JPH08108481A - Photo-molding device - Google Patents

Photo-molding device

Info

Publication number
JPH08108481A
JPH08108481A JP6271813A JP27181394A JPH08108481A JP H08108481 A JPH08108481 A JP H08108481A JP 6271813 A JP6271813 A JP 6271813A JP 27181394 A JP27181394 A JP 27181394A JP H08108481 A JPH08108481 A JP H08108481A
Authority
JP
Japan
Prior art keywords
light
irradiating
resin
laser
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6271813A
Other languages
Japanese (ja)
Inventor
Kenji Yamano
健治 山野
Hikari Goto
光 後藤
Shizuo Shimizu
静郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKEN ENG KK
Audio Technica KK
Original Assignee
DENKEN ENG KK
Audio Technica KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKEN ENG KK, Audio Technica KK filed Critical DENKEN ENG KK
Priority to JP6271813A priority Critical patent/JPH08108481A/en
Publication of JPH08108481A publication Critical patent/JPH08108481A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Laser Beam Processing (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE: To provide a photo-molding device capable of improving curing efficiency which irradiates a photo-curable resin with light energy so as to form a three-dimensional molding, wherein optical outputs to be generated from a plurality of semiconductor laser units are focused on a position of beam focus light for irradiating the photo-curable resin with it so as to give an optical output having high energy density to the photo-curable resin. CONSTITUTION: A light irradiating device for irradiating a photo-curable resin 3 with light energy comprises a plurality of semiconductor laser units 12a, 12b, 12c... arranged adjacently. The laser beams to be generated from the semiconductor laser units are focused on a position of a beam focus light 13 at a point in a predetermined position so as to irradiate the photo-curable resin 3 with it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光硬化性の樹脂に所望
する任意形状に光エネルギーを照射して、得られた層状
の平面硬化物を積層し、3次元造形物を形成する光造形
装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical molding method for irradiating a photocurable resin with light energy in a desired arbitrary shape, laminating the obtained layered planar cured product, and forming a three-dimensional molded object. It relates to improvement of the device.

【0002】[0002]

【従来の技術】従来より、光硬化性の樹脂に光エネルギ
ーを照射して3次元造形物を形成する光造形法は、各種
のものが知られており、特に、最近では日刊工業新聞社
発行の「光造形法」(1990年10月30日発行・著
者:丸谷洋二,大川和夫,早野誠治,斉藤直一郎,中井
孝)により広く理解されるようになっている。
2. Description of the Related Art Conventionally, various stereolithography methods have been known for irradiating a photocurable resin with light energy to form a three-dimensional molding, and recently, in particular, recently published by Nikkan Kogyo Shimbun. "Stereolithography" (published on October 30, 1990, author: Yoji Marutani, Kazuo Okawa, Seiji Hayano, Naoichiro Saito, Takashi Nakai).

【0003】従来における光造形法として、特に一般的
なものは、光硬化性樹脂を貯留した上面開放形樹脂槽内
の樹脂液面近くに造形テーブルとしてのベースプレート
を設けて、このベースプレート上の樹脂自由液面に上方
から光を照射することで、プレート上に第1層目の樹脂
硬化物層を形成し、次いで、プレートを前記樹脂硬化物
層の厚さ程度だけ槽内下方へ降下させて、第1層目樹脂
硬化物層の上の樹脂に光を照射して第2層目の樹脂硬化
物層を形成するという方法を繰り返し、スライス状の樹
脂硬化物層を連続的に積層することで所望の立体形状を
成形する方法であり、この方法は槽内のテーブルを樹脂
の自由液面から順次沈下させて硬化物を積層しながら造
形物を成形するので、自由液面法と呼ばれる。
As a conventional stereolithography method, a particularly common one is to provide a base plate as a modeling table near a resin liquid level in an open top type resin tank in which a photocurable resin is stored. By irradiating the free liquid surface with light from above, the first cured resin layer is formed on the plate, and then the plate is lowered to the inside of the tank by the thickness of the cured resin layer. Repeating the method of irradiating the resin on the first resin cured product layer with light to form the second resin cured product layer, and successively laminating sliced resin cured product layers. Is a method for forming a desired three-dimensional shape. This method is called the free liquid surface method because the table in the tank is sequentially submerged from the free liquid surface of the resin to form the molded article while laminating the cured product.

【0004】また、別の方法としては、底面を光の透過
窓とした樹脂槽内の底面近くにベースプレートを設け
て、樹脂槽の下方から光を底面の透過窓よりプレート方
向へ照射してプレートと底面との間の樹脂を第1層目の
樹脂硬化物層として硬化させ、次いで、プレートを上方
へ引き上げて第1層目樹脂硬化物層を底面から剥がし、
この第1層目樹脂硬化物層と底面との間に樹脂槽下方か
らの光により、第2層目の樹脂硬化物層を形成するとい
う方法を繰り返すもので、この方法は樹脂槽の底面とプ
レートもしくは既設硬化物層との間に樹脂の液面が規制
されるので、規制液面法と呼ばれる。
As another method, a base plate is provided near the bottom in a resin tank whose bottom is a light transmission window, and light is emitted from below the resin tank toward the plate through the bottom transmission window. The resin between the bottom surface and the bottom surface is cured as a resin cured material layer of the first layer, and then the plate is pulled up to peel off the resin cured material layer of the first layer from the bottom surface.
The method of forming the second resin cured material layer by light from below the resin tank between the first layer resin cured material layer and the bottom surface is repeated. Since the liquid level of the resin is regulated between the plate and the existing cured product layer, it is called the regulated liquid level method.

