JPH08108264A - Device for controlling fluidity of molten metal - Google Patents

Device for controlling fluidity of molten metal

Info

Publication number
JPH08108264A
JPH08108264A JP24249194A JP24249194A JPH08108264A JP H08108264 A JPH08108264 A JP H08108264A JP 24249194 A JP24249194 A JP 24249194A JP 24249194 A JP24249194 A JP 24249194A JP H08108264 A JPH08108264 A JP H08108264A
Authority
JP
Japan
Prior art keywords
phase
molten steel
mold
linear motor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24249194A
Other languages
Japanese (ja)
Other versions
JP3210811B2 (en
Inventor
Keisuke Fujisaki
崎 敬 介 藤
Atsushi Fukuda
田 淳 福
Kensuke Okazawa
沢 健 介 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24249194A priority Critical patent/JP3210811B2/en
Publication of JPH08108264A publication Critical patent/JPH08108264A/en
Application granted granted Critical
Publication of JP3210811B2 publication Critical patent/JP3210811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To uniformly obtain the cleanness on the inner surface of a casting mold and to promote the float-up of gas bubble by equalizing the polarity of a magnetic pole end surface of a second set of linear motor to the polarity of the magnetic pole end surface of a first set of linear motor. CONSTITUTION: The linear motors 3F, 3L are formed with the combination of plural slot electric magnet cores 4F, 4L and electric coils inserted into the cores. The linear motors 3F, 3L generate driving force in the direction along the inner walls 1 to the molten metal MM, AC current, by which the faced end surfaces of the electric magnet cores 4F, 4L of the linear motors become the same polarity, is conducted in the electric coils. The faced electric magnet cores 4F and 4L generate repulsion magnetic field, and the permeated depth of magnetic flux to the molten steel MM is small and the magnetic flux concentrates near the inner surfaces of the mold sides. By this constitution, the inner surfaces of the mold side are cleaned and the entrapment of powder into the side surfaces of the molten steel is prevented. Further, the entrapment of gas bubble into the side surfaces of the molten steel (mold surfaces) is prevented and the clean steel slab surfaces can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳型内溶融金属の流動
速度を調整する流動制御装置に関し、特に、連続鋳造鋳
型内の溶融金属の表層流の方向を、水平方向で可及的に
一定かつ定方向にするための流動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device for adjusting the flow rate of molten metal in a mold, and more particularly, the direction of the superficial flow of molten metal in a continuous casting mold is kept constant in the horizontal direction. And a flow control device for maintaining a constant direction.

【0002】[0002]

【従来技術】例えば連続鋳造では、タンデイッシュより
鋳型に溶鋼が注入され、鋳型において溶鋼は鋳型壁面か
ら次第に冷却されつつ引き抜かれる。同一高さの鋳型壁
面における温度が不均一であると、表面割れやシェル破
断を生じ易い。これを改善するために、従来は、リニア
モ−タを用いて、鋳型内で溶鋼をその上面と平行に、鋳
型壁面に沿って流動駆動する(例えば特開平1−228
645号公報)。
2. Description of the Related Art For example, in continuous casting, molten steel is poured into a mold from a tundish, and in the mold, the molten steel is drawn out while gradually cooling from the wall surface of the mold. If the temperatures on the wall surfaces of the mold having the same height are not uniform, surface cracks and shell breakages are likely to occur. In order to improve this, conventionally, using a linear motor, the molten steel is flow-driven in the mold in parallel with the upper surface thereof along the wall surface of the mold (for example, JP-A-1-228).
645).

【0003】特開平1−228645号公報に提示の溶
鋼の流動駆動はある程度の効果があるものの、注入ノズ
ルを介してタンデイッシュに流入する溶鋼の流れにより
鋳型壁面に沿った循環流動が乱される。この種の流動駆
動には、鋳型の長辺に沿って配列された複数個の磁極の
それぞれに電気コイルを巻回したリニアモ−タ型の電磁
石が用いられ、電気コイルは3相の各相毎に束ねられ、
120°位相のずれた3相電源の各相に、束ねられた単
位で接続され、3相電源の電圧および又は周波数をイン
バ−タやサイクロコンバ−タで調整され、これにより、
所要の駆動力および速度が得られる。
Although the flow driving of molten steel presented in Japanese Patent Application Laid-Open No. 1-228645 has some effect, the circulating flow along the wall surface of the mold is disturbed by the flow of molten steel flowing into the tundish through the injection nozzle. . For this type of flow drive, a linear motor type electromagnet in which an electric coil is wound around each of a plurality of magnetic poles arranged along the long side of the mold is used, and the electric coil is for every three phases. Bundled in
It is connected to each phase of a three-phase power supply with a 120 ° phase shift in a bundled unit, and the voltage and / or frequency of the three-phase power supply is adjusted by an inverter or a cycloconverter.
The required driving force and speed are obtained.

【0004】ノズルから鋳型内には2方向に溶鋼が流れ
込む。すなわち、左,右短片に向けてかつやや溶鋼の深
さ方向に向けて溶鋼が流れ込み、鋳型短辺方向およびや
や溶鋼の深さ方向に溶鋼流(突出流)を生じ、これが鋳
型短辺に当って一部は上方に他は下方(深さ方向)に流
れ、上方に流れる溶鋼流が、短片からノズルに向かう表
層流を生ずる。ノズルから対称に両短辺に向けて同一角
度および同一流速で溶鋼が流出しているときには、ノズ
ルに関して左右の表層流が略対称であるが、ノズルの詰
りなどにより、2方向の対称性がくずれたり、溶鋼の流
出方向が長片寄りに片寄ると、左右表層流の、ノズルに
関する対称性がくずれて旋回流を生じメニスカス上のパ
ウダを巻き込み易い。一方、溶鋼が固体に変わるときに
COなどの気体(気泡)が発生する。加えて、鋳型内面
の一部に溶鋼が滞留するとパウダが溶鋼に残留し易くし
かもブレ−クアウトの原因となる焼付きとなり易い。こ
れらを防止するため、表層に安定した整流を形成させる
のが良い。
Molten steel flows from the nozzle into the mold in two directions. That is, the molten steel flows toward the left and right short pieces and slightly toward the depth direction of the molten steel to generate a molten steel flow (protruding flow) in the short side direction of the mold and in the depth direction of the molten steel, which is the short side of the mold. Some flow upward and the other downward (depth direction), and the molten steel flow flowing upward generates a superficial flow from the short piece toward the nozzle. When molten steel is flowing out from the nozzle symmetrically toward both short sides at the same angle and the same flow velocity, the surface flow on the left and right of the nozzle is substantially symmetrical, but the two-way symmetry collapses due to nozzle clogging, etc. Alternatively, if the outflow direction of the molten steel is biased toward the long side, the symmetry of the left and right surface layer flows with respect to the nozzle is broken, and a swirling flow is generated, so that the powder on the meniscus is likely to be caught. On the other hand, when molten steel changes into a solid, gas (bubbles) such as CO is generated. In addition, if the molten steel stays on a part of the inner surface of the mold, the powder is likely to remain on the molten steel, and further seizure that causes breakout is likely to occur. In order to prevent these, it is preferable to form a stable rectification on the surface layer.

