JPH0810761A - Water softener for steam generator - Google Patents

Water softener for steam generator

Info

Publication number
JPH0810761A
JPH0810761A JP6153526A JP15352694A JPH0810761A JP H0810761 A JPH0810761 A JP H0810761A JP 6153526 A JP6153526 A JP 6153526A JP 15352694 A JP15352694 A JP 15352694A JP H0810761 A JPH0810761 A JP H0810761A
Authority
JP
Japan
Prior art keywords
water
steam generator
pipe
electrolyzer
softener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6153526A
Other languages
Japanese (ja)
Inventor
Keiko Nakanishi
圭子 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6153526A priority Critical patent/JPH0810761A/en
Publication of JPH0810761A publication Critical patent/JPH0810761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To prevent the corrosion of a copper tube by continuously supplying a soft water into the tube without the supply of chemicals. CONSTITUTION:An electrolytic device 3 and a water softener 17 packed with a cation-exchange resin 16 are provided to a water passage for supplying water to a steam generator 22. When the water is used, an alkaline water obtained in the cathode compartment of the electrolytic device 3 is mixed in the softened water obtained in the softener 17, and an acidic water obtained in the anode compartment 6 is supplied to the softener 17 to regenerate the the cation- exchange resin 16. Consequently, the supply of resin regenerating chemicals is not needed, and a corrosion preventive soft water is continuously supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば家庭用蒸気発生
装置、加湿器、食器洗い器などに用いる軟水器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water softener for use in, for example, household steam generators, humidifiers, dishwashers and the like.

【0002】[0002]

【従来の技術】一般的に、水道水や井戸水にはカルシウ
ム、マグネシウムイオン等の硬度成分を含んでおり、こ
のような水を蒸気発生装置に用いると、缶体内にスケー
ルが付着し、伝熱状態が不良になる。この問題に対処す
る為従来は次のような軟水器が用いられていた。これを
図11に基づいて説明する。
2. Description of the Related Art Generally, tap water and well water contain hardness components such as calcium and magnesium ions. When such water is used in a steam generator, scale adheres to the inside of the can, causing heat transfer. The state becomes bad. In order to deal with this problem, the following water softener has been conventionally used. This will be described with reference to FIG.

【0003】図11において、水は原水供給パイプ1を
通り、電気分解装置3に供給される。この電気分解装置
3は、ポーラスな隔壁、例えば素焼きの隔壁8によって
仕切られ、陽極室6及び、陰極室7を形成し、これら2
つの極室には電極4および電極5が吊設されている。ま
た、この電気分解装置3と蒸気発生装置22との間に
は、陽イオン交換樹脂16を充填した軟水化装置17が
設けられている。イオン交換時には、陰極水出口パイプ
10に接続されている排水弁32は閉じられており、水
は陽極室6、陽極水出口パイプ9を通って、陽イオン交
換樹脂16の充填してある軟水化装置17に入る。陽イ
オン交換樹脂16により、水中のカルシウム、マグネシ
ウム等の陽イオンは、水素イオンと置換され、軟水化処
理水は蒸気発生装置22に供給される。
In FIG. 11, water is supplied to an electrolyzer 3 through a raw water supply pipe 1. The electrolyzer 3 is partitioned by a porous partition wall, for example, a unglazed partition wall 8 to form an anode chamber 6 and a cathode chamber 7.
Electrodes 4 and 5 are suspended in one of the polar chambers. A water softening device 17 filled with a cation exchange resin 16 is provided between the electrolyzer 3 and the steam generator 22. At the time of ion exchange, the drain valve 32 connected to the cathode water outlet pipe 10 is closed, and the water passes through the anode chamber 6 and the anode water outlet pipe 9 to soften the water filled with the cation exchange resin 16. Enter device 17. By the cation exchange resin 16, cations such as calcium and magnesium in the water are replaced with hydrogen ions, and the softened water is supplied to the steam generator 22.

【0004】陽イオン交換樹脂再生時には、電気分解装
置3の電極4および5に直流電圧を印加し、得られた酸
性水を軟水化装置17の上部から供給し、陽イオン交換
樹脂を水素型に再生する。
At the time of regenerating the cation exchange resin, a DC voltage is applied to the electrodes 4 and 5 of the electrolyzer 3 and the obtained acidic water is supplied from the upper part of the water softener 17 to convert the cation exchange resin into a hydrogen type. Reproduce.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の軟水器では、水中のカルシウム、マグネシウ等の陽イ
オンを陽イオン交換樹脂の水素イオンと置換するため軟
水化処理水のpHは4〜5程度まで低下し、水中の遊離
炭酸濃度が増加する。遊離炭酸濃度が増加すると、銅の
腐食が促進され、銅管の腐食を防ぐためには軟水化処理
水pHを少なくとも6以上、好ましくはpH8〜9にま
で上昇させる必要がある。
However, in the above-mentioned conventional water softener, cations such as calcium and magnesium in water are replaced with hydrogen ions of the cation exchange resin, so that the pH of the softened water is up to about 4 to 5. Decrease and the free carbonic acid concentration in water increases. When the concentration of free carbonic acid increases, the corrosion of copper is promoted, and it is necessary to raise the pH of the softened water to at least 6 or more, preferably 8 to 9 in order to prevent the corrosion of the copper pipe.