【0005】また、樹脂に対して光を照射するための光
源としては、主として、紫外線領域の光エネルギーを照
射するAr(アルゴン)レーザー、He−Cd(ヘリウ
ム・カドミウム)レーザーなどの気体レーザー、また
は、可視光領域の光エネルギーを照射する半導体レーザ
ーが用いられている。
As a light source for irradiating the resin with light, a gas laser such as an Ar (argon) laser or a He-Cd (helium-cadmium) laser for irradiating light energy in the ultraviolet region is mainly used, or Semiconductor lasers that emit light energy in the visible light region are used.

【0006】[0006]

【発明が解決すべき課題】しかしながら、前記の光源の
うち、紫外線領域の光エネルギーを照射する気体レーザ
ーは、人体に対する影響があるので使用に際して充分な
注意が必要であること、また、光照射に必要なレーザー
射出端出力を得るための手段として大きな電源容量を必
要とすること、更には、この光源装置に付属する装置と
して液冷あるいは空冷の冷却装置や紫外線防護装置など
が必要となり、必然的に装置全体が大型化するという問
題点を有している。
However, among the above-mentioned light sources, the gas laser which irradiates the light energy in the ultraviolet region has an influence on the human body, so that it is necessary to exercise caution when using it. A large power supply capacity is required as a means for obtaining the required laser emission end output, and further, a liquid cooling or air cooling cooling device or an ultraviolet protection device is required as a device attached to this light source device, which is inevitable. In addition, there is a problem that the entire device becomes large.

【0007】一方、前記の光源のうち、可視光領域の光
エネルギーを照射する半導体レーザーは、非常に小型
で、かつ安価であり、ガスレーザーの10%にも満たな
い低い価格で市場に提供できるという利点を有してお
り、しかも可視光レーザーであるため取扱いに優れてい
るという特長をもっているが、その反面として、光出力
が数mWから数十mWとAr(アルゴン)レーザーなど
と比較するときわめて弱く、そのため所望の造形物を作
成するための時間が紫外線光源を用いた光造形装置に比
べて長いという問題点を有している。
On the other hand, among the above-mentioned light sources, the semiconductor laser for irradiating light energy in the visible light region is very small and inexpensive, and can be provided to the market at a price lower than 10% of that of a gas laser. It has the advantage that it is a visible light laser and is excellent in handling, but on the other hand, it has an optical output of several mW to several tens of mW, which is extremely high compared to Ar (argon) lasers. It is weak and therefore has a problem that the time for forming a desired modeled object is longer than that of an optical modeling apparatus using an ultraviolet light source.

【0008】更に、光照射装置として使用される半導体
レーザーが単体である場合には、その光出力が紫外線光
源よりも長い波長であるために、光出力の相互近接効果
とか残留露光によって、所望したものとは相違する造形
物が成形されてしまうという問題点を有している。
Further, when the semiconductor laser used as the light irradiating device is a single body, its light output has a wavelength longer than that of the ultraviolet light source, so that it is desired due to the mutual proximity effect of the light outputs or residual exposure. There is a problem that a shaped article different from the one described above is molded.

【0009】このような事情から、最近では、これらの
気体レーザーや半導体レーザーの課題を解決する目的
で、これらのレーザーの代わりに、気体レーザーや半導
体レーザーの特長を併せ持つとされている、固体レーザ
ーであるNd:YAGレーザーの第3高調波を利用する
という光照射技術が提唱されようになった。
Under these circumstances, recently, in order to solve the problems of these gas lasers and semiconductor lasers, solid-state lasers are said to have the features of gas lasers and semiconductor lasers instead of these lasers. The light irradiation technology of utilizing the third harmonic of the Nd: YAG laser has been proposed.

【0010】しかしながら、この固体レーザーであるN
d:YAGレーザーも、Nd:YAGロッドが長寿命で
あることや、励起ランプなどの消耗品の交換が気体レー
ザーのレーザーチューブ交換などに比較して安価にでき
るという利点を有する反面、半導体レーザーほどそのメ
ンテナンス性や価格的面での利点はなく、レーザー装置
としても、励起部から第2高調波についで第3高調波を
つくり出す結晶素子の光学処理やレーザー光調整のため
の光学系部品からなるので、従来の気体レーザーと同程
度の装置容量ならびに装置価格となるという問題点があ
る。
However, this solid-state laser N
The d: YAG laser also has the advantages that the Nd: YAG rod has a long life and that the consumables such as the excitation lamp can be replaced at a lower cost than the replacement of the laser tube of the gas laser. There is no advantage in terms of maintainability and price, and even a laser device is composed of optical system parts for optical processing of a crystal element and laser light adjustment for producing a second harmonic and then a third harmonic from an excitation part. Therefore, there is a problem that the device capacity and the device price are the same as those of the conventional gas laser.