【0005】そこで従来は、ノズルから鋳型内に流出す
る溶鋼流又はそれによって生ずる表層流を、鋳型壁の外
部で挟むように1対のリニアモ−タを、鋳型長辺に沿わ
せて配設し、これらで電磁駆動力を溶鋼に与えて、鋳型
内壁に沿う安定した静流を溶鋼の表層に生起しようとし
ている。表層部に鋳型内壁に沿う循環流が定速度で安定
して流れると、気泡の浮上が促進され、溶鋼中へのパウ
ダ巻き込みがなくなり、表層付近の鋳型内面がきれいに
ぬぐわれて溶鋼の滞留がなくなる。
Therefore, conventionally, a pair of linear motors are arranged along the long side of the mold so as to sandwich the molten steel flow flowing from the nozzle into the mold or the surface layer flow generated thereby outside the mold wall. The electromagnetic drive force is applied to the molten steel by these to generate a stable static flow along the inner wall of the mold in the surface layer of the molten steel. When the circulating flow along the inner wall of the mold in the surface layer stably flows at a constant speed, the floating of the bubbles is promoted, the powder entrainment in the molten steel disappears, and the inner surface of the mold near the surface layer is wiped clean and the molten steel does not stay. .

【0006】[0006]

【発明が解決しようとする課題】上述のように、注入ノ
ズルからの突出流を考慮した場合に、定速度で安定した
溶鋼流(表層流)を起こすには、強い電磁力が必要であ
り、従来は、各リニアモータごとに電源が必要な場合も
ある他、リニアモ−タから溶鋼への磁束浸透を深くする
ために、リニアモータの極数は2極程度と少なく、ま
た、リニアモータに印加する3相交流電流の周波数も1
〜2Hz程度と低い。
As described above, a strong electromagnetic force is required to generate a stable molten steel flow (surface flow) at a constant speed when the projecting flow from the injection nozzle is taken into consideration. Conventionally, a power source may be required for each linear motor, and in order to deepen the magnetic flux penetration from the linear motor to the molten steel, the number of poles of the linear motor is as small as about 2 and it is applied to the linear motor. The frequency of the three-phase alternating current is also 1
It is as low as ~ 2Hz.

【0007】しかし、注入ノズルからの突出流の強さお
よび又は不平衡を矯正せずに、メニスカス表面上におけ
る表層流のみを制御対象として、該表層流の分布(方向
および強さ)を静流に近く安定にしようとする場合に
は、大きな電磁力は必要ではなく、むしろ鋳型内壁付近
に電磁力を集中させる方がより重要となる。つまり、注
入ノズルからの突出流を対象とした、溶鋼の電磁駆動に
用いられている流動制御装置の発生する電磁力では、表
層流のみの安定化を目的とする場合においては、溶鋼へ
の磁束浸透深さ(磁界の、短辺と平行なy方向成分)が
過大であり、電磁力がメニスカス表面よりも溶鋼の深く
までに作用する為に、却ってパウダを巻き込む危険性が
ある。
However, without correcting the strength and / or imbalance of the protruding flow from the injection nozzle, only the surface flow on the surface of the meniscus is controlled, and the distribution (direction and strength) of the surface flow is determined as a static flow. When it is desired to stabilize near, the large electromagnetic force is not necessary, but it is more important to concentrate the electromagnetic force near the inner wall of the mold. In other words, in the electromagnetic force generated by the flow control device used for electromagnetically driving molten steel for the projecting flow from the injection nozzle, in the case of only stabilizing the superficial flow, the magnetic flux to the molten steel is The penetration depth (the y-direction component of the magnetic field parallel to the short side) is excessively large, and the electromagnetic force acts deeper in the molten steel than the surface of the meniscus, so that there is a risk of entraining the powder.

【0008】本発明は、メニスカス表面上における気泡
の浮上促進,溶鋼中へのパウダ巻き込み回避、および又
は、表層付近の鋳型内面のぬぐい、をより効果的にしか
も小電力にて行なうことを目的とする。
An object of the present invention is to promote the floating of bubbles on the surface of a meniscus, avoid the inclusion of powder in molten steel, and / or wipe the inner surface of the mold near the surface layer more effectively and with a small electric power. To do.

【0009】[0009]

【課題を解決するための手段】本発明の溶融金属の流動
制御装置は、溶融金属(MM)を取り囲む鋳型辺(5F,5L,6R,
6L)の一辺(5F)に沿って、鋳型内の溶鋼に対向して配置
された、複数個のスロットを有する第1組の電磁石コア
(4F)と、複数個のスロットに挿入された複数個の電気コ
イル(CF1〜CF24)の組合せでなる第1組のリニアモータ
(3F);前記一辺(5F)に対向するもう1つの辺(5L)に沿っ
て、鋳型内の溶鋼を間に置いて第1組の電磁石コア(4F)
の磁極端面に対向して配置された、複数個のスロットを
有する第2組の電磁石コア(4L)と、複数個のスロットに
挿入された複数個の電気コイル(CL1〜CL24)の組合わせ
でなる第2組のリニアモータ(3L);および、第1組のリ
ニアモータ(3F)の電気コイル(CF1〜CF24)に所定の位相
差の交流電圧を印加し、第2組のリニアモータ(3L)の電
気コイル(CL1〜CL24)に所定の位相差の、第1組のリニ
アモ−タ(3F)の磁極端面の極性に対してそれに対向する
第2組のリニアモ−タ(3L)の磁極端面の極性を同極性と
する、交流電圧を印加する、通電手段(VC,SW1〜SW4);
を備える。
[MEANS FOR SOLVING THE PROBLEMS] A molten metal flow control device of the present invention is a mold side (5F, 5L, 6R, which surrounds a molten metal (MM).
A first set of electromagnet cores having a plurality of slots arranged along one side (5F) of the 6L) so as to face the molten steel in the mold.
(4F) and a plurality of electric coils (CF1 to CF24) inserted in a plurality of slots, the first set of linear motors
(3F); The first set of electromagnet cores (4F) with the molten steel in the mold in between along the other side (5L) facing the one side (5F)
A combination of a second set of electromagnet cores (4L) having a plurality of slots and a plurality of electric coils (CL1 to CL24) inserted in the plurality of slots, which are arranged so as to face the magnetic pole end faces of The second set of linear motors (3L); and the electric coils (CF1 to CF24) of the first set of linear motors (3F) are applied with an AC voltage of a predetermined phase difference, and the second set of linear motors (3L) ) Electric coil (CL1 to CL24) with a predetermined phase difference, the magnetic pole end faces of the second set of linear motors (3L) facing the polarities of the magnetic pole end faces of the first set of linear motors (3F) Energizing means (VC, SW1 to SW4) for applying the alternating voltage to make the polarities of the same polarity;
Is provided.

【0010】なお、カッコ内には、理解を容易にするた
めに、後述する実施例中の対応する要素の符号を、参考
までに付記した。
In order to facilitate understanding, the reference numerals of corresponding elements in the embodiments described later are added in parentheses for reference.