【0006】軟水化処理水のpHを上昇させる方法とし
て、pHの高い水を混入して軟水化処理水を中和する方
法や、カルシウム、マグネシウムなどの陽イオンを含む
水(原水)を混入する等の方法が考えられるが、軟水化
処理水に対して混入量が少なすぎるとpHが目的pHま
で上昇せず、逆に混入量が多すぎると軟水化処理水中の
カルシウム、マグネシウムなどの硬度成分濃度が高くな
り、軟水化性能が悪くなる。そのため、混入する水のp
H、硬度成分濃度、混入量の制御が必要であるが、混入
する原水のpH、硬度成分濃度は地域によって異なり、
季節によっても変動し、電気分解によって得られるアル
カリ水のpHや硬度成分濃度も電気分解する原水のp
H、硬度成分濃度、水温等によって大きく変動するた
め、混入する水のpH、硬度成分濃度の制御は困難であ
るという課題があった。
As a method for raising the pH of the softened water, a method of neutralizing the softened water by mixing water with a high pH or a method of mixing water (raw water) containing cations such as calcium and magnesium. However, if the amount of softening water is too small, the pH does not rise to the target pH, and if the amount is too large, hardness components such as calcium and magnesium in the softening water are too large. The concentration becomes high and the water softening performance deteriorates. Therefore, p of mixed water
It is necessary to control H, hardness component concentration, and mixing amount, but the pH of raw water mixed and the hardness component concentration differ depending on the region.
The pH of the alkaline water obtained by electrolysis and the hardness component concentration, which fluctuate depending on the season, are also electrolyzed.
There is a problem in that it is difficult to control the pH of the mixed water and the hardness component concentration, because it largely changes depending on H, the hardness component concentration, the water temperature, and the like.

【0007】本発明は上記課題を解決するもので、第1
の目的は、水中の硬度成分を効率的に除去し、蒸気発生
装置缶体へのスケール付着を防止することであり、第2
の目的としては、蒸気発生装置の腐食を防止することで
あり、第3の目的は原水硬度成分濃度の変動に対応し、
安定した軟水を蒸気発生装置に供給することである。
The present invention is intended to solve the above-mentioned problems.
The purpose of is to efficiently remove hardness components in water and prevent scale adhesion to the steam generator can body.
The purpose of is to prevent corrosion of the steam generator, and the third purpose is to cope with fluctuations in the concentration of raw water hardness component,
Supplying stable soft water to the steam generator.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の蒸気発生装置用軟水器は第1の手段として水
道管と接続された原水供給パイプと、この原水供給パイ
プに接続され隔膜によって陰極室と陽極室に分離された
電気分解装置と、この原水供給パイプにバイパスで接続
された陽イオン交換樹脂を充填した軟水化装置と、電気
分解装置の陽極室と軟水化装置の上部とを接続した酸性
水パイプと、電気分解装置の陰極室と混合部を接続した
アルカリ水パイプと、軟水化装置と混合部を接続した軟
水化処理水パイプと、混合部と蒸気発生装置を混合水供
給パイプで接続したものである。
The water softener for a steam generator of the present invention for achieving the above object comprises, as a first means, a raw water supply pipe connected to a water pipe and a diaphragm connected to the raw water supply pipe. An electrolyzer separated into a cathode chamber and an anode chamber by a, a water softener filled with a cation exchange resin connected to the raw water supply pipe by bypass, an anode chamber of the electrolyzer and an upper part of the water softener. Acid water pipe, the alkaline water pipe that connects the cathode chamber of the electrolyzer and the mixing unit, the water softening treated water pipe that connects the water softening device and the mixing unit, and the mixing unit and the steam generator. It is connected by a supply pipe.

【0009】第2の手段として水道管と接続された原水
供給パイプと、この原水供給パイプに接続され隔膜によ
って陰極室と陽極室に分離された電気分解装置と、この
原水供給パイプにバイパスで接続された陽イオン交換樹
脂を充填した軟水化装置と、電気分解装置の陽極室と軟
水化装置の下部とを接続した酸性水パイプと、電気分解
装置の陰極室と混合部を接続したアルカリ水パイプと、
軟水化装置と混合部を接続した軟水化処理水パイプと、
混合部と蒸気発生装置を混合水供給パイプで接続したも
のである。
As a second means, a raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water supply pipe and separated into a cathode chamber and an anode chamber by a diaphragm, and connected to the raw water supply pipe by bypass. Water softener filled with cation exchange resin, an acidic water pipe connecting the anode chamber of the electrolyzer and the lower part of the water softener, and an alkaline water pipe connecting the cathode chamber of the electrolyzer and the mixing section When,
A water softening treated water pipe connecting the water softening device and the mixing section,
The mixing unit and the steam generator are connected by a mixed water supply pipe.

【0010】第3の手段として水道管と接続された原水
供給パイプと、この原水供給パイプに接続され隔膜によ
って陰極室と陽極室に分離された電気分解装置と、この
電気分解装置の陽極室と陽イオン交換樹脂を充填した軟
水化装置を接続する酸性水パイプと、軟水化装置と混合
部を接続する軟水化処理水パイプと、電気分解装置の陰
極室とアルカリ水タンクを接続するアルカリ水パイプ
と、アルカリ水タンクと、混合部を接続する混合アルカ
リ水パイプと、混合部と蒸気発生装置を混合水供給パイ
プで接続したものである。
As a third means, a raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water supply pipe and separated into a cathode chamber and an anode chamber by a diaphragm, and an anode chamber of the electrolyzer. Acidic water pipe to connect the water softener filled with cation exchange resin, softened water pipe to connect the water softener to the mixing section, alkaline water pipe to connect the cathode chamber of the electrolyzer to the alkaline water tank , An alkaline water tank, a mixed alkaline water pipe connecting the mixing section, and the mixing section and the steam generator are connected by a mixed water supply pipe.

【0011】第4の手段として水道管と接続された原水
供給パイプと、この原水パイプに接続され隔膜によって
陰極室と陽極室に分離された電気分解装置と、電気分解
装置の陽極室と軟水化装置を接続した酸性水パイプと、
電気分解装置の陰極室と混合部を接続したアルカリ水パ
イプと、軟水化装置と混合部を接続した軟水化処理水パ
イプと、混合部と蒸気発生装置を混合供給パイプで接続
したものである。
As a fourth means, a raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water pipe and divided into a cathode chamber and an anode chamber by a diaphragm, an anode chamber of the electrolyzer and water softening. Acid water pipe connected to the device,
An alkaline water pipe connecting the cathode chamber of the electrolyzer to the mixing unit, a water softening treated water pipe connecting the water softening unit to the mixing unit, and a mixing supply pipe connecting the mixing unit to the steam generator.