【0011】また、この固体レーザーであるNd:YA
Gレーザーの第3高調波を利用する方式の技術では、ラ
ンプ励起のための装置を小型化できないという問題、更
には、紫外線硬化型の樹脂を硬化させるためには、40
0nm以下の紫外線あるいは近紫外光を含む光エネルギ
ーを照射する必要があるので、第3高調波を取り出さな
ければならず、そのため光照射装置として複雑なこと、
価格が高くなること、メンテナンスが煩雑であるなど、
総合的に見て未だ実用的段階に到っていないという問題
点がある。
Further, this solid-state laser Nd: YA
The technique of utilizing the third harmonic of the G laser cannot reduce the size of the device for exciting the lamp, and further, in order to cure the ultraviolet curable resin,
Since it is necessary to irradiate light energy including ultraviolet rays or near-ultraviolet light having a wavelength of 0 nm or less, it is necessary to extract the third harmonic wave. Therefore, the light irradiation device is complicated,
High price, complicated maintenance, etc.
Overall, there is a problem that it has not reached the practical stage yet.

【0012】このように、従来より光造形法における光
照射技術として、気体レーザー、半導体レーザー、固体
レーザーを利用する技術は開示されてはいるが、現時点
でのこれらの技術は、前記のような理由により、実際問
題として、いずれも未だ光造形法を完成の域に到達させ
るための有効な手段とはなりえていないのが実情であ
る。
As described above, as a light irradiation technique in the stereolithography method, a technique using a gas laser, a semiconductor laser, or a solid-state laser has been disclosed, but these techniques at present are as described above. For some reason, as a practical matter, none of them is an effective means to reach the completion area of stereolithography.

【0013】[0013]

【課題を解決するための手段】本発明の請求項1は、上
記のような従来における光造形法の問題点を解消するこ
とを目的として開発されたものであり、槽内の光硬化性
樹脂に所望する任意形状に光エネルギーを照射して、得
られた層状の平面硬化物を積層し、3次元形状物を成形
する光造形装置であり、光エネルギーを照射するための
光照射装置として、隣接して配置された複数個の半導体
レーザーからの光出力をビーム集束光の位置に集束して
光硬化性樹脂に照射するレーザー照射部を備えたことを
特徴とする。
Claim 1 of the present invention was developed for the purpose of solving the problems of the conventional stereolithography method as described above, and a photocurable resin in a tank. Is irradiated with light energy to a desired arbitrary shape, the obtained layered planar cured product is laminated, and is a stereolithography device for molding a three-dimensional shape, as a light irradiation device for irradiating light energy, It is characterized by comprising a laser irradiation unit for converging the light output from a plurality of semiconductor lasers arranged adjacent to each other at the position of the beam converging light and irradiating the light curable resin.

【0014】請求項2は、光エネルギーを照射するため
の光照射装置が、隣接して配置された複数個の半導体レ
ーザーからの光出力を連続光によりビーム集束光の位置
に集束して光硬化性樹脂に照射するものであることを特
徴とする。
According to a second aspect of the present invention, a light irradiating device for irradiating light energy focuses light output from a plurality of semiconductor lasers arranged adjacent to each other by continuous light at a position of beam focusing light to perform photo-curing. It is characterized in that the resin is irradiated onto the resin.

【0015】更に請求項3は、光エネルギーを照射する
ための光照射装置が、隣接して配置された複数個の半導
体レーザーからの光出力を瞬間的なパルス光によりビー
ム集束光の位置に集束して光硬化性樹脂に照射するもの
であることを特徴とする。
According to a third aspect of the present invention, a light irradiating device for irradiating light energy focuses the light output from a plurality of semiconductor lasers arranged adjacent to each other at the position of the beam focusing light by means of instantaneous pulsed light. Then, the photocurable resin is irradiated.

【0016】[0016]

【作用】本発明では、光造形装置における光照射装置と
して、隣接して配置された複数個の半導体レーザーから
発振される複数本の光出力を、ビーム集束光の位置に集
束して光硬化性樹脂に照射するので、単一の半導体レー
ザーからの光出力では得られないエネルギー密度の高い
光出力を光硬化性樹脂に照射でき、その光による照射部
分の樹脂の硬化処理時間を大幅に短縮する。
According to the present invention, as a light irradiation device in a stereolithography apparatus, a plurality of light outputs oscillated from a plurality of semiconductor lasers arranged adjacent to each other are focused at the position of the beam focusing light to be photocurable. Since the resin is irradiated, it is possible to irradiate the photocurable resin with a light output having a high energy density that cannot be obtained by the light output from a single semiconductor laser, and the curing time of the resin in the irradiated portion by the light is significantly shortened. .