【0011】[0011]

【作用】本発明において、溶融金属(MM)を取り囲む鋳型
辺(1)の一辺に沿って配置される、リニアモータ(3F,3L)
は、複数のスロットを有する電磁石コア(4F,4L)と、複
数個のスロットに挿入された複数個の電気コイル(CF1〜
24,CL1〜24)の組合せよりなる。リニアモータ(3F,3L)
は、溶融金属(MM)に対して鋳型辺(1)の一辺に沿う方向
に駆動力を発生する。
In the present invention, the linear motor (3F, 3L) is arranged along one side of the mold side (1) surrounding the molten metal (MM).
Is an electromagnet core (4F, 4L) having a plurality of slots and a plurality of electric coils (CF1 to 4L) inserted in the plurality of slots.
24, CL1 to 24). Linear motor (3F, 3L)
Generates a driving force with respect to the molten metal (MM) in a direction along one side of the mold side (1).

【0012】この時、各電気コイル(CF1〜24,CL1〜24)
のそれぞれに、通電手段(VC,SW1〜SW4)が、リニアモー
タの電磁石コア(4Fと4L)の相対向端面が同極となる交流
電流を通電する。これにより、対向する電磁石コア(4F
と4L)は、それぞれに反発する磁界を発生し、これによ
り溶鋼(MM)に対する磁束の浸透深さが小さく、磁束は鋳
型辺(5F,5L)の内表面近くに集中することになる。これ
により、鋳型辺(5F,5L)の内表面が拭われて溶鋼側面
(鋳型面)へのパウダ−の引込み(巻込み)が防止さ
れ、しかも、鋳型辺(5F,5L)の内表面近くでの気泡の浮
上が促進され、溶鋼側面(鋳型面)への気泡の引込み
(巻込み)が防止され、清浄な鋼片面が得られる。
At this time, each electric coil (CF1 to 24, CL1 to 24)
The energizing means (VC, SW1 to SW4) energizes each of the above with an alternating current in which the opposite end faces of the electromagnet cores (4F and 4L) of the linear motor have the same polarity. This allows the opposing electromagnet core (4F
And 4L) generate magnetic fields that repel each other, and the penetration depth of the magnetic flux into the molten steel (MM) is small, and the magnetic flux concentrates near the inner surface of the mold side (5F, 5L). As a result, the inner surface of the mold side (5F, 5L) is wiped to prevent the powder from being drawn in (engaged) on the molten steel side surface (mold surface), and moreover, near the inner surface of the mold side (5F, 5L). The air bubbles are promoted to float, the air bubbles are prevented from being drawn (engaged) into the molten steel side surface (mold surface), and a clean steel surface is obtained.

【0013】従来と較べて、溶鋼内部よりも溶鋼側面
(鋳型面)に磁束が集中し、溶鋼内部への磁束の深い浸
透を要しないので、各電気コイル(CF1〜24,CL1〜24)へ
の通電を一台の電源で行なうことができる。
Compared with the conventional case, the magnetic flux is concentrated on the molten steel side surface (mold surface) rather than the inside of the molten steel, and since deep penetration of the magnetic flux into the molten steel is not required, it is necessary to connect to each electric coil (CF1 to 24, CL1 to 24). Power can be supplied from a single power supply.

【0014】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0015】[0015]

【実施例】図1に、本発明の一実施例の外観を示す。連
続鋳造鋳型の内壁1で囲まれる空間には溶鋼MMが図示
しない注湯ノズル22を通して注入され、溶鋼MMのメ
ニスカス(表面)はパウダPWで覆われる。鋳型の内壁
1は水箱2に流れる冷却水で冷却され、溶鋼MMは鋳型
に接する表面から次第に内部に固まって行き鋳片SBが
連続的に引き抜かれるが、鋳型の内壁1内に溶鋼が注が
れるので、鋳型内には常時溶鋼MMがある。溶鋼MMの
メニスカスレベル(高さ方向z)の位置に2個のリニア
モ−タ3Fおよび3Lが設けられており、これらが溶鋼
MMのメニスカス直下の部分(表層域)に電磁力を与え
る。
FIG. 1 shows the appearance of an embodiment of the present invention. Molten steel MM is injected into a space surrounded by the inner wall 1 of the continuous casting mold through a pouring nozzle 22 (not shown), and the meniscus (surface) of the molten steel MM is covered with the powder PW. The inner wall 1 of the mold is cooled by the cooling water flowing in the water box 2, the molten steel MM gradually solidifies from the surface in contact with the mold, and the slab SB is continuously withdrawn, but the molten steel is poured into the inner wall 1 of the mold. Therefore, there is always molten steel MM in the mold. Two linear motors 3F and 3L are provided at a position of the meniscus level (height direction z) of the molten steel MM, and these apply an electromagnetic force to a portion (surface layer area) immediately below the meniscus of the molten steel MM.

【0016】図2に、図1に示す内壁1を、リニアモ−
タ3F,3Lの電磁石コア4F,4L部で水平に破断し
た断面(2a−2a線拡大断面)を示し、図3には、図
2の3a−3a線拡大断面を示す。
In FIG. 2, the inner wall 1 shown in FIG.
The cross section (2a-2a line enlarged cross section) horizontally broken at the electromagnet cores 4F and 4L portions of the magnets 3F and 3L is shown, and FIG. 3 shows the 3a-3a line enlarged cross section of FIG.

【0017】図1および図2を参照すると、鋳型の内壁
1は、相対向する長辺5F,5Lおよび相対向する短辺
6R,6Lで構成されており、各辺は銅板7F,7L,
8R,8Lに、非磁性ステンレス板9F,9L,10
R,10Lを裏当てしたものである。この実施例では、
リニアモ−タ3F,3Lの電磁石コア4F,4Lは、鋳
型長辺5F,5Lの実効長(溶鋼MMが接するx方向長
さ)よりやや長く、それらの全長に深さ(y方向長さ)
の同じスロットが所定ピッチでそれぞれ24個切られて
いる。リニアモ−タ3Fの電磁石コア4Fの各スロット
には、電気コイルCF1〜CF24が装着されている。
同様に、リニアモ−タ3Lの電磁石コア4Lの各スロッ
トには、電気コイルCL1〜CL24が装着されてお
り、リニアモ−タ3F,3Lは、溶鋼MMが接する長辺
5F,5Lに沿ってx方向の推力を溶鋼MMに与えよう
とするものである。
Referring to FIGS. 1 and 2, the inner wall 1 of the mold is composed of long sides 5F and 5L facing each other and short sides 6R and 6L facing each other, and each side is a copper plate 7F, 7L.
8R, 8L, non-magnetic stainless steel plate 9F, 9L, 10
It is a backing of R and 10L. In this example,
The electromagnet cores 4F, 4L of the linear motors 3F, 3L are slightly longer than the effective lengths of the mold long sides 5F, 5L (the lengths in the x direction in contact with the molten steel MM), and the depths (the lengths in the y direction) in the entire lengths thereof.
24 of the same slot are cut at a predetermined pitch. Electric coils CF1 to CF24 are attached to the respective slots of the electromagnet core 4F of the linear motor 3F.
Similarly, electric coils CL1 to CL24 are attached to the respective slots of the electromagnet core 4L of the linear motor 3L, and the linear motors 3F and 3L are arranged in the x direction along the long sides 5F and 5L with which the molten steel MM is in contact. Is intended to be applied to the molten steel MM.