【0012】[0012]

【作用】本発明による第1の手段を用いた蒸気発生装置
用の軟水器では、陽イオン交換樹脂で水中のカルシウ
ム、マグネシウムイオンを水素イオンを置換して得られ
た、軟水化処理水に電気分解で得られたアルカリ水を混
合することで、処理水のpHを上昇させ、蒸気発生装置
の腐食を防止することが出来る。また、原水水質の変動
に対しても、安定した軟水を供給することが出来る。
In the water softener for the steam generator using the first means according to the present invention, the softened water obtained by substituting hydrogen ions for calcium and magnesium ions in the water with the cation exchange resin is electrically treated. By mixing the alkaline water obtained by the decomposition, it is possible to raise the pH of the treated water and prevent the corrosion of the steam generator. In addition, stable soft water can be supplied even if the raw water quality changes.

【0013】本発明第2の手段による蒸気発生装置用の
軟水器では、陽イオン交換樹脂で水中のカルシウム、マ
グネシウムイオンを水素イオンを置換して得られた、軟
水化処理水に電気分解で得られたアルカリ水を混合する
ことで、処理水のpHを上昇させ、蒸気発生装置の腐食
を防止することが出来る。また、原水水質の変動に対し
ても、安定した軟水を供給することが出来る。また、水
の電気分解で得られた酸性水で陽イオン交換樹脂の再生
を向流方向に行うことで、効率良く連続的に、軟水を蒸
気発生装置に供給することができる。
In the water softener for a steam generator according to the second means of the present invention, a water-softened water obtained by substituting hydrogen ions for calcium and magnesium ions in water with a cation exchange resin is obtained by electrolysis. By mixing the alkaline water thus obtained, it is possible to raise the pH of the treated water and prevent corrosion of the steam generator. In addition, stable soft water can be supplied even if the raw water quality changes. In addition, by performing regeneration of the cation exchange resin in a countercurrent direction with acidic water obtained by electrolysis of water, soft water can be efficiently and continuously supplied to the steam generator.

【0014】本発明第3の手段による蒸気発生装置用の
軟水器では、陽イオン交換樹脂で水中のカルシウム、マ
グネシウムイオンを水素イオンを置換して得られた、軟
水化処理水に電気分解で得られたアルカリ水を混入する
ことで、処理水のpHを上昇させ、蒸気発生装置の腐食
を防止することが出来る。また、原水水質の変動に対し
ても、安定した軟水を供給することが出来る。
In the water softener for a steam generator according to the third means of the present invention, a cation exchange resin is used to replace calcium and magnesium ions in water with hydrogen ions. By mixing the alkaline water thus produced, the pH of the treated water can be raised and the steam generator can be prevented from being corroded. In addition, stable soft water can be supplied even if the raw water quality changes.

【0015】また、タンクに貯水したアルカリ水を混合
水として用いるため、採水時の電気分解を不要化するこ
とが出来る。
Further, since the alkaline water stored in the tank is used as mixed water, electrolysis at the time of water sampling can be eliminated.

【0016】本発明第4の手段による蒸気発生装置用の
軟水器では、陽イオン交換樹脂で水中のカルシウム、マ
グネシウムイオンを水素イオンを置換して得られた、軟
水化処理水に原水を混合することで、処理水のpHを上
昇させ、蒸気発生装置の腐食を防止することが出来る。
また、原水水質の変動に対しても、安定した軟水を供給
することが出来る。
In the water softener for a steam generator according to the fourth means of the present invention, raw water is mixed with softened water obtained by substituting hydrogen ions for calcium and magnesium ions in water with a cation exchange resin. As a result, the pH of the treated water can be increased and the steam generator can be prevented from corroding.
In addition, stable soft water can be supplied even if the raw water quality changes.

【0017】[0017]

【実施例】陽イオン交換樹脂による軟水化は、水中の重
炭酸硬度成分のみを除去し、反応式は次式で表せる。
EXAMPLES Softening with a cation exchange resin removes only the bicarbonate hardness component in water, and the reaction equation can be represented by the following equation.

【0018】2R−COOH+Ca(HCO32→(R
−COO)2Ca+2H2CO3 反応により生じた炭酸は2塩基弱酸で次式のように解離
し、軟水化処理水pHが低下する。
2R-COOH + Ca (HCO 3 ) 2 → (R
Carbonic acid generated by the reaction of —COO) 2 Ca + 2H 2 CO 3 is dissociated by a dibasic weak acid as shown in the following formula, and the pH of the softened water decreases.

【0019】H2CO3 → H++HCO3 - HCO3 - → H++CO3 2- 0.1Nの炭酸25mlを0.1Nの水酸化ナトリウム
で滴定した一般的な中和滴定特性図を図5に示す。
[0019] H 2 CO 3 → H + + HCO 3 - HCO 3 - → H + + CO 3 2- Fig general neutralization titration characteristic diagram titrated carbonate 25ml with 0.1N sodium hydroxide in 0.1N 5 shows.

【0020】図5より、炭酸溶液に水酸化ナトリウムを
徐々に加えていくと、はじめpH6付近までpHの飛躍
があり、その後水酸化ナトリウムを加えていってもpH
変化は緩慢である。その後も水酸化ナトリウムを加えて
いくとpH7付近でpH10近くまでのpH飛躍があ
る。
According to FIG. 5, when sodium hydroxide is gradually added to the carbonic acid solution, there is a leap in pH up to around pH 6, and even if sodium hydroxide is added thereafter, the pH will increase.
The changes are slow. After that, when sodium hydroxide is added, there is a pH jump at around pH 7 to around pH 10.

【0021】軟水化処理水を原水及び電気分解時に陰極
室で得られるアルカリ水で滴定した中和滴定特性図を図
6及び図7に示す。図6は、硬度成分濃度50ppmの
水を処理した結果を示し、図7には、硬度成分濃度10
0ppmの水を処理した結果を示す。
Neutralization titration characteristics of the softened water treated with raw water and with alkaline water obtained in the cathode chamber during electrolysis are shown in FIGS. 6 and 7. FIG. 6 shows the result of treating water having a hardness component concentration of 50 ppm, and FIG.
The result of treating 0 ppm of water is shown.

【0022】図6、図7も図5と同様のpH変化を示
し、アルカリ水混入量が軟水化処理水に対して10%以
上であれば、混入アルカリ水の濃度(pH)に依存せ
ず、混入後のpHを6以上にすることが可能である。原
水混入の場合は20%以上である。
6 and 7 show the same pH change as in FIG. 5, and if the amount of the alkaline water mixed is 10% or more of the softened water, it does not depend on the concentration (pH) of the mixed alkaline water. It is possible to set the pH after mixing to 6 or more. When raw water is mixed, it is 20% or more.

【0023】蒸気発生装置の缶体内では水を蒸発させる
ため、液の濃縮が起こり(4倍程度)、スケール問題が
発生する。図8に、濃縮液中の硬度成分濃度とスケール
析出の関係図を示す。図8より、スケール析出は、濃縮
液硬度成分濃度が120ppm以上になった時に起こ
る。液濃縮は4倍になることより、蒸気発生装置に供給
する水中の硬度成分濃度が30ppm以下であれば、ス
ケール問題は発生しないと考えられる。
Since water is evaporated in the can of the steam generator, the liquid is concentrated (about 4 times), and a scale problem occurs. FIG. 8 shows a relationship diagram between the hardness component concentration in the concentrated liquid and the scale precipitation. From FIG. 8, scale deposition occurs when the concentration of the hardness component of the concentrated liquid becomes 120 ppm or more. Since the liquid concentration becomes four times, it is considered that the scale problem does not occur if the hardness component concentration in the water supplied to the steam generator is 30 ppm or less.

【0024】軟水化処理水に原水及び電気分解時に陰極
室で得られるアルカリ水を混入し、混入後の硬度成分濃
度を測定した。結果を図9及び図10に示す。図9は、
硬度成分濃度50ppmの水を処理した結果を示し、図
10には、硬度成分濃度100ppmの水を処理した結
果を示す。
Raw water and alkaline water obtained in the cathode chamber at the time of electrolysis were mixed into the softened water, and the hardness component concentration after mixing was measured. The results are shown in FIGS. 9 and 10. FIG.
The result of treating water having a hardness component concentration of 50 ppm is shown, and FIG. 10 shows the result of treating water having a hardness component concentration of 100 ppm.

【0025】混入後の硬度成分濃度は、軟水化処理水の
量及び硬度成分濃度と、混入水の量及び硬度成分濃度に
よって決まり次式のように表せる。
The hardness component concentration after mixing is determined by the amount of softening treated water and the hardness component concentration, and the amount of mixing water and the hardness component concentration, and can be expressed by the following equation.

【0026】B=(V*H+v*h)/(V+v) B:混入後の硬度成分濃度[ppm] H:軟水化処理水の硬度成分濃度[ppm] h:混入水の硬度成分濃度[ppm] V:軟水化処理水量[ml] v:混入水量[ml] 混入後の硬度成分濃度が30ppm以下になるような、
混入水量を求める必要があるが、混入水の硬度成分濃度
は、電気分解する原水のpH、硬度成分濃度、水温等に
よって大きく変動するため、制御は困難であるため、混
入アルカリ水の硬度成分濃度の上限を180ppmとし
て考える。
B = (V * H + v * h) / (V + v) B: Concentration of hardness component after mixing [ppm] H: Concentration of hardness component of softened water [ppm] h: Concentration of hardness component of mixed water [ppm] ] V: water softening treatment amount [ml] v: mixed water amount [ml] The hardness component concentration after mixing becomes 30 ppm or less,
Although it is necessary to determine the amount of mixed water, the hardness component concentration of the mixed water largely varies depending on the pH of the raw water to be electrolyzed, the hardness component concentration, the water temperature, etc., and is difficult to control. Is considered to be 180 ppm.

【0027】アルカリ水混入量が軟水化処理水に対して
20%以下であれば、混入アルカリ水の硬度成分濃度の
影響を受けず、混入後の硬度成分濃度を30ppm以下
にすることが可能である。原水混入の場合は30%以下
である。
When the amount of the alkaline water mixed is 20% or less with respect to the softened water, the hardness component concentration of the mixed alkaline water is not affected and the hardness component concentration after mixing can be 30 ppm or less. is there. When raw water is mixed, it is 30% or less.

【0028】(実施例1)本発明の実施例を図1に基づ
いて説明する。図1において、蒸気発生装置に水を供給
する水路となる原水供給パイプ1は、電気分解装置3の
下部と、樹脂再生時には軟水化装置への通水を停止する
弁2を介して陽イオン交換樹脂16の充填してある軟水
化装置17の上部に接続されている。電気分解装置3は
ポーラスな隔膜8、例えば素焼きの隔膜によって陽極室
6と陰極室7に仕切られ、これら極室にそれぞれ電極4
及び5を配設している。また陽極室6の上部は酸性水パ
イプ9と三方弁11を介して、軟水化装置17の上部に
接続されており、陰極室7の上部はアルカリ水パイプ1
0と、三方弁13を介して、混合部15に接続されてい
る。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG. In FIG. 1, a raw water supply pipe 1 which serves as a water channel for supplying water to a steam generator is provided with a cation exchange through a lower portion of an electrolyzer 3 and a valve 2 which stops water flow to a water softener during resin regeneration. It is connected to the upper part of the water softening device 17 filled with the resin 16. The electrolyzer 3 is divided into an anode chamber 6 and a cathode chamber 7 by a porous diaphragm 8, for example, a unglazed diaphragm.
And 5 are provided. The upper part of the anode chamber 6 is connected to the upper part of the water softener 17 through the acidic water pipe 9 and the three-way valve 11, and the upper part of the cathode chamber 7 is connected to the alkaline water pipe 1.
0 and the three-way valve 13 are connected to the mixing unit 15.

【0029】軟水化装置17の下部は軟水化処理水パイ
プ18を介して混合部15と結合し、三方弁20を介し
て排水パイプ21及び混合水パイプ19を介して蒸気発
生装置22が接続されている。
The lower part of the water softening device 17 is connected to the mixing portion 15 via a water softening treated water pipe 18, and a steam generator 22 is connected via a three-way valve 20 to a drain pipe 21 and a mixed water pipe 19. ing.

【0030】上記構成において採水時には、水は原水供
給パイプ1を通り、弁2を開き、三方弁11を排水パイ
プ12側に、三方弁13を混合部15側に、三方弁20
を混合水供給パイプ19側に切り換えて、陽イオン交換
樹脂16好ましくはメタクリル酸系弱酸性陽イオン交換
樹脂の充填してある軟水化装置17上部と、隔膜8によ
って陽極室6及び陰極室7を分離形成し、これら極室に
それぞれ電極4、5を配設した電気分解装置3の下部に
供給される。
In the above structure, when water is taken, water flows through the raw water supply pipe 1, the valve 2 is opened, the three-way valve 11 is on the drain pipe 12 side, the three-way valve 13 is on the mixing section 15 side, and the three-way valve 20.
Is switched to the mixed water supply pipe 19 side, and the cation exchange resin 16 is filled with a methacrylic acid-based weakly acidic cation exchange resin, and the upper part of the water softening device 17 is separated by the diaphragm 8 into the anode chamber 6 and the cathode chamber 7. It is separately formed and supplied to the lower part of the electrolyzer 3 in which the electrodes 4 and 5 are arranged in these polar chambers.

【0031】電気分解装置3の下部に供給された水は、
電極4、5の両極間に印加した直流電圧により電気分解
し陽極室6で酸性水が陽極室7でアルカリ水が得られ
る。酸性水は酸性水パイプ9と三方弁11を介して排水
パイプ12より排水される。アルカリ水はアルカリ水パ
イプ10と三方弁13を介して、混合部15に送られ
る。
The water supplied to the lower part of the electrolyzer 3 is
Electrolysis is performed by a DC voltage applied between the electrodes 4 and 5 to obtain acidic water in the anode chamber 6 and alkaline water in the anode chamber 7. The acidic water is drained from the drainage pipe 12 via the acidic water pipe 9 and the three-way valve 11. The alkaline water is sent to the mixing section 15 via the alkaline water pipe 10 and the three-way valve 13.

【0032】軟水化装置17の上部に供給された水は陽
イオン交換樹脂16により水中のカルシウム、マグネシ
ウム等の陽イオンは、水素イオンと置換され、軟水化処
理水が軟水化処理水パイプ18を介して混合部15に送
られる。混合部15では、アルカリ水を軟水化処理水に
対して10〜20%、好ましくは14〜16%混合し、
蒸気発生装置22に供給される。
The water supplied to the upper portion of the water softening device 17 is replaced with hydrogen ions for cations such as calcium and magnesium in the water by the cation exchange resin 16, and the water softened water is supplied to the water softened water pipe 18. It is sent to the mixing section 15 via. In the mixing unit 15, 10 to 20%, preferably 14 to 16% of alkaline water is mixed with the softened water,
It is supplied to the steam generator 22.

【0033】陽イオン交換樹脂再生時には、弁2を閉
じ、三方弁11を酸性水パイプ9側に、三方弁13を排
水パイプ14側に、三方弁20を排水パイプ21側に切
り換えて、水は隔膜8によって陽極室6及び陰極室7を
分離形成し、これら極室にそれぞれ電極4、5を配設し
た電気分解装置3に供給される。電極4、5の両極間に
直流電圧を印加し、陽極室6で得られた酸性水を酸性水
パイプ9を介して軟水化装置17の上部から供給する。
陽イオン交換樹脂16は酸性水によって水素イオン型に
再生され、再生排水は三方弁20、排水パイプ21を介
して排水される。
When regenerating the cation-exchange resin, the valve 2 is closed, the three-way valve 11 is switched to the acidic water pipe 9 side, the three-way valve 13 is switched to the drainage pipe 14 side, and the three-way valve 20 is switched to the drainage pipe 21 side so that water is drained. The partition chamber 8 separates the anode chamber 6 and the cathode chamber 7 from each other, and these electrodes are supplied to the electrolyzer 3 in which the electrodes 4 and 5 are arranged. A direct current voltage is applied between both electrodes of the electrodes 4 and 5, and the acidic water obtained in the anode chamber 6 is supplied from the upper part of the water softener 17 through the acidic water pipe 9.
The cation exchange resin 16 is regenerated into a hydrogen ion type by acidic water, and the regenerated waste water is drained through the three-way valve 20 and the drain pipe 21.

【0034】以上のように本実施例では、陽イオン交換
樹脂で水中のカルシウム、マグネシウムイオン等の硬度
成分を除去し、蒸気発生装置の缶体へのスケールの付着
を防止出来、水の電気分解で得られたアルカリ水を混入
することで蒸気発生装置の腐食を防止でき、水の電気分
解で得られた酸性水で陽イオン交換樹脂の再生を行うこ
とで、連続的に軟水を蒸気発生装置に供給することがで
きる。
As described above, in this embodiment, hardness components such as calcium and magnesium ions in the water can be removed by the cation exchange resin to prevent the scale from adhering to the can body of the steam generator, and the electrolysis of the water. By mixing the alkaline water obtained in step 1, the steam generator can be prevented from corrosion, and by regenerating the cation exchange resin with acidic water obtained by electrolysis of water, the steam generator can continuously generate soft water. Can be supplied to.

【0035】また、アルカリ水混入量を10〜20%好
ましくは14〜16%とすることで、原水硬度成分濃度
の変動に対応し、安定した軟水を蒸気発生装置に供給す
ることが出来る。
Further, by setting the mixed amount of alkaline water to 10 to 20%, preferably 14 to 16%, it is possible to supply stable soft water to the steam generator in response to the fluctuation of the concentration of raw water hardness component.

【0036】(実施例2)本発明の第2の手段による実
施例を図2に基づいて説明する。図2において、蒸気発
生装置に水を供給する水路となる原水供給パイプ1は、
電気分解装置3の下部と、三方弁23を介して陽イオン
交換樹脂16の充填してある軟水化装置17の上部に接
続されている。電気分解装置3はポーラスな隔膜8、例
えば素焼きの隔膜によって陽極室6と陰極室7に仕切ら
れ、これら極室にそれぞれ電極4及び5を配設してい
る。また陽極室6の上部は酸性水パイプ9を介して軟水
化装置17の下部に接続されており、陰極室7の上部は
アルカリ水パイプ10を介して、混合部15に接続され
ている。
(Embodiment 2) An embodiment of the second means of the present invention will be described with reference to FIG. In FIG. 2, the raw water supply pipe 1 that serves as a water channel for supplying water to the steam generator is
It is connected to the lower part of the electrolyzer 3 and the upper part of the water softener 17 filled with the cation exchange resin 16 via a three-way valve 23. The electrolyzer 3 is divided into an anode chamber 6 and a cathode chamber 7 by a porous diaphragm 8, for example, a unglazed diaphragm, and electrodes 4 and 5 are arranged in these polar chambers, respectively. The upper part of the anode chamber 6 is connected to the lower part of the water softener 17 via an acidic water pipe 9, and the upper part of the cathode chamber 7 is connected to the mixing section 15 via an alkaline water pipe 10.

【0037】軟水化装置17の下部は軟水化処理水出口
パイプ18を介して混合部15と結合し、混合水供給パ
イプ19を介して蒸気発生装置22が接続されている。
The lower portion of the water softening device 17 is connected to the mixing section 15 via the water softening treated water outlet pipe 18, and the steam generator 22 is connected to the water softening device pipe 19 via the mixed water supply pipe 19.

【0038】上記構成において採水時には、水は原水供
給パイプ1を通り、三方弁23を軟水化装置17側に、
三方弁11を排水パイプ12側に、三方弁13を混合部
15側に切り換え、三方弁25を開き、陽イオン交換樹
脂16好ましくはメタクリル酸系弱酸性陽イオン交換樹
脂の充填してある軟水化装置17上部と、隔膜8によっ
て陽極室6及び陰極室7を分離形成し、これら極室にそ
れぞれ電極4、5を配設した電気分解装置3の下部に供
給される。
In the above structure, at the time of water sampling, water passes through the raw water supply pipe 1 and the three-way valve 23 is moved to the water softening device 17 side.
The three-way valve 11 is switched to the drain pipe 12 side, the three-way valve 13 is switched to the mixing section 15 side, the three-way valve 25 is opened, and the cation exchange resin 16 is filled with a methacrylic acid-based weakly acidic cation exchange resin. An anode chamber 6 and a cathode chamber 7 are separately formed by an upper portion of the device 17 and a diaphragm 8 and are supplied to a lower portion of the electrolyzer 3 in which electrodes 4 and 5 are arranged in these electrode chambers.

【0039】電気分解装置3の下部に供給された水は、
電極4、5の両極間に印加した直流電圧により電気分解
し陽極室6で酸性水が陽極室7でアルカリ水が得られ
る。酸性水は酸性水パイプ9と三方弁11を介して排水
パイプ12より排水される。アルカリ水はアルカリ水パ
イプ10と三方弁13を介して、混合部15に送られ
る。
The water supplied to the lower part of the electrolyzer 3 is
Electrolysis is performed by a DC voltage applied between the electrodes 4 and 5 to obtain acidic water in the anode chamber 6 and alkaline water in the anode chamber 7. The acidic water is drained from the drainage pipe 12 via the acidic water pipe 9 and the three-way valve 11. The alkaline water is sent to the mixing section 15 via the alkaline water pipe 10 and the three-way valve 13.

【0040】軟水化装置17の上部に供給された水は陽
イオン交換樹脂16により水中のカルシウム、マグネシ
ウム等の陽イオンは、水素イオンと置換され、軟水化処
理水が軟水化処理水パイプ18を介して、混合部15に
送られる。混合部15ではアルカリ水を軟水化処理水に
対して10〜20%、好ましくは14〜16%混合し、
蒸気発生装置22に供給される。
The water supplied to the upper part of the water softening device 17 is replaced by hydrogen ions for cations such as calcium and magnesium in the water by the cation exchange resin 16, and the water softened water is fed through the water softened water pipe 18. It is sent to the mixing section 15 via the. In the mixing section 15, 10 to 20%, preferably 14 to 16% of alkaline water is mixed with the softened water,
It is supplied to the steam generator 22.

【0041】陽イオン交換樹脂再生時には、三方弁23
を排水パイプ24側に、三方弁11を酸性水パイプ9側
に、三方弁14を排水パイプ15側に切り換え、弁25
を閉じて水が蒸気発生装置22に入らないようにし、水
は隔膜8によって陽極室6及び陰極室7を分離形成し、
これら極室にそれぞれ電極4、5を配設した電気分解装
置3に供給される。電極4、5の両極間に直流電圧を印
加し、陽極室6で得られた酸性水を酸性水パイプ9を介
して軟水化装置17の下部から供給する。陽イオン交換
樹脂16は酸性水によって水素イオン型に再生され、再
生排水は三方弁23、排水パイプ24を介して排水され
る。
When regenerating the cation exchange resin, the three-way valve 23
To the drain pipe 24 side, the three-way valve 11 to the acidic water pipe 9 side, and the three-way valve 14 to the drain pipe 15 side, and the valve 25
Is closed to prevent water from entering the steam generator 22, and the water separates the anode chamber 6 and the cathode chamber 7 by the diaphragm 8.
It is supplied to the electrolyzer 3 in which electrodes 4 and 5 are arranged in these polar chambers. A direct current voltage is applied between both electrodes of the electrodes 4 and 5, and the acidic water obtained in the anode chamber 6 is supplied from the lower part of the water softener 17 through the acidic water pipe 9. The cation exchange resin 16 is regenerated into a hydrogen ion type by acidic water, and the regenerated waste water is drained through the three-way valve 23 and the drain pipe 24.

【0042】以上のように本実施例では、陽イオン交換
樹脂で水中のカルシウム、マグネシウムイオン等の硬度
成分を除去し、蒸気発生装置の缶体へのスケールの付着
を防止出来、水の電気分解で得られたアルカリ水を混入
することで蒸気発生装置の腐食を防止でき、水の電気分
解で得られた酸性水で陽イオン交換樹脂の再生を向流方
向に行うことで、効率良く連続的に、軟水を蒸気発生装
置に供給することができる。
As described above, in this embodiment, hardness components such as calcium and magnesium ions in the water can be removed by the cation exchange resin to prevent the scale from adhering to the can body of the steam generator, and the electrolysis of the water. By mixing the alkaline water obtained in step 1, the steam generator can be prevented from corrosion, and the acidic water obtained by electrolysis of water can be used to regenerate the cation exchange resin in a countercurrent direction for efficient and continuous operation. In addition, soft water can be supplied to the steam generator.

【0043】また、アルカリ水混入量を10〜20%好
ましくは14〜16%とすることで、原水硬度成分濃度
の変動に対応し、安定した軟水を蒸気発生装置に供給す
ることが出来る。
By setting the amount of alkaline water mixed to be 10 to 20%, preferably 14 to 16%, stable soft water can be supplied to the steam generator in response to fluctuations in the concentration of raw water hardness component.

【0044】(実施例3)本発明の第3の手段による実
施例を図3に基づいて説明する。図3において、蒸気発
生装置に水を供給する水路となる原水供給パイプ1は、
電気分解装置3の下部に接続され、電気分解装置3はポ
ーラスな隔膜8、例えば素焼きの隔膜によって陽極室6
と陰極室7に仕切られ、これら極室にそれぞれ電極4及
び5を配設している。また陽極室6の上部は酸性水パイ
プ9を介して、軟水化装置17の上部に接続されてお
り、陰極室7の上部はアルカリ水パイプ10を介してア
ルカリ水貯水タンク26に接続され、アルカリ水貯水タ
ンク26からオーバーフロー式に排水パイプ14と、ポ
ンプ27、混合アルカリ水パイプを介して混合部15と
接続されている。
(Third Embodiment) A third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the raw water supply pipe 1 serving as a water channel for supplying water to the steam generator is
The electrolyzer 3 is connected to the lower part of the electrolyzer 3, and the electrolyzer 3 is provided with a porous diaphragm 8, for example, an unglazed diaphragm.
And the cathode chamber 7, and electrodes 4 and 5 are arranged in these electrode chambers, respectively. The upper part of the anode chamber 6 is connected to the upper part of the water softening device 17 via the acidic water pipe 9, and the upper part of the cathode chamber 7 is connected to the alkaline water storage tank 26 via the alkaline water pipe 10. The water storage tank 26 is connected in an overflow manner to the drainage pipe 14, the pump 27, and the mixing section 15 via the mixed alkaline water pipe.

【0045】軟水化装置17の下部は軟水化処理水出口
パイプ18、三方弁20を介して混合部15が接続され
ており、混合水パイプ19を介して蒸気発生装置22が
接続されている。
The lower part of the water softening device 17 is connected to the mixing section 15 via a water softening treated water outlet pipe 18 and a three-way valve 20, and to the steam generator 22 via a water mixing pipe 19.

【0046】上記構成において採水時には、三方弁13
を酸性水パイプ9側に、三方弁20を混合部15側に切
り換えて、水は原水供給パイプ1及び、隔膜8によって
陽極室6及び陰極室7を分離形成し、これら極室にそれ
ぞれ電極4、5を配設した電気分解装置3を通り、陽イ
オン交換樹脂16好ましくはメタクリル酸系弱酸性陽イ
オン交換樹脂の充填してある軟水化装置17上部に供給
される。
In the above structure, the three-way valve 13 is used during water sampling.
Is switched to the acidic water pipe 9 side, and the three-way valve 20 is switched to the mixing section 15 side, so that water separates the anode chamber 6 and the cathode chamber 7 by the raw water supply pipe 1 and the diaphragm 8 and the electrodes 4 and 4 5 is supplied to the upper part of the water softening device 17 filled with a cation exchange resin 16, preferably a methacrylic acid-based weakly acidic cation exchange resin.

【0047】軟水化装置17の上部に供給された水は陽
イオン交換樹脂16により水中のカルシウム、マグネシ
ウム等の陽イオンは、水素イオンと置換され、軟水化処
理水がパイプ18を介して混合部15に送られ、アルカ
リ水貯水タンク26のアルカリ水をポンプ27により混
合アルカリ水パイプ28を介して、混合部15に送られ
る。混合部では軟水化処理水に対して10〜20%、好
ましくは14〜16%混入し、パイプを介して、蒸気発
生装置22に供給される。
The water supplied to the upper part of the water softening device 17 is replaced by hydrogen ions for cations such as calcium and magnesium in the water by the cation exchange resin 16, and the water softening treated water is mixed through the pipe 18 at the mixing portion. 15, the alkaline water in the alkaline water storage tank 26 is sent to the mixing section 15 by the pump 27 through the mixed alkaline water pipe 28. In the mixing section, 10 to 20%, preferably 14 to 16% of the softened water is mixed and supplied to the steam generator 22 via a pipe.

【0048】陽イオン交換樹脂再生時には、三方弁13
をアルカリ水パイプ10側に、三方弁20を排水パイプ
21側に切り換えて、水は隔膜8によって陽極室6及び
陰極室7を分離形成し、これら極室にそれぞれ電極4、
5を配設した電気分解装置3に供給される。電極4、5
の両極間に直流電圧を印加し、陽極室6で得られた酸性
水を酸性水パイプ9を介して軟水化装置17の上部から
供給する。陽イオン交換樹脂16は酸性水によって水素
イオン型に再生され、再生排水は三方弁20、排水パイ
プ21を介して排水される。
When regenerating the cation exchange resin, the three-way valve 13
To the side of the alkaline water pipe 10 and the three-way valve 20 to the side of the drain pipe 21 so that water separates the anode chamber 6 and the cathode chamber 7 by the diaphragm 8, and the electrodes 4 and
5 is supplied to the electrolyzer 3. Electrodes 4, 5
A DC voltage is applied between the two electrodes, and the acidic water obtained in the anode chamber 6 is supplied from above the water softening device 17 via the acidic water pipe 9. The cation exchange resin 16 is regenerated into a hydrogen ion type by acidic water, and the regenerated waste water is drained through the three-way valve 20 and the drain pipe 21.

【0049】陰極室7で得られたアルカリ水はアルカリ
水パイプ10を介してアルカリ水貯水タンク26に貯え
られ、オーバーフロー式に排水パイプ14より排水され
る。
The alkaline water obtained in the cathode chamber 7 is stored in the alkaline water storage tank 26 via the alkaline water pipe 10 and is drained from the drain pipe 14 in the overflow type.

【0050】以上のように本実施例では、陽イオン交換
樹脂で水中のカルシウム、マグネシウムイオン等の硬度
成分を除去し、蒸気発生装置の缶体へのスケールの付着
を防止出来、水の電気分解で得られたアルカリ水を混入
することで蒸気発生装置の腐食を防止でき、水の電気分
解で得られた酸性水で陽イオン交換樹脂の再生を行うこ
とで、連続的に軟水を蒸気発生装置に供給することがで
きる。
As described above, in this embodiment, hardness components such as calcium and magnesium ions in the water can be removed by the cation exchange resin to prevent the scale from adhering to the can of the steam generator, and the electrolysis of the water. By mixing the alkaline water obtained in step 1, the steam generator can be prevented from corrosion, and by regenerating the cation exchange resin with acidic water obtained by electrolysis of water, the steam generator can continuously generate soft water. Can be supplied to.

【0051】また、アルカリ水混入量を10〜20%好
ましくは14〜16%とすることで、原水硬度成分濃度
の変動に対応し、安定した軟水を蒸気発生装置に供給す
ることが出来る。
Further, by setting the mixed amount of alkaline water to 10 to 20%, preferably 14 to 16%, it is possible to supply stable soft water to the steam generator in response to fluctuations in the concentration of raw water hardness component.

【0052】また、タンクに貯水したアルカリ水を混入
水として用いるため、採水時の電気分解を不要化するこ
とが出来る。
Further, since the alkaline water stored in the tank is used as the mixed water, electrolysis at the time of water sampling can be eliminated.

【0053】(実施例4)本発明の第4の手段による実
施例を図4に基づいて説明する。図4において、蒸気発
生装置に水を供給する水路となる原水供給パイプ1は、
電気分解装置3の下部に接続されている。電気分解装置
3はポーラスな隔膜8、例えば素焼きの隔膜によって陽
極室6と陰極室7に仕切られ、これら極室にそれぞれ電
極4及び5を配設している。また陽極室6の上部は酸性
水パイプ9を介して、軟水化装置17の上部に接続され
ており、陰極室7の上部はアルカリ水パイプ10を介し
て、排水パイプ15と混合部15に接続されている。
(Embodiment 4) An embodiment of the fourth means of the present invention will be described with reference to FIG. In FIG. 4, the raw water supply pipe 1 serving as a water channel for supplying water to the steam generator is
It is connected to the lower part of the electrolyzer 3. The electrolyzer 3 is divided into an anode chamber 6 and a cathode chamber 7 by a porous diaphragm 8, for example, a unglazed diaphragm, and electrodes 4 and 5 are arranged in these polar chambers, respectively. Further, the upper part of the anode chamber 6 is connected to the upper part of the water softener 17 via the acidic water pipe 9, and the upper part of the cathode chamber 7 is connected to the drain pipe 15 and the mixing part 15 via the alkaline water pipe 10. Has been done.

【0054】軟水化装置17の下部は軟水化処理水出口
パイプ18、三方弁20を介して排水パイプ21及び混
合部15が接続され、混合部は混合水パイプ19を介し
て蒸気発生装置22が接続されている。
The lower part of the water softening device 17 is connected to the drainage pipe 21 and the mixing portion 15 via the water softening treated water outlet pipe 18 and the three-way valve 20, and the mixing portion is connected to the steam generator 22 via the mixed water pipe 19. It is connected.

【0055】上記構成において採水時には、水は原水供
給パイプ1を通り、三方弁13をアルカリ水パイプ10
側に、三方弁20を混合部15側に切り換えて、隔膜8
によって陽極室6及び陰極室7を分離形成し、これら極
室にそれぞれ電極4、5を配設した電気分解装置3の下
部に供給される。陽極室を通過する水は酸性水パイプ9
を介して、陽イオン交換樹脂16好ましくはメタクリル
酸系弱酸性陽イオン交換樹脂の充填してある軟水化装置
17上部に供給され、陽イオン交換樹脂16により水中
のカルシウム、マグネシウム等の陽イオンは、水素イオ
ンと置換され、軟水化処理水がパイプ18、三方弁20
を介して混合部15に送られる。陰極室を通過する水
は、三方弁13及びパイプ10を介して混合部に送ら
れ、混合部では原水を軟水化処理水に対して20〜30
%、好ましくは24〜26%混入し、蒸気発生装置22
に供給される。
In the above structure, when water is taken, the water passes through the raw water supply pipe 1, the three-way valve 13 is connected to the alkaline water pipe 10,
Side, the three-way valve 20 is switched to the mixing section 15 side, and the diaphragm 8
The anode chamber 6 and the cathode chamber 7 are separately formed by the above, and the electrodes 4 and 5 are respectively supplied to the lower portion of the electrolyzer 3 in which the electrodes 4 and 5 are arranged. The water that passes through the anode chamber is acid water pipe 9
Is supplied to the upper part of the water softener 17 filled with a cation exchange resin 16, preferably a methacrylic acid-based weakly acidic cation exchange resin, and the cation exchange resin 16 removes cations such as calcium and magnesium in water. , Hydrogen ion is replaced, and softened water is pipe 18, three-way valve 20.
Is sent to the mixing section 15 via. The water passing through the cathode chamber is sent to the mixing