【0017】また、光照射装置が複数個の半導体レーザ
ーからなるので、夫々のレーザーユニットにおける光学
系の開口数、すなわち光が焦点を結ぼうとする絞り込み
角度を大きくし、更に各レーザーユニット間における光
出力の射出角度を大きくすることにより、所望な固形物
よりも光照射装置の離反方向にできる残留露光によると
ころの、所望しない造形物の発生率を軽減することがで
きる。
Further, since the light irradiating device is composed of a plurality of semiconductor lasers, the numerical aperture of the optical system in each laser unit, that is, the narrowing angle at which the light focuses is further increased, and further, between the laser units. By increasing the emission angle of the light output, it is possible to reduce the generation rate of an undesired shaped object due to the residual exposure that can be performed in the direction away from the light irradiation device rather than the desired solid object.

【0018】[0018]

【実施例】次に、本発明に係る光造形装置の構成を、図
1に示す規制液面法による光造形装置により説明する
と、2は光硬化性樹脂3を貯留する樹脂造形槽であり、
この樹脂造形槽2は中央部が隆起した透明プレート4の
周囲に溝状に周設された形状からなっている。
EXAMPLES Next, the structure of the stereolithography apparatus according to the present invention will be described with reference to the stereolithography apparatus according to the regulated liquid level method shown in FIG. 1. Reference numeral 2 is a resin molding tank for storing the photocurable resin 3,
The resin molding tank 2 is formed in a groove shape around a transparent plate 4 having a raised central portion.

【0019】樹脂造形槽2内の光硬化性樹脂3は、槽外
に設けたポンプ9に吸引されたのち、該ポンプ9から透
明プレート4の上に供給され、樹脂造形槽2の上に設け
られたスキーマー装置10の水平移動によって、該透明
プレート4の上に積層造形物の積層スライスピッチに相
当する所定量の薄液層11を形成したのち、余剰分の樹
脂がスキーマー装置10によって樹脂造形槽2内へ戻さ
れるような循環を繰り返す。
The photocurable resin 3 in the resin molding tank 2 is sucked by a pump 9 provided outside the tank and then supplied onto the transparent plate 4 from the pump 9 and provided on the resin molding tank 2. The schematizer 10 is horizontally moved to form a predetermined amount of the thin liquid layer 11 on the transparent plate 4 corresponding to the stacking slice pitch of the layered product, and the surplus resin is resin-molded by the schematizer 10. The circulation so as to be returned to the tank 2 is repeated.

【0020】前記透明プレート4の上方には、図示外の
エレベータ装置によって上下動する造形ベースプレート
1が設けられており、また、該透明プレート4の下方に
は縦横方向に自由に移動するX−Yプロッタ5によっ
て、光照射部6より複数本のレーザー光をビーム集束光
13の位置に集束して、透明プレート4の底面を通して
該プレート上の光硬化性樹脂3に照射するためのコンピ
ュータユニット8と接続された光照射装置7が設けられ
ている。
Above the transparent plate 4, there is provided a molding base plate 1 which moves up and down by an elevator device (not shown), and below the transparent plate 4, an XY which freely moves in the vertical and horizontal directions. A computer unit 8 for focusing a plurality of laser beams from the light irradiation unit 6 to the position of the beam focusing light 13 by the plotter 5 and irradiating the photocurable resin 3 on the plate through the bottom surface of the transparent plate 4. A connected light irradiation device 7 is provided.

【0021】前記透明プレート4の下方に設けられる光
照射装置7は、図3に示すように、複数個の半導体レー
ザーユニット12a,12b,12c・・・を、前記光
照射部6に一列または複数列に隣接し配置し、各ユニッ
トの配列角度を調整することにより、夫々のレーザーユ
ニットから発振されるレーザー光が、所定位置における
一点のビーム集束光13の位置で集束して光硬化性樹脂
3に照射できるように取り付けられている。
As shown in FIG. 3, the light irradiation device 7 provided below the transparent plate 4 has a plurality of semiconductor laser units 12a, 12b, 12c, ... By arranging them adjacent to the row and adjusting the arrangement angle of each unit, the laser light oscillated from each laser unit is focused at the position of the beam-focused light 13 at one point at a predetermined position, and the photocurable resin 3 It is attached so that it can be illuminated.

【0022】また、各半導体レーザーユニット12a,
12b,12c・・・の配列角度の調整は、夫々のレー
ザーユニットにおける光学系の開口数、すなわち夫々の
レーザー光が焦点を結ぼうとする絞り込み角度を大きく
したり、あるいは夫々のレーザーユニット間における光
出力の射出角度を大きくすることにより行われる。
Further, each semiconductor laser unit 12a,
The adjustment of the array angles of 12b, 12c, ... Is performed by increasing the numerical aperture of the optical system in each laser unit, that is, by increasing the narrowing angle at which each laser beam is focused, or between the laser units. This is done by increasing the emission angle of the light output.

【0023】このように夫々のレーザーユニット間の配
列角度を適切に調整することにより、夫々のレーザー光
が集束する一点のビーム集束光13にきわめてエネルギ
ー密度の高い光出力を照射することができると共に、目
的とする所望の造形物の位置よりも離れた位置にできる
残留露光による所望しない造形物の発生率を軽減するこ
とができる。
By appropriately adjusting the array angle between the laser units in this manner, it is possible to irradiate the beam-focused light 13 at one point where the laser beams are focused with a light output having an extremely high energy density. In addition, it is possible to reduce the generation rate of an undesired shaped object due to residual exposure that can be located at a position farther than the desired desired object position.

【0024】なお、前記の各半導体レーザーユニット1
2a,12b,12c・・・から発振するレーザー光と
しては、いずれも途切れのない連続照射光をビーム集束
光13の位置に集束して光硬化性樹脂3に照射すること
が好ましいが、ビーム集束光13の位置に集束するレー
ザー光が必ずしも連続光である必要はなく、瞬間的なパ
ルス状の点滅光であってもよく、総合的にエネルギー密
度の高い光出力を得られるようなものであればよい。
Incidentally, each of the semiconductor laser units 1 described above
As the laser light oscillated from 2a, 12b, 12c, ..., it is preferable that continuous irradiation light without any interruption is focused on the position of the beam focusing light 13 to irradiate the photocurable resin 3, but the beam focusing is preferable. The laser light focused on the position of the light 13 does not necessarily have to be continuous light, and may be instantaneous pulsed blinking light as long as it can obtain a light output with a high energy density as a whole. Good.

【0025】光照射装置7による光出力の照射手段とし
ては、図1のように、光照射部6を組み込んだ光照射装
置7をX−Yプロッタ5に直接載荷する方法のほか、X
−Yプロッタ5に光学系のみからなる光照射部6を設け
て、分離した位置に配置した光照射装置7によりビーム
集束光の位置に集束させたレーザー光を光ファイバーに
より光照射部6へ送って造形部へ照射する方法を選択す
ることができる。
As means for irradiating the light output by the light irradiating device 7, as shown in FIG. 1, in addition to the method of directly loading the light irradiating device 7 incorporating the light irradiating section 6 on the XY plotter 5, X
-The Y plotter 5 is provided with the light irradiation unit 6 consisting of only the optical system, and the laser light focused at the position of the beam focusing light by the light irradiation device 7 arranged at the separated position is sent to the light irradiation unit 6 by the optical fiber. A method of irradiating the modeling portion can be selected.

【0026】また、光照射装置7およびX−Yプロッタ
5は、前記コンピュータユニット8により制御される
が、このコンピュータユニット8は、前記造形ベースプ
レート1やポンプ9、スキーマー装置10なども制御す
るほか、3次元形状の積層造形用の積層スライス毎の平
面形状を演算し、更にこれに光照射装置7が所望する平
面形状を描画するように、レーザーのスキャンスピード
や走査ピッチなどの属性データの計算も同時に行う。
The light irradiation device 7 and the XY plotter 5 are controlled by the computer unit 8. The computer unit 8 also controls the modeling base plate 1, the pump 9, the schema device 10, and the like. Calculating the planar shape of each layered slice for additive manufacturing of a three-dimensional shape, and calculating attribute data such as laser scanning speed and scanning pitch so that the planar shape desired by the light irradiation device 7 can be drawn on this. Do at the same time.

【0026】更に、コンピュータユニット8はCADを
内蔵し、3次元モデルのCAD入力から積層造形データ
の演算制御を行うもの、あるいは3次元モデルの設計は
他のコンピュータで行うもの、あるいはCTスキャナ
ー,MRI,3次元形状測定機による3次元立体形状の
認識を行う装置とのデータ授受により、該装置の積層造
形制御を行うものなど、多様な組み合わせが考えられ
る。
Further, the computer unit 8 has a built-in CAD and controls the additive manufacturing data from the CAD input of the three-dimensional model, or the three-dimensional model is designed by another computer, or the CT scanner, MRI. Various combinations are conceivable, such as one in which layered modeling control of the device is performed by exchanging data with the device that recognizes a three-dimensional solid shape by the three-dimensional shape measuring machine.

【0027】本発明の光造形装置により硬化させる樹脂
としては、特開平6−15749号により知られる樹脂
や、日本化薬(株)製のKAYARAD−DFシリーズ
樹脂などの可視光硬化型の光硬化性樹脂があげられる。
The resin to be cured by the stereolithography apparatus of the present invention is a resin known from Japanese Patent Laid-Open No. 6-15749 or a visible light curable photocurable resin such as KAYARAD-DF series resin manufactured by Nippon Kayaku Co., Ltd. Resins are mentioned.

【0028】図1に示した規制液面法による光造形装置
について、その造形プロセスを説明すると、まず、ポン
プ9により透明プレート4の上に光硬化性樹脂3を供給
したのち、スキーマー装置10を移動走査することによ
り、該透明プレート4上に造形物のスライスデータに応
じた厚みの分、つまり、図2aに示した3次元積層造形
物12における造形物層15の厚さに相当する薄液層1
1を形成する。
The modeling process of the optical modeling apparatus by the regulated liquid level method shown in FIG. 1 will be described. First, the pump 9 supplies the photocurable resin 3 onto the transparent plate 4, and then the schema apparatus 10 is operated. By moving and scanning, a thin liquid corresponding to the thickness corresponding to the slice data of the modeled object on the transparent plate 4, that is, the thickness of the modeled object layer 15 in the three-dimensional laminated object 12 shown in FIG. 2A. Layer 1
1 is formed.

【0029】次に、薄液層11の上に造形ベースプレー
ト1を下降して、薄液層11を透明プレート4と造形ベ
ースプレート1との間に挟むようにセットし、前記コン
ピュータユニット8により所望する3次元積層造形物の
各平面形状を演算制御して、得られたデータにより前記
光照射装置7を走査することにより、夫々のレーザーユ
ニット12a,12b,12cから発振される夫々のレ
ーザー光を、所定位置における一点のビーム集束光13
の位置で集束して、透明プレート4上の光硬化性樹脂3
に照射し、図2bに示すような第1層目の造形物層15
を成形する。
Next, the modeling base plate 1 is lowered onto the thin liquid layer 11, and the thin liquid layer 11 is set so as to be sandwiched between the transparent plate 4 and the modeling base plate 1, and is desired by the computer unit 8. By controlling the planar shape of the three-dimensional layered product and scanning the light irradiation device 7 based on the obtained data, the laser beams oscillated from the laser units 12a, 12b, 12c, Focused beam 13 at one point at a predetermined position
At the position of, the photo-curable resin 3 on the transparent plate 4 is focused.
The first shaped object layer 15 as shown in FIG.
Is molded.

【0030】第1層目の造形物層15が成形されたのち
は、造形ベースプレート1を上昇して、透明プレート4
上から第1層目の造形物層15を引き剥がし、次の工程
として、前記と同様な手順により透明プレート4上に薄
液層11を設けてから、造形ベースプレート1を下降し
て、この薄液層11を前記第1層目の造形物層15と透
明プレート4との間に挟み、以下同様な操作を繰り返す
ことにより順次造形物層15を積層して、目的とする所
定の3次元積層造形物14を成形する。
After the first shaped article layer 15 is formed, the shaped base plate 1 is moved up to the transparent plate 4.
The first modeling layer 15 is peeled off from the top, and in the next step, the thin liquid layer 11 is provided on the transparent plate 4 by the same procedure as described above, and then the modeling base plate 1 is lowered to remove the thin layer. The liquid layer 11 is sandwiched between the first modeling layer 15 and the transparent plate 4, and the similar operations are repeated to sequentially laminate the modeling layers 15 to obtain a desired predetermined three-dimensional lamination. The molded article 14 is molded.

【0030】光造形装置としては、本実施例で説明した
規制液面法のように、透明プレート4の上にある薄い光
硬化性樹脂の液層11の下方から光照射を行い、透明プ
レート4上に成形される造形物層15を該透明プレート
4から引き剥がし、既設積層造形物層15と透明プレー
ト4の上に次に成形される新しい造形物層15を順次積
層させていく薄液層法の外に、同じ規制液面法でも、透
明プレートの上に薄い液層を造らずに、樹脂液の貯留さ
れた槽内で造形を行う下方露光法であるとか、樹脂槽底
面とその上方に配置した透明プレートの間に、上方から
の光照射により第1層目の造形物を成形した後に、透明
プレートを上方に引き上げて前記造形物をの上に新しい
造形物を順次積層していく上方露光法であるとか、ある
いは、前記の自由液面法等の公知の光造形手段がある
が、本発明で示した改良をこれらの各種造形法に適用す
ることは充分可能である。
As the stereolithography apparatus, as in the regulated liquid level method described in this embodiment, light irradiation is performed from below the thin liquid layer 11 of the photocurable resin on the transparent plate 4, and the transparent plate 4 is irradiated. A thin liquid layer in which the molded article layer 15 to be molded above is peeled off from the transparent plate 4 and the existing laminated molded article layer 15 and a new molded article layer 15 to be molded next on the transparent plate 4 are sequentially laminated. In addition to the above method, even with the same regulated liquid level method, there is a downward exposure method in which molding is performed in a tank in which the resin liquid is stored without forming a thin liquid layer on the transparent plate, or the bottom surface of the resin tank and above it. After molding the first layer of the molded article by irradiating light from above between the transparent plates arranged in, the transparent plate is pulled upward and the new molded article is sequentially laminated on the molded article. The upper exposure method, or the above-mentioned freedom There are known optical stereolithography means surface method, etc., but it is sufficient possible to apply the improvements described in the present invention to these various stereolithography.

【0031】[0031]

【発明の効果】以上に説明したように、本発明では光照
射装置として、隣接して配置された複数個の半導体レー
ザーユニットからの光出力をビーム集束光の位置に集束
して光硬化性樹脂に照射するので、半導体レーザーが単
体である場合の光出力に比較して、密度の高い光エネル
ギーを光硬化性樹脂に集中して照射することができるの
で、光の照射により所定位置の光硬化性樹脂を硬化する
ために必要な単位硬化処理速度を大幅に短縮することが
できる。その結果、目的とする造形物の成形に必要なX
−Yプロッタによる光照射装置の移動操作時間が短くて
済み、全体としての作業能率を大幅に向上することがで
きる。
As described above, according to the present invention, as the light irradiation device, the light output from a plurality of semiconductor laser units arranged adjacent to each other is focused on the position of the beam focusing light so that the photo-curable resin. As compared to the light output when the semiconductor laser is a single unit, it is possible to irradiate the photocurable resin with a higher density of concentrated light energy, so that the photocurable resin can be irradiated with light at a predetermined position. It is possible to significantly reduce the unit curing processing speed required for curing the resin. As a result, the X required for molding the desired shaped object
-The movement operation time of the light irradiation device by the Y plotter is short, and the work efficiency as a whole can be significantly improved.

【0032】また、光照射装置が複数個の半導体レーザ
ーユニットからなるので、夫々のレーザーユニットにお
ける光学系の開口数を大きくし、更に各レーザーユニッ
ト間における光出力の射出角度を大きくすることで、所
望な固形物よりも光照射装置の離反方向にできる残留露
光によるところの、所望しない造形物の発生率を軽減す
ることができるので、ロスがなく精度の高い造形を能率
的に成形することができる。
Further, since the light irradiation device is composed of a plurality of semiconductor laser units, the numerical aperture of the optical system in each laser unit is increased, and the emission angle of the light output between the laser units is increased. Due to the residual exposure that can be performed in the direction away from the light irradiation device rather than the desired solid matter, it is possible to reduce the occurrence rate of undesired shaped objects, so that it is possible to efficiently form highly accurate modeling without loss. it can.

【0033】更に、本発明の光造形装置では、気体レー
ザーに比較して安価な光照射装置を提供することが可能
となり、光照射装置の保守点検費用を大幅に削減できと
共に、光照射装置の小型化が可能なので、装置デザイン
の設計自由度を飛躍的に向上させることができ、全体と
して価格の安価な光造形装置を提供できるという効果を
有する。
Further, in the stereolithography apparatus of the present invention, it is possible to provide an inexpensive light irradiation apparatus as compared with the gas laser, which can greatly reduce the maintenance and inspection cost of the light irradiation apparatus, and Since miniaturization is possible, there is an effect that the degree of freedom in designing the device design can be dramatically improved and an inexpensive stereolithography device can be provided as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光造形装置の構成を示す正面斜視
図である。
FIG. 1 is a front perspective view showing a configuration of an optical shaping apparatus according to the present invention.

【図2】本発明の光造形法による積層立体モデルの概念
図であり、(a) は3次元積層造形物の形状、(b) は造形
物の各層を形成する積層造形用のスライスデータを示
す。
FIG. 2 is a conceptual diagram of a layered three-dimensional model according to the stereolithography method of the present invention, where (a) is the shape of a three-dimensional layered model, and (b) is slice data for layered modeling that forms each layer of the modeled object. Show.

【図3】本発明の光造形装置に使用される光照射装置の
構成を示す斜視図である。
FIG. 3 is a perspective view showing a configuration of a light irradiation device used in the stereolithography apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1:造形ベースプレート 2:樹脂造形槽 3:光硬化性樹脂 4:透明プレート 5:X−Yプロッタ 6:光照射部 7:光照射装置 8:コンピュータユニット 9:ポンプ 10:スキーマー装置 11:薄液層 12a,12b,12c:半導体レーザーユニット 13:ビーム集束光 14:3次元積層造形物 15:造形物層 1: Modeling base plate 2: Resin modeling tank 3: Photocurable resin 4: Transparent plate 5: XY plotter 6: Light irradiation unit 7: Light irradiation device 8: Computer unit 9: Pump 10: Schematic device 11: Thin liquid Layers 12a, 12b, 12c: Semiconductor laser unit 13: Beam focusing light 14: Three-dimensional layered object 15: Object layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/10 Z // B23K 26/06 A B29K 105:24 (72)発明者 清水 静郎 東京都町田市成瀬2206 株式会社オーディ オテクニカ内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01S 3/10 Z // B23K 26/06 A B29K 105: 24 (72) Inventor Shizuo Shimizu Tokyo 2206 Naruse, Machida-shi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 槽内の光硬化性樹脂に所望する任意形状
に光エネルギーを照射して、得られた層状の平面硬化物
を積層し、3次元形状物を成形する光造形装置であり、 光エネルギーを照射するための光照射装置として、隣接
して配置された複数個の半導体レーザーからの光出力を
ビーム集束光の位置に集束して光硬化性樹脂に照射する
レーザー照射部を備えたことを特徴とする光造形装置。
1. A stereolithography apparatus for irradiating a photocurable resin in a tank with light energy in a desired arbitrary shape, laminating the obtained layered flat cured product, and molding a three-dimensional shaped product. As a light irradiating device for irradiating light energy, a laser irradiating unit for converging the light output from a plurality of semiconductor lasers arranged adjacently to the position of the beam converging light and irradiating the photocurable resin is provided. A stereolithography apparatus characterized by the above.
【請求項2】 隣接して配置された複数個の半導体レー
ザーからの光出力を連続光によりビーム集束光の位置に
集束して光硬化性樹脂に照射する請求項1の光造形装
置。
2. The stereolithography apparatus according to claim 1, wherein light output from a plurality of semiconductor lasers arranged adjacent to each other is focused on a position of beam focusing light by continuous light to irradiate the photocurable resin.
【請求項3】 隣接して配置された複数個の半導体レー
ザーからの光出力を瞬間的なパルス光によりビーム集束
光の位置に集束して光硬化性樹脂に照射する請求項1の
光造形装置。
3. The stereolithography apparatus according to claim 1, wherein the light output from a plurality of semiconductor lasers arranged adjacent to each other is focused on the position of the beam focusing light by an instantaneous pulsed light, and the photocurable resin is irradiated with the focused light. .
JP6271813A 1994-10-12 1994-10-12 Photo-molding device Pending JPH08108481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6271813A JPH08108481A (en) 1994-10-12 1994-10-12 Photo-molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6271813A JPH08108481A (en) 1994-10-12 1994-10-12 Photo-molding device

Publications (1)

Publication Number Publication Date
JPH08108481A true JPH08108481A (en) 1996-04-30

Family

ID=17505214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6271813A Pending JPH08108481A (en) 1994-10-12 1994-10-12 Photo-molding device

Country Status (1)

Country Link
JP (1) JPH08108481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085457A1 (en) * 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and its application
CN105619819A (en) * 2016-02-18 2016-06-01 苏州苏大维格光电科技股份有限公司 Three-dimensional forming device and method
CN109732923A (en) * 2019-01-02 2019-05-10 浙江大学 A kind of pre- photocuring formula extrusion 3D printing spray head towards a variety of light-sensitive materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085457A1 (en) * 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and its application
US6894712B2 (en) 2002-04-10 2005-05-17 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7015488B2 (en) 2002-04-10 2006-03-21 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7048528B2 (en) 2002-04-10 2006-05-23 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7077972B2 (en) 2002-04-10 2006-07-18 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
US7079169B2 (en) 2002-04-10 2006-07-18 Fuji Photo Film Co., Ltd. Exposure head, exposure apparatus, and application thereof
CN105619819A (en) * 2016-02-18 2016-06-01 苏州苏大维格光电科技股份有限公司 Three-dimensional forming device and method
CN109732923A (en) * 2019-01-02 2019-05-10 浙江大学 A kind of pre- photocuring formula extrusion 3D printing spray head towards a variety of light-sensitive materials
CN109732923B (en) * 2019-01-02 2024-03-12 浙江大学 Pre-photo-curing type extrusion 3D printing spray head for various photosensitive materials

Similar Documents

Publication Publication Date Title
JPH0624773B2 (en) Optical modeling method
EP3078482B1 (en) Photo-curing 3d printing device and imaging system thereof
US5076974A (en) Methods of curing partially polymerized parts
JP5971266B2 (en) Stereolithography apparatus and stereolithography method
CN108312518B (en) Internal three-dimensional direct photo-curing forming 3D printing equipment and control method thereof
JPS6235966A (en) Method and apparatus for generating 3-d object
CN112338202A (en) Metal material 3D printing method, system and equipment based on mixed laser source
CN111331841A (en) Double-optical-path photocuring 3D printing equipment and printing method thereof
CN101301792B (en) Light-curing quick moulding method based on LCD space light modulator and device
JPH10119136A (en) Photo-shaping method using selected light sources and stereoscopially shaped article to be obtained by the method
JPH08108481A (en) Photo-molding device
JP3167821B2 (en) Stereolithography
JPH09207228A (en) Optically shaping device
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH10249943A (en) Apparatus for stereo lithography
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JP6657437B2 (en) 3D printing method
JP2010052318A (en) Light shaping method
JP3490491B2 (en) Stereolithography product manufacturing method and stereolithography apparatus
JPH058307A (en) Optically shaping method
JP4092091B2 (en) Stereolithography apparatus and method
JPH0514839Y2 (en)
JPH106403A (en) Light forming machine
JPH08108480A (en) Photo-molding device
JPH0985836A (en) Light exposure apparatus