【0018】この実施例では、リニアモ−タ3F,3L
のコア4F,4Lは、鋳型長辺5F,7Lの実効長(溶
鋼MMが接するx方向長さ)よりやや長く、それらの全
長に所定ピッチでそれぞれ24個のスロットが切られて
いる。リニアモ−タ3Fのコア4Fの各スロットには、
#1グル−プの電気コイルCF1〜CF12および#2
グル−プの電気コイルCF13〜CF24が装着されて
いる。また、リニアモ−タ3Lのコア4Lの各スロット
には、#3グル−プの電気コイルCL1〜CL12およ
び#4グル−プの電気コイルCL13〜CL24が装着
されている。
In this embodiment, the linear motors 3F and 3L are used.
The cores 4F and 4L are slightly longer than the effective lengths of the mold long sides 5F and 7L (the lengths in the x direction with which the molten steel MM contacts), and 24 slots are cut at a predetermined pitch in their entire lengths. In each slot of the core 4F of the linear motor 3F,
# 1 group electric coils CF1 to CF12 and # 2
Group electric coils CF13 to CF24 are mounted. Further, the electric coils CL1 to CL12 of the # 3 group and the electric coils CL13 to CL24 of the # 4 group are mounted in each slot of the core 4L of the linear motor 3L.

【0019】図4に、本発明の一実施例の全体構成を示
すシステム図を示し、図5には、図2に示す全電気コイ
ルの、グル−プ内の結線を示す。リニアモータ3F,3
Lの各電気コイルグループ#1,#2,#3,#4は、
切換スイッチSW1,SW2,SW3,SW4を介して
3相交流電圧を発生する電源回路VCに接続されてい
る。図5に示す結線は4極(N=4)のものであり、電
気コイルに3相交流(M=3)を通電する。例えば、リ
ニアモ−タ3Fの#1グル−プの電気コイルCF1〜C
F12は、図5ではこの順に、u,u,V,V,w,
w,U,U,v,v,W,Wと表している。そして
「U」は3相交流のU相の正相通電(そのままの通電)
を、「u」はU相の逆相通電(U相より180度の位相
づれ通電)を表し、電気コイル「U」にはその巻始め端
にU相が印加されるのに対し、電気コイル「u」にはそ
の巻終り端にU相が印加されることを意味する。同様
に、「V」は3相交流のV相の正相通電を、「v」はV
相の逆相通電を、「W」は3相交流のW相の正相通電
を、「w」はW相の逆相通電を表わす。図5に示す端子
U1,V1およびW1は、リニアモ−タ3Fの#1グル
−プの電気コイルCF1〜CF12の電源接続端子であ
り、端子U2,V2およびW2は、リニアモ−タ3Fの
#2グル−プの電気コイルCF13〜CF24の電源接
続端子であり、端子U3,V3およびW3は、リニアモ
−タ3Lの#3グル−プの電気コイルCL1〜CL12
の電源接続端子であり、端子U4,V4およびW4は、
リニアモ−タ3Lの#4グル−プの電気コイルCF13
〜CF24の電源接続端子である。リニアモータ3F及
びリニアモータ3Lの対向する各コイルは、同極(磁極
端面が同一極性)となるように結線されている。
FIG. 4 shows a system diagram showing the overall construction of an embodiment of the present invention, and FIG. 5 shows the connection in the group of all the electric coils shown in FIG. Linear motors 3F, 3
Each electric coil group # 1, # 2, # 3, # 4 of L is
The changeover switches SW1, SW2, SW3, and SW4 are connected to a power supply circuit VC that generates a three-phase AC voltage. The connection shown in FIG. 5 has four poles (N = 4), and three-phase alternating current (M = 3) is applied to the electric coil. For example, the electric coils CF1 to C of the # 1 group of the linear motor 3F
F12 is u, u, V, V, w, in this order in FIG.
It is represented by w, U, U, v, v, W, W. And "U" is the positive phase energization of the U phase of the three-phase AC (as it is energization)
"U" represents the reverse phase energization of the U phase (180 degrees out of phase from the U phase), and the U phase is applied to the winding start end of the electric coil "U", while the electric coil "U" means that the U phase is applied to the end of the winding. Similarly, “V” is the positive-phase energization of V-phase of three-phase AC, and “v” is V
"W" represents the W-phase positive phase energization of three-phase AC, and "w" represents the W-phase anti-phase energization. Terminals U1, V1 and W1 shown in FIG. 5 are power supply connection terminals of the electric coils CF1 to CF12 of the # 1 group of the linear motor 3F, and terminals U2, V2 and W2 are # 2 of the linear motor 3F. Power supply connection terminals for the electric coils CF13 to CF24 of the group, and terminals U3, V3 and W3 are electric coils CL1 to CL12 of the # 3 group of the linear motor 3L.
The power supply connection terminals of, and terminals U4, V4 and W4 are
Electric coil CF13 of # 4 group of linear motor 3L
~ CF24 power supply connection terminals. The opposing coils of the linear motor 3F and the linear motor 3L are connected so as to have the same pole (the magnetic pole end faces have the same polarity).

【0020】リニアモータ3Lの#1グループの各電気
コイルCF1〜CF12は、切換リレ−スイッチSW1
を介して3相交流電圧を発生する電源回路VCに接続さ
れている。図4に示されるように、スイッチSW1が、
そのリレ−コイルに通電がある状態(これをSW1:O
Nと称す)では、電源回路VCより電気コイルCF1〜
CF12の電源端子U1には3相交流のU相が供給さ
れ、電源端子V1には3相交流のV相が供給されるとと
もに、電源端子W1には3相交流のW相が供給されるの
で、#1グループの各電気コイルCF1〜CF12は、
溶鋼MMに対して図4に実線矢印で示すように、紙面
に向い、x方向右に向う移動磁界を与え、これにより溶
鋼MMに該方向の推力が加わる。スイッチSW1のリレ
−コイルへの通電が遮断された状態(これをSW1:O
FFと称す)では、電源回路VCのV相出力及びW相出
力に対して電源端子V1とW1の接続が交換されて、電
源端子V1には3相交流のW相が供給されるとともに、
電源端子W1には3相交流のV相が供給されるので、#
1グループの各電気コイルCF1〜CF12は、溶鋼M
Mに対して図4に示す実線矢印とは反対の、紙面に向
いx方向左に向う移動磁界を与え、これにより溶鋼MM
に該方向の推力が加わる。
Each of the electric coils CF1 to CF12 of the # 1 group of the linear motor 3L has a switching relay switch SW1.
Is connected to a power supply circuit VC that generates a three-phase AC voltage. As shown in FIG. 4, the switch SW1 is
The relay coil is energized (switch this to SW1: O
N)), the electric coils CF1 to CF1 from the power supply circuit VC.
The power supply terminal U1 of the CF12 is supplied with the U phase of the three-phase AC, the power supply terminal V1 is supplied with the V phase of the three-phase AC, and the power supply terminal W1 is supplied with the W-phase of the three-phase AC. , The electric coils CF1 to CF12 of the # 1 group are
As shown by the solid arrow in FIG. 4, a moving magnetic field is applied to the molten steel MM, which is directed toward the paper surface and to the right in the x direction, whereby a thrust force in that direction is applied to the molten steel MM. The state in which the power supply to the relay coil of the switch SW1 is cut off (this is set to SW1: O
(Referred to as FF), the connection between the power supply terminals V1 and W1 is exchanged for the V-phase output and the W-phase output of the power supply circuit VC, and the W-phase of the three-phase AC is supplied to the power supply terminal V1.
Since the V phase of the three-phase AC is supplied to the power supply terminal W1,
Each of the electric coils CF1 to CF12 of one group is made of molten steel M.
A moving magnetic field that is opposite to the solid arrow shown in FIG.
The thrust in that direction is applied to.

【0021】同様に、リニアモータ3Fの#2グループ
の各電気コイルCF13〜CF24は、切換リレ−スイ
ッチSW2を介して3相交流電圧を発生する電源回路V
Cに接続されている。SW2:ONでは、電源回路VC
より電気コイルCF13〜CF24の電源端子U2には
3相交流のU相が供給され、電源端子V2には3相交流
のV相が供給されるとともに、電源端子W2には3相交
流のW相が供給されるので、#2グループの各電気コイ
ルCF13〜CF24は、溶鋼MMに対して図4に実線
矢印で示すように、紙面に向い、x方向右に向う移動
磁界を与え、これにより溶鋼MMに該方向の推力が加わ
る。そして、SW2:OFFでは、電源回路VCのV相
出力及びW相出力に対して電源端子V2とW2の接続が
交換されて、電源端子V2には3相交流のW相が供給さ
れるとともに、電源端子W2には3相交流のV相が供給
されるので、#2グループの各電気コイルCF13〜C
F24は、溶鋼MMに対して図4に示す実線矢印とは
反対の、紙面に向いx方向左に向う移動磁界を与え、こ
れにより溶鋼MMに該方向の推力が加わる。
Similarly, each of the electric coils CF13 to CF24 of the # 2 group of the linear motor 3F generates a three-phase AC voltage via the switching relay switch SW2.
It is connected to C. SW2: When ON, power supply circuit VC
The power supply terminal U2 of the electric coils CF13 to CF24 is supplied with a three-phase AC U phase, the power supply terminal V2 is supplied with a three-phase AC V phase, and the power supply terminal W2 is supplied with a three-phase AC W phase. As a result, the electric coils CF13 to CF24 of the # 2 group apply a moving magnetic field to the molten steel MM toward the paper surface and to the right in the x direction as shown by the solid line arrow in FIG. Thrust in that direction is applied to MM. Then, at SW2: OFF, the connection between the power supply terminals V2 and W2 is exchanged with respect to the V-phase output and the W-phase output of the power supply circuit VC, and the W-phase of the three-phase AC is supplied to the power supply terminal V2. Since the V phase of the three-phase AC is supplied to the power supply terminal W2, the electric coils CF13 to C of the # 2 group are supplied.
F24 gives a moving magnetic field to the molten steel MM, which is opposite to the solid line arrow shown in FIG. 4, and is directed to the left in the x direction toward the paper surface, whereby a thrust force in that direction is applied to the molten steel MM.

【0022】一方、リニアモータ3Lの#3グループの
各電気コイルCL1〜CL12は、切換リレ−スイッチ
SW3を介して3相交流電圧を発生する電源回路VCに
接続され、リニアモータ3Lの#4グループの各電気コ
イルCL13〜CL24は、切換リレ−スイッチSW4
を介して3相交流電圧を発生する電源回路VCに接続さ
れている。スイッチSW3,SW4はSW1およびSW
2と同じ動きをするものであり、SW3:ONでは、電
源端子U3,V3,W3にそれぞれ、電源回路VCより
3相交流のU相,V相,W相が供給され、溶鋼MMに対
して図4及び図5に実線矢印で示すx方向右の移動磁
界を与え、これにより溶鋼MMに該方向の推力が加わ
る。SW3:OFFでは、電源端子U3,V3,W3に
それぞれ、電源回路VCより3相交流のU相,W相,V
相が供給され、溶鋼MMに対して図4及び図5に実線矢
印で示す方向と反対のx方向左の移動磁界を与え、こ
れにより溶鋼MMに該方向の推力が加わる。また、SW
4:ONでは、電源端子U4,V4,W4にそれぞれ、
電源回路VCより3相交流のU相,V相,W相が供給さ
れ、溶鋼MMに対して図4及び図5に実線矢印で示す
x方向右の移動磁界を与え、これにより溶鋼MMに該方
向の推力が加わる。SW4:OFFでは、電源端子U
4,V4,W4にそれぞれ、電源回路VCより3相交流
のU相,W相,V相が供給され、溶鋼MMに対して図4
及び図5に実線矢印で示す方向と反対のx方向左の移
動磁界を与え、これにより溶鋼MMに該方向の推力が加
わる。
On the other hand, each of the electric coils CL1 to CL12 of the # 3 group of the linear motor 3L is connected to the power supply circuit VC for generating a three-phase AC voltage via the changeover relay switch SW3, and the # 4 group of the linear motor 3L. The respective electric coils CL13 to CL24 of the switching relay switch SW4
Is connected to a power supply circuit VC that generates a three-phase AC voltage. Switches SW3 and SW4 are SW1 and SW
In the case of SW3: ON, the U phase, V phase, and W phase of the three-phase AC are supplied from the power supply circuit VC to the power supply terminals U3, V3, and W3, respectively, with respect to the molten steel MM. A moving magnetic field to the right in the x direction indicated by a solid arrow in FIGS. 4 and 5 is applied, and thereby a thrust force in that direction is applied to the molten steel MM. When SW3 is OFF, U-phase, W-phase, and V-phase of three-phase AC from the power supply circuit VC are supplied to the power supply terminals U3, V3, and W3, respectively.
The phases are supplied, and a moving magnetic field to the left in the x direction opposite to the direction indicated by the solid arrow in FIGS. 4 and 5 is applied to the molten steel MM, whereby a thrust in that direction is applied to the molten steel MM. Also, SW
4: When ON, power supply terminals U4, V4, W4,
The U-phase, V-phase, and W-phase of three-phase alternating current are supplied from the power supply circuit VC, and a moving magnetic field to the right in the x direction indicated by a solid arrow in FIGS. 4 and 5 is applied to the molten steel MM. Directional thrust is applied. When SW4: OFF, power supply terminal U
4, V4, W4 are respectively supplied with U-phase, W-phase, and V-phase of three-phase AC from the power supply circuit VC, and the molten steel MM is fed to the molten steel MM as shown in FIG.
Further, a moving magnetic field to the left in the x direction opposite to the direction indicated by the solid line arrow in FIG. 5 is applied, whereby a thrust force in that direction is applied to the molten steel MM.

【0023】図6に、リニアモ−タ3Fの各電気コイル
CF1〜CF24ならびにリニアモ−タ3Lの各電気コ
イルCL1〜CL24に3相交流を流す電源回路VCの
構成を示す。3相交流電源(3相電力線)11には直流
整流用のサイリスタブリッジ12が接続されており、そ
の出力(脈流)はインダクタ13およびコンデンサ14
で平滑化される。平滑化された直流電圧は3相交流形成
用のパワ−トランジスタブリッジ15に印加され、これ
が出力する3相交流のU相が図4に示す切換リレ−スイ
ッチSW1〜SW4を介してそのON/OFFにかかわ
らず、電源接続端子U1〜U4に供給される。スイッチ
SW1〜SW4がONの時には3相交流のV相が電源接
続端子V1〜V4に、W相が電源接続端子W1〜W4に
印加される。また、スイッチSW1〜SW4がOFFの
時には3相交流のW相が電源接続端子V1〜V4に、V
相が電源接続端子W1〜W4に印加される。
FIG. 6 shows the configuration of a power supply circuit VC for supplying a three-phase alternating current to the electric coils CF1 to CF24 of the linear motor 3F and the electric coils CL1 to CL24 of the linear motor 3L. A thyristor bridge 12 for DC rectification is connected to a three-phase AC power supply (three-phase power line) 11, and its output (pulsating current) is an inductor 13 and a capacitor 14.
Is smoothed by. The smoothed DC voltage is applied to the power transistor bridge 15 for forming the three-phase AC, and the U-phase of the three-phase AC output by the power transistor bridge 15 is turned ON / OFF via the switching relay switches SW1 to SW4 shown in FIG. Regardless of this, it is supplied to the power supply connection terminals U1 to U4. When the switches SW1 to SW4 are ON, the V phase of the three-phase AC is applied to the power supply connection terminals V1 to V4, and the W phase is applied to the power supply connection terminals W1 to W4. Further, when the switches SW1 to SW4 are off, the W phase of the three-phase alternating current is supplied to the power supply connection terminals V1 to V4, V
The phases are applied to the power supply connection terminals W1 to W4.

【0024】リニアモ−タ3Fの各電気コイルCF1〜
CF24ならびにリニアモ−タ3Lの各電気コイルCL
1〜CL24に与えられる所定のコイル電圧指令値Vc
が位相角α算出器16に与えられ、位相角α算出器16
が、指令値Vcに対応する導通位相角α(サイリスタト
リガ−位相角)を算出し、これを表わす信号をゲ−トド
ライバ17に与える。ゲ−トドライバ17は、各相のサ
イリスタを、各相のゼロクロス点から位相カウントを開
始して位相角αで導通トリガ−する。これにより、トラ
ンジスタブリッジ15には、指令値Vcが示す直流電圧
が印加される。一方、3相信号発生器18は、周波数指
令値fcで指定された周波数(本実施例では3.3H
z)の、定電圧3相交流信号を発生して比較器19に与
える。比較器19にはまた、三角波発生器21が、周波
数3kHzの定電圧三角波を与える。比較器19は、U
相信号のレベルが正のときには、それが三角波発生器1
8が与える三角波のレベル以上のとき高レベルH(トラ
ンジスタオン)で、三角波のレベル未満のとき低レベル
L(トランジスタオフ)の信号を、U相の正区間(0〜
180度)宛て(U相正電圧出力用トランジスタ宛て)
にゲ−トドライバ20に出力し、U相信号のレベルが負
のときには、それが三角波発生器21が与える三角波の
レベル以下のとき高レベルHで、三角波のレベルを越え
るとき低レベルLの信号を、U相の負区間(180〜3
60度)宛て(U相負電圧出力用トランジスタ宛て)に
ゲ−トドライバ20に出力する。V相信号およびW相信
号に関しても同様である。ゲ−トドライバ20は、これ
ら各相,正,負区間宛ての信号に対応してトランジスタ
ブリッジ15の各トランジスタをオン,オフ付勢する。
Each electric coil CF1 of the linear motor 3F
Each electric coil CL of CF24 and linear motor 3L
1 to CL24: predetermined coil voltage command value Vc
Is given to the phase angle α calculator 16, and the phase angle α calculator 16
Calculates a conduction phase angle α (thyristor trigger-phase angle) corresponding to the command value Vc, and gives a signal representing this to the gate driver 17. The gate driver 17 starts phase counting of the thyristor of each phase from the zero-cross point of each phase, and triggers conduction at the phase angle α. As a result, the direct current voltage indicated by the command value Vc is applied to the transistor bridge 15. On the other hand, the three-phase signal generator 18 uses the frequency designated by the frequency command value fc (3.3H in this embodiment).
The constant voltage three-phase alternating current signal of z) is generated and given to the comparator 19. The triangular wave generator 21 also supplies a constant voltage triangular wave having a frequency of 3 kHz to the comparator 19. The comparator 19 is U
When the phase signal level is positive, it is the triangular wave generator 1
8 is a high level H (transistor on) when the level is higher than the level of the triangular wave, and a low level L (transistor off) when the level is lower than the level of the triangular wave.
180 degrees) (to U-phase positive voltage output transistor)
To the gate driver 20, and when the level of the U-phase signal is negative, it is a high level H when it is below the level of the triangular wave provided by the triangular wave generator 21, and when it exceeds the level of the triangular wave, it is a low level L signal. In the negative section of the U phase (180-3
60 degrees) (to the U-phase negative voltage output transistor) to the gate driver 20. The same applies to the V-phase signal and the W-phase signal. The gate driver 20 turns on and off each transistor of the transistor bridge 15 in response to the signals addressed to these phases, positive and negative sections.

【0025】これにより、電源接続端子U1〜U4には
3相交流のU相電圧が出力され、電源接続端子V1〜V
4及び電源接続端子W1〜W4には、各スイッチSW1
〜4のON/OFFにより3相交流のV相電圧またはW
相電圧が出力され、これらの電圧のレベルはコイル電圧
指令値Vcで定まり、この3相電圧の周波数はこの実施
例では周波数指令値fcにより3.3Hzである。すな
わち、コイル電圧指令値Vcで指定された電圧値の、
3.3Hzの3相交流電圧が、図2および図5に示すリ
ニアモ−タ3Fおよび3Lの各電気コイルCF1〜CF
24およびCL1〜CL24に印加される。
As a result, the U-phase voltage of three-phase AC is output to the power supply connection terminals U1 to U4, and the power supply connection terminals V1 to V4.
4 and the power supply connection terminals W1 to W4, each switch SW1
V phase voltage of 3 phase AC or W by ON / OFF of ~ 4
Phase voltages are output, the levels of these voltages are determined by the coil voltage command value Vc, and the frequency of the three-phase voltage is 3.3 Hz in this embodiment based on the frequency command value fc. That is, of the voltage value designated by the coil voltage command value Vc,
A three-phase AC voltage of 3.3 Hz is applied to the electric coils CF1 to CF of the linear motors 3F and 3L shown in FIGS.
24 and CL1 to CL24.

【0026】以上により、この実施例では、4極構成の
リニアモ−タ3F,3Lに3.3Hzの3相交流が印加
され、これらのリニアモ−タ3F,3Lにより、鋳型内
壁1内の溶鋼MMには、鋳型内壁1に沿う方向(x方
向)の推力が加わる。
As described above, in this embodiment, a three-phase alternating current of 3.3 Hz is applied to the linear motors 3F and 3L having a four-pole configuration, and the linear motors 3F and 3L cause molten steel MM in the inner wall 1 of the mold. Is applied with a thrust in the direction along the inner wall 1 of the mold (x direction).

【0027】図7の(a)には、スイッチSW1及びス
イッチSW4がONであり、スイッチSW2及びスイッ
チSW3がOFFである時に電気コイルに通電される3
相交流の相出力と溶鋼MMに与える推力の方向を示し、
(b)には、スイッチSW1及びスイッチSW4がOF
Fであり、スイッチSW2及びスイッチSW3がONで
ある時に電気コイルに通電される3相交流の相出力と溶
鋼MMに与える推力の方向を示している。(a)及び
(b)ともに、対向するコイル(電気コイルグループ#
1と#4および電気コイルグループ#2と#3)は同極
となっており、(a)は、溶鋼MMに対して、鋳型内壁
1に沿う方向の左右よりモールド中心に向って力が与え
られており、(b)は、溶鋼MMに対してモールド中心
より鋳型内壁1に沿う方向の左右に向って力が与えられ
ている。
In FIG. 7A, when the switches SW1 and SW4 are ON and the switches SW2 and SW3 are OFF, the electric coil is energized 3
Shows the phase output of the phase alternating current and the direction of the thrust applied to the molten steel MM,
In (b), the switches SW1 and SW4 are OF
F indicates the phase output of the three-phase alternating current supplied to the electric coil and the direction of the thrust applied to the molten steel MM when the switches SW2 and SW3 are ON. Both (a) and (b) are opposed coils (electric coil group #
1 and # 4 and electric coil groups # 2 and # 3) have the same polarity, and (a) shows a force applied to the molten steel MM from the left and right in the direction along the inner wall 1 of the mold toward the center of the mold. In (b), a force is applied to the molten steel MM from the center of the mold to the left and right in the direction along the inner wall 1 of the mold.

【0028】図8には、スイッチSW1〜SW4を図4
に示されるように全て通電(ON)にした時の溶鋼MM
の表面における電磁力分布を示す。これより理解できる
ように、電磁力は鋳型内壁面に集中しており、垂直力成
分(y方向成分)が少く、注入ノズルからの突出流を考
慮せずに溶鋼表面部におけるパウダ巻き込みを防ぎ、気
泡の浮上を助けることのみ考慮する場合に都合が良いこ
とが分かる。また、交流周波数が3.3Hzと高いの
で、溶鋼内部への磁束の浸透深さが小さく、溶鋼中央
(鋳型壁より遠い位置)の渦巻きが弱くなり、パウダの
巻込み可能性が低く気泡の浮上が促進されると同時に、
2つのリニアモータを共通の電源で駆動しているので、
電源が1つでよく、所要電力が低い。
In FIG. 8, the switches SW1 to SW4 are shown in FIG.
Molten steel MM when all are energized (ON) as shown in
The electromagnetic force distribution on the surface of is shown. As can be understood from this, the electromagnetic force is concentrated on the inner wall surface of the mold, the vertical force component (y-direction component) is small, and powder entrainment on the molten steel surface portion is prevented without considering the protruding flow from the injection nozzle, It can be seen that it is convenient to consider only helping the floating of bubbles. Also, since the AC frequency is as high as 3.3 Hz, the penetration depth of the magnetic flux into the molten steel is small, the vortex in the center of the molten steel (position farther from the mold wall) is weakened, and the possibility of powder entrainment is low and bubbles rise. Is promoted at the same time
Since the two linear motors are driven by a common power source,
Only one power supply is needed and low power requirements.

【0029】スイッチSW1〜SW4により、推力方向
(パタ−ン)を選択しうるようにしているので、パウダ
の巻込みが少く、気泡の浮上が促進されるに適した推力
方向(パタ−ン)を適宜に設定しうる。
Since the thrust direction (pattern) can be selected by the switches SW1 to SW4, the powder is less involved and the thrust direction (pattern) is suitable for promoting the floating of bubbles. Can be set appropriately.

【0030】[0030]

【発明の効果】本発明によれば、対向するリニアモ−タ
が同極の電磁力を発生するので、垂直力成分(y方向成
分)が小さくなり、渦流が弱くパウダの巻込みはその分
可能性が低く、しかも、鋳型長辺の内面近くでは、隣り
合う渦の外縁の電磁力が連続して、y方向成分が極く小
さく、いわば長辺全長(x方向)に渡って電磁力のx方
向成分が均等で、定方向(x方向)かつ定速度の沿面流
がもたらされ、鋳型内面のぬぐいが均一になりしかも気
泡の浮上が促される。
According to the present invention, since the opposing linear motors generate an electromagnetic force of the same pole, the vertical force component (y-direction component) becomes small, the vortex flow is weak, and the powder can be wound accordingly. In addition, the electromagnetic force at the outer edges of adjacent vortices is continuous and the y-direction component is extremely small near the inner surface of the long side of the mold, so to speak, x of the electromagnetic force over the entire long side (x direction). A directional component is uniform, a constant direction (x direction) and a constant velocity creeping flow are produced, the wipe on the inner surface of the mold becomes uniform, and the floating of bubbles is promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の外観と、中央縦断面を示
す斜視図である。
FIG. 1 is a perspective view showing an external appearance of one embodiment of the present invention and a central longitudinal section.

【図2】 図1に示す電磁石コア4F,4Lを2a−2
a線において水平に破断した拡大断面図である。
FIG. 2 shows the electromagnet cores 4F and 4L shown in FIG.
It is an expanded sectional view fractured horizontally in a line.

【図3】 図2の3a−3a線拡大断面図である。FIG. 3 is an enlarged sectional view taken along line 3a-3a of FIG.

【図4】 本発明の全体構成を示すブロック図である。FIG. 4 is a block diagram showing an overall configuration of the present invention.

【図5】 図2に示す電気コイルの結線及び相区分を示
す図2相当の断面図である。
5 is a cross-sectional view corresponding to FIG. 2 showing connection and phase division of the electric coil shown in FIG.

【図6】 図2に示す各リニアモ−タの電気コイルに3
相交流電圧を印加する電源回路VCの構成を示す電気回
路図である。
FIG. 6 is a schematic view of an electric coil of each linear motor shown in FIG.
It is an electric circuit diagram which shows the structure of the power supply circuit VC which applies a phase alternating voltage.

【図7】 (a)には、図4に示すスイッチSW2とS
W3をOFFにした時の電気コイルの相区分及び溶鋼M
Mの流れる方向を示し、(b)には、図4に示すスイッ
チSW1とSW4をOFFにした時の電気コイルの相区
分及び溶鋼MMに対してリニアモータが加える駆動力の
方向を示す図2相当の断面図である。
FIG. 7 (a) shows switches SW2 and S shown in FIG.
Phase division of electric coil and molten steel M when W3 is turned off
2 shows the direction of flow of M, and FIG. 2B shows the direction of the driving force applied by the linear motor to the phase division of the electric coil and the molten steel MM when the switches SW1 and SW4 shown in FIG. 4 are turned off. It is a considerable sectional view.

【図8】 図4に示すスイッチSW1〜SW4を全てO
Nにし、3.3Hzの3相交流電圧をリニアモータに印
加した時に溶鋼MM表面に現われる電磁力分布を示す平
面図である。
FIG. 8 shows that all the switches SW1 to SW4 shown in FIG.
It is a top view which shows N and the electromagnetic force distribution which appears on the molten steel MM surface when a 3-phase alternating current voltage of 3.3 Hz is applied to a linear motor.

【符号の説明】[Explanation of symbols]

1:鋳型の内壁 2:水箱 3F,3L:リニアモ−タ PW:パウダ MM:溶鋼 SB:鋳片 4F,4L:電磁石コア 5F,5L:長辺 6R,6L:短辺 7F,7L:銅板 8R,8L:銅板 9F,9L:非磁性ステンレ
ス板 10R,10L:非磁性ステンレス板 CF1〜CF24,CL1〜CL24:電気コイル U1,V1,W1:電気コイルCF1 〜CF12の電源接続端
子 U2,V2,W2:電気コイルCF13〜CF24の電源接続端
子 U3,V3,W3:電気コイルCL1 〜CL12の電源接続端
子 U4,V4,W4:電気コイルCL13〜CL24の電源接続端
子 SW1,SW2,SW3,SW4:切換リレ−スイッチ VC:電源回路 22:注湯ノズル流出口
1: Inner wall of mold 2: Water box 3F, 3L: Linear motor PW: Powder MM: Molten steel SB: Cast slab 4F, 4L: Electromagnetic core 5F, 5L: Long side 6R, 6L: Short side 7F, 7L: Copper plate 8R, 8L: Copper plate 9F, 9L: Non-magnetic stainless steel plate 10R, 10L: Non-magnetic stainless steel plate CF1 to CF24, CL1 to CL24: Electric coil U1, V1, W1: Power supply connection terminals for electric coil CF1 to CF12 U2, V2, W2: Power supply connection terminals for electric coils CF13 to CF24 U3, V3, W3: Power supply connection terminals for electric coils CL1 to CL12 U4, V4, W4: Power supply connection terminals for electric coils CL13 to CL24 SW1, SW2, SW3, SW4: Switching relays Switch VC: Power supply circuit 22: Pouring nozzle outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶融金属を取り囲む鋳型辺の一辺に沿っ
て、鋳型内の溶鋼に対向して配置された、複数個のスロ
ットを有する第1組の電磁石コアと、複数個のスロット
に挿入された複数個の電気コイルの組合せでなる第1組
のリニアモータ;前記一辺に対向するもう1つの辺に沿
って、鋳型内の溶鋼を間に置いて第1組の電磁石コアの
磁極端面に対向して配置された、複数個のスロットを有
する第2組の電磁石コアと、複数個のスロットに挿入さ
れた複数個の電気コイルの組合わせでなる第2組のリニ
アモータ;および、 第1組のリニアモータの電気コイルに所定の位相差の交
流電圧を印加し、第2組のリニアモータの電気コイルに
所定の位相差の、第1組のリニアモ−タの磁極端面の極
性に対してそれに対向する第2組のリニアモ−タの磁極
端面の極性を同極性とする、交流電圧を印加する、通電
手段;を備える溶融金属の流動制御装置。
1. A first set of electromagnet cores having a plurality of slots, which are arranged to face the molten steel in the mold along one side of the mold surrounding the molten metal, and are inserted into the plurality of slots. A first set of linear motors composed of a combination of a plurality of electric coils; facing the magnetic pole end surface of the first set of electromagnet cores with the molten steel in the mold interposed along the other side facing the one side. A second set of linear motors, each of which is a combination of a second set of electromagnet cores having a plurality of slots and a plurality of electric coils inserted in the plurality of slots; and a first set. AC voltage of a predetermined phase difference is applied to the electric coil of the linear motor of No. 2, and the polarity of the magnetic pole end face of the first set of the linear motor of the predetermined phase difference is applied to the electric coil of the second set of the linear motor. Opposing magnetic poles of the second set of linear motors A flow control device for molten metal, comprising: an energizing means for applying an AC voltage, the end faces of which have the same polarity.
【請求項2】第1組および第2組の通電手段はそれぞ
れ、各リニアモータが鋳型内の溶融金属に及ぼす移動磁
界の方向を反転するための、電気コイルに印加する交流
電圧の位相差を切換える切換え手段を含む、請求項1記
載の溶融金属の流動制御装置。
2. A first group and a second group of energizing means respectively provide a phase difference of an AC voltage applied to an electric coil for reversing the direction of a moving magnetic field exerted on molten metal in a mold by each linear motor. The molten metal flow control device according to claim 1, further comprising switching means for switching.
JP24249194A 1994-10-06 1994-10-06 Flow controller for molten metal Expired - Fee Related JP3210811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24249194A JP3210811B2 (en) 1994-10-06 1994-10-06 Flow controller for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24249194A JP3210811B2 (en) 1994-10-06 1994-10-06 Flow controller for molten metal

Publications (2)

Publication Number Publication Date
JPH08108264A true JPH08108264A (en) 1996-04-30
JP3210811B2 JP3210811B2 (en) 2001-09-25

Family

ID=17089883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24249194A Expired - Fee Related JP3210811B2 (en) 1994-10-06 1994-10-06 Flow controller for molten metal

Country Status (1)

Country Link
JP (1) JP3210811B2 (en)

Also Published As

Publication number Publication date
JP3210811B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
KR101544383B1 (en) Magnetic levitation system having switch for guide elctromagnetic and stoping method thereof
JP3725028B2 (en) Electromagnetic braking device for molten metal in continuous casting molds.
KR20080071138A (en) Adjusting the mode of electromagnetic stirring over the height of a continuous casting mould
RU2419509C2 (en) Method and device for continuous casting of steel preliminary sections, particularly, h-sections
AU2003286222B2 (en) Method and device for controlling flows in a continuous slab casting ingot mould
JPH10305353A (en) Continuous molding of steel
JP3210811B2 (en) Flow controller for molten metal
JPH07100223B2 (en) Electromagnetic coil device for continuous casting mold
JP3577389B2 (en) Flow controller for molten metal
JP3510101B2 (en) Flow controller for molten metal
JP3041182B2 (en) Flow controller for molten metal
JP4669367B2 (en) Molten steel flow control device
JP3533047B2 (en) Flow controller for molten metal
JPH08141711A (en) Fluidity controller for molten metal
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JP3273105B2 (en) Flow controller for molten metal
JPH105946A (en) Molten metal flow control device
JPH07246444A (en) Device for controlling flow of molten metal
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP3124217B2 (en) Flow controller for molten metal
JPS62207543A (en) Electromagnetic stirring method for continuous casting
JP3273107B2 (en) Flow controller for molten metal
CN216324987U (en) Flow field control device for crystallizer of slab continuous casting machine
JPH11170005A (en) Continuos casting equipment by endless rotary body
JP3659329B2 (en) Molten steel flow control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees