlikely to shift.
[0038]
Moreover, the brazing material of the evaporator assembly is melted in the brazing furnace, and the height dimension of the heat exchanger assembly is changed from H at the beginning of assembly shown in FIG. 8 (a) to FIG. 8 (b). Even when the gap I is generated and the pressing force is not applied to the assembly by the vertical jig C, the auxiliary heat exchange unit 8 is placed above the main heat exchange. Since the weights of the portion 7 and the upper jig B are added, the close contact state of the thin metal plate 8c of the auxiliary heat exchanging portion 8 is continued, and the stacking position of the thin metal plate 8c is hardly displaced.
[0039]
As described above, in the auxiliary heat exchanging unit 8, it is possible to sufficiently reduce the brazing failure due to the deviation of the stacking position of the metal thin plates 8c. Therefore, the auxiliary heat exchanging portion 8 is configured such that the tank portions (8d, 8e, 8f, 8g) of the thin metal plate 8c are caulked so that the adjacent thin metal plates 8c are integrated with each other or the brazing margin of the thin metal plate 8c is increased. It is not necessary to adopt a method that leads to an increase in the size of the system.
[0040]
As a result, it is possible to achieve both a reduction in brazing failure of the auxiliary heat exchange unit 8 and a reduction in size.
4). Step of inspecting external leakage of refrigerant Next, the evaporator 6 is carried into a sealed chamber, and a leakage inspection fluid (for example, helium gas) is pressurized to a predetermined pressure so that the main and sub heat exchangers 7 and 8 of the evaporator 6 The refrigerant is supplied into the refrigerant passages 7a, 8a and 8b, and the presence or absence of fluid leakage to the outside of the evaporator 6 (fluid leakage into the sealed chamber) is inspected.
5. Internal refrigerant leakage inspection process In the secondary heat exchange section 8, the state where the inlet side refrigerant passage 8a and the outlet side refrigerant passage 8b are in direct communication due to poor brazing or the like is an internal leakage (the arrow X in FIG. 1 schematically shows this internal leakage). And the normal communication state in which the inlet-side refrigerant passage 8a and the outlet-side refrigerant passage 8b communicate with each other via the refrigerant passage 7a of the main heat exchanging portion 7 is an evaporation state. The original configuration of the vessel 6 cannot be distinguished.
[0041]
Therefore, in this example, the internal leakage of the refrigerant can be inspected by closing the inlet portion of the refrigerant passage 7a of the main heat exchanging portion 7 (the Y portion in FIG. 1 indicates the closed portion). That is, the lid 20 mounted in the refrigerant external leakage inspection process is removed from the mounting seat 18, and instead, a valve body at the tip of an inspection jig (not shown) is inserted from a jig insertion hole (not shown) of the mounting seat 18. The refrigerant inlet hole corresponding to the Y portion in FIG. 1 is closed by the valve body 17 at the tip of the inspection jig.
[0042]
The connecting pipe 13c is closed with an appropriate blind lid, and the outlet pipe 13b is left open.
After that, the evaporator 6 is carried into the sealed chamber, a leakage inspection fluid (for example, helium gas) supply device is connected to the inlet pipe 13a, and the inspection fluid is pressurized to a predetermined pressure and evaporated from the inlet pipe 13a. The fluid leaks from the inlet side refrigerant passage 8a of the auxiliary heat exchange unit 8 to the outlet side refrigerant passage 8b (fluid into the sealed chamber through the outlet pipe 13b). Check for leaks.
[0043]
That is, when there is an internal leak as indicated by an arrow X in FIG. 1, the fluid leaks into the sealed chamber through the outlet pipe 13b, so that the occurrence of the internal leak can be detected.
6). Lid Installation Step For a non-defective product determined as having no leakage by the external leakage inspection and the internal leakage inspection, the inspection jig is removed from the mounting seat 18 and the lid 20 is mounted on the mounting seat 18 by screwing.
[0044]
The manufacture of the skeleton structure of the evaporator 6 can be completed as described above, and thereafter the manufacture of the evaporator 6 can be completed by finishing the surface treatment or the like.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram including an evaporator to which the method of the present invention is applied.
FIG. 2 is a perspective view showing an evaporator to which the method of the present invention is applied.
FIG. 3 is an exploded perspective view of the evaporator of FIG.
4A is a perspective view of a thin metal plate stacking unit of a main heat exchanging portion of the evaporator, and FIG. 4B is an enlarged sectional view of a tank portion of FIG. 4A.
FIG. 5 is a perspective view in an exploded state showing an assembling jig for holding the evaporator assembly shown in FIGS.
6 is a perspective view showing a state where the assembly of the evaporator shown in FIGS. 2 and 3 is held by an assembling jig. FIG.
7A is a schematic configuration diagram of a carrier for transporting an evaporator assembly, and FIG. 7B is a partially enlarged view of FIG. 7A.
FIG. 8A is a schematic side view of the evaporator assembly at the beginning of assembly (before brazing), and FIG. 8B is a schematic side view of the evaporator assembly after brazing.
[Explanation of symbols]
6 ... Evaporator, 7 ... Main heat exchange part, 7a ... Refrigerant passage, 7b ... Metal thin plate,
8 ... Sub heat exchange part, 8a ... Inlet side refrigerant passage, 8b ... Outlet side refrigerant passage,
8c ... Metal thin plate, 11 ... Corrugated fin, 12 ... End plate,
13 ... Pipe connector member, A ... Lower jig, B ... Upper jig, C ... Vertical jig,
D ... carrier, E ... holding shelf.

Claims (5)

流体通路内を流れる内部流体と前記流体通路の外部を流れる外部流体とを熱交換させる主熱交換部と、
前記主熱交換部の流体通路の入口側に流入する内部流体と、前記主熱交換部の流体通路の出口側から流出する内部流体とを熱交換させる副熱交換部とを有し、
前記主及び副熱交換部の流体通路は複数の金属薄板の積層構造により形成されており、
前記主熱交換部には前記外部流体側の伝熱面積を増大するフィン部材が備えられている積層型熱交換器の製造方法であって、
前記主熱交換部および前記副熱交換部を、それぞれ前記複数の金属薄板が上下方向に積層された所定構造に仮組付するとともに、前記主熱交換部が上方、前記副熱交換部が下方となるようにして、この両熱交換部を治具により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部からなる組付体を、前記主熱交換部が上方、前記副熱交換部が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備することを特徴とする積層型熱交換器の製造方法。
A main heat exchanging section for exchanging heat between the internal fluid flowing in the fluid passage and the external fluid flowing outside the fluid passage;
A sub heat exchange part that exchanges heat between the internal fluid flowing into the inlet side of the fluid passage of the main heat exchange part and the internal fluid flowing out from the outlet side of the fluid path of the main heat exchange part,
The fluid passages of the main and sub heat exchange parts are formed by a laminated structure of a plurality of thin metal plates,
The main heat exchanging part is a manufacturing method of a laminated heat exchanger provided with a fin member that increases a heat transfer area on the external fluid side,
The main heat exchange unit and the sub heat exchange unit are temporarily assembled in a predetermined structure in which the plurality of thin metal plates are stacked in the vertical direction, the main heat exchange unit is upward, and the sub heat exchange unit is downward. And tightening both heat exchanging parts in the vertical direction with a jig and holding them together,
Next, brazing the assembly composed of the two heat exchanging parts integrally in a furnace while maintaining a positional relationship in which the main heat exchanging part is above and the sub heat exchanging part is below. A method of manufacturing a laminated heat exchanger, comprising:
流体通路内を流れる内部流体と前記流体通路の外部を流れる外部流体とを熱交換させる主熱交換部と、
前記主熱交換部の流体通路の入口側に流入する内部流体と、前記主熱交換部の流体通路の出口側から流出する内部流体とを熱交換させる副熱交換部とを有し、
前記主及び副熱交換部の流体通路は複数の金属薄板の積層構造により形成されており、
前記主熱交換部には前記外部流体側の伝熱面積を増大するフィン部材が備えられている積層型熱交換器の製造方法であって、
2枚の金属薄板の間に前記フィン部材を介在して、前記2枚の金属薄板と前記フィン手段を1ユニットに一体化し、この一体化したユニットを上下方向に所定段数積層して前記主熱交換部を所定構造に仮組付する工程と、
金属薄板を上下方向に所定段数積層して前記副熱交換部を所定構造に仮組付する工程と、
前記主熱交換部が上方、前記副熱交換部が下方となるようにして、この両熱交換部を治具により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部からなる組付体を、前記主熱交換部が上方、前記副熱交換部が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備することを特徴とする積層型熱交換器の製造方法。
A main heat exchanging section for exchanging heat between the internal fluid flowing in the fluid passage and the external fluid flowing outside the fluid passage;
A sub heat exchange part that exchanges heat between the internal fluid flowing into the inlet side of the fluid passage of the main heat exchange part and the internal fluid flowing out from the outlet side of the fluid path of the main heat exchange part,
The fluid passages of the main and sub heat exchange parts are formed by a laminated structure of a plurality of thin metal plates,
The main heat exchanging part is a manufacturing method of a laminated heat exchanger provided with a fin member that increases a heat transfer area on the external fluid side,
The fin member is interposed between two thin metal plates, and the two thin metal plates and the fin means are integrated into one unit, and the integrated unit is stacked in a predetermined number of stages in the vertical direction to generate the main heat. A step of temporarily assembling the exchange part to a predetermined structure;
A step of stacking a predetermined number of metal thin plates in the vertical direction and temporarily attaching the auxiliary heat exchange part to a predetermined structure;
The main heat exchanging portion is on the upper side, the sub heat exchanging portion is on the lower side, and both the heat exchanging portions are tightened in the vertical direction with a jig and held together,
Next, brazing the assembly composed of the two heat exchanging parts integrally in a furnace while maintaining a positional relationship in which the main heat exchanging part is above and the sub heat exchanging part is below. A method of manufacturing a laminated heat exchanger, comprising:
冷媒通路内を流れる冷媒と前記冷媒通路の外部を流れる被冷却流体とを熱交換させる主熱交換部と、
前記主熱交換部の冷媒通路の入口側に流入する入口側冷媒と、前記主熱交換部の冷媒通路の出口側から流出する出口側冷媒とを熱交換させる副熱交換部とを有し、
前記主及び副熱交換部の冷媒通路は複数の金属薄板の積層構造により形成されており、
前記主熱交換部には前記被冷却流体側の伝熱面積を増大するフィン部材が備えられている積層型冷媒蒸発器の製造方法であって、
前記主熱交換部および前記副熱交換部を、それぞれ前記複数の金属薄板が上下方向に積層された所定構造に仮組付するとともに、前記主熱交換部が上方、前記副熱交換部が下方となるようにして、この両熱交換部を治具により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部からなる組付体を、前記主熱交換部が上方、前記副熱交換部が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備することを特徴とする積層型冷媒蒸発器の製造方法。
A main heat exchanging section for exchanging heat between the refrigerant flowing in the refrigerant passage and the cooled fluid flowing outside the refrigerant passage;
An inlet-side refrigerant that flows into the inlet side of the refrigerant passage of the main heat exchange unit, and an auxiliary heat exchange unit that exchanges heat between the outlet-side refrigerant that flows out from the outlet side of the refrigerant path of the main heat exchange unit,
The refrigerant passages of the main and sub heat exchange parts are formed by a laminated structure of a plurality of thin metal plates,
The main heat exchanging part is a method for manufacturing a laminated refrigerant evaporator, comprising a fin member that increases a heat transfer area on the cooled fluid side,
The main heat exchange unit and the sub heat exchange unit are temporarily assembled in a predetermined structure in which the plurality of thin metal plates are stacked in the vertical direction, the main heat exchange unit is upward, and the sub heat exchange unit is downward. And tightening both heat exchanging parts in the vertical direction with a jig and holding them together,
Next, brazing the assembly composed of the two heat exchanging parts integrally in a furnace while maintaining a positional relationship in which the main heat exchanging part is above and the sub heat exchanging part is below. A method for manufacturing a laminated refrigerant evaporator, comprising:
冷媒通路内を流れる冷媒と前記冷媒通路の外部を流れる被冷却流体とを熱交換させる主熱交換部と、
前記主熱交換部の冷媒通路の入口側に流入する入口側冷媒と、前記主熱交換部の冷媒通路の出口側から流出する出口側冷媒とを熱交換させる副熱交換部とを有し、
前記主及び副熱交換部の冷媒通路は複数の金属薄板の積層構造により形成されており、
前記主熱交換部には前記被冷却流体側の伝熱面積を増大するフィン部材が備えられている積層型冷媒蒸発器の製造方法であって、
2枚の金属薄板の間に前記フィン部材を介在して、前記2枚の金属薄板と前記フィン部材を1ユニットに一体化し、この一体化したユニットを上下方向に所定段数積層して前記主熱交換部を所定構造に仮組付する工程と、
金属薄板を上下方向に所定段数積層して前記副熱交換部を所定構造に仮組付する工程と、
前記主熱交換部が上方、前記副熱交換部が下方となるようにして、この両熱交換部を治具により上下方向に締め付けて一体に保持する工程と、
次に、前記両熱交換部からなる組付体を、前記主熱交換部が上方、前記副熱交換部が下方となる位置関係を維持しながら、炉中にて一体ろう付けする工程とを具備することを特徴とする積層型冷媒蒸発器の製造方法。
A main heat exchanging section for exchanging heat between the refrigerant flowing in the refrigerant passage and the cooled fluid flowing outside the refrigerant passage;
An inlet-side refrigerant that flows into the inlet side of the refrigerant passage of the main heat exchange unit, and an auxiliary heat exchange unit that exchanges heat between the outlet-side refrigerant that flows out from the outlet side of the refrigerant path of the main heat exchange unit,
The refrigerant passages of the main and sub heat exchange parts are formed by a laminated structure of a plurality of thin metal plates,
The main heat exchanging part is a manufacturing method of a laminated refrigerant evaporator, which is provided with a fin member that increases a heat transfer area on the cooled fluid side,
The fin member is interposed between two thin metal plates, and the two thin metal plates and the fin member are integrated into one unit, and the integrated unit is stacked in a predetermined number of stages in the vertical direction to generate the main heat. A step of temporarily assembling the exchange part to a predetermined structure;
A step of stacking a predetermined number of metal thin plates in the vertical direction and temporarily attaching the auxiliary heat exchange part to a predetermined structure;
The main heat exchanging portion is on the upper side, the sub heat exchanging portion is on the lower side, and both the heat exchanging portions are tightened in the vertical direction with a jig and held together,
Next, brazing the assembly composed of the two heat exchanging parts integrally in a furnace while maintaining a positional relationship in which the main heat exchanging part is above and the sub heat exchanging part is below. A method for manufacturing a laminated refrigerant evaporator, comprising:
前記治具により一体に保持された前記両熱交換部を、前記治具を介して、移動自在なキャリアの保持棚上に載置して、前記炉への移動を行うことを特徴とする請求項3または4に記載の積層型冷媒蒸発器の製造方法。  The both heat exchanging parts held integrally by the jig are placed on a holding shelf of a movable carrier via the jig and moved to the furnace. Item 5. The method for producing a stacked refrigerant evaporator according to Item 3 or 4.
JP26058094A 1994-10-25 1994-10-25 Manufacturing method of stacked heat exchanger Expired - Fee Related JP3674060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26058094A JP3674060B2 (en) 1994-10-25 1994-10-25 Manufacturing method of stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26058094A JP3674060B2 (en) 1994-10-25 1994-10-25 Manufacturing method of stacked heat exchanger

Publications (2)

Publication Number Publication Date
JPH08121985A JPH08121985A (en) 1996-05-17
JP3674060B2 true JP3674060B2 (en) 2005-07-20

Family

ID=17349926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26058094A Expired - Fee Related JP3674060B2 (en) 1994-10-25 1994-10-25 Manufacturing method of stacked heat exchanger

Country Status (1)

Country Link
JP (1) JP3674060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767041B1 (en) 2011-10-26 2017-08-14 주식회사 두원공조 Temporary Heat Exchanger assembly for brazing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687637B1 (en) * 2002-07-11 2007-02-27 한라공조주식회사 Heat exchanger
KR101008535B1 (en) * 2003-08-25 2011-01-14 한라공조주식회사 Method for manufacturing heat exchanger
FR2925664B1 (en) * 2007-12-20 2018-04-27 Valeo Systemes Thermiques Branche Thermique Habitacle UNITARY HEAT EXCHANGER FOR AN AIR CONDITIONING CIRCUIT
CN105414857A (en) * 2016-01-06 2016-03-23 合肥长城制冷科技有限公司 Novel welding fixture of wire tube evaporator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767041B1 (en) 2011-10-26 2017-08-14 주식회사 두원공조 Temporary Heat Exchanger assembly for brazing

Also Published As

Publication number Publication date
JPH08121985A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
US5533259A (en) Method of making an evaporator or evaporator/condenser
US5713217A (en) Refrigerant condenser with integral receiver
US7096932B2 (en) Multi-fluid heat exchanger and method of making same
JP3591102B2 (en) Stacked heat exchanger
JPH10238896A (en) Lamination type evaporator
JP3674058B2 (en) Manufacturing method of stacked heat exchanger
US5632161A (en) Laminated-type evaporator
US20030192681A1 (en) Heat exchanger having projecting fluid passage
JPH10103893A (en) Heat exchanger apparatus
JP3674060B2 (en) Manufacturing method of stacked heat exchanger
JPH11270927A (en) Connecting structure and connecting member for heat exchanger
JP3635689B2 (en) Refrigerant evaporator
JP4083032B2 (en) Evaporator
JP3644054B2 (en) Refrigerant evaporator
JP3541432B2 (en) Laminated heat exchanger, method of manufacturing the same, and method of inspecting leakage thereof
JP2007144502A (en) Heat exchanger
JPH03504761A (en) Plate heat exchanger
JP3674057B2 (en) Refrigerant evaporator
JPH0814703A (en) Refrigerant evaporator
US20240190203A1 (en) Thermal management fluid module for vehicle
KR101385019B1 (en) Complex Heat Exchanger
JPH10153358A (en) Stacked type heat exchanger
WO2006033371A1 (en) Integrated heat exchange apparatus
JP2569248Y2 (en) Stacked heat exchanger with separate tank
CN115435617A (en) Integrated refrigerant heat exchange module and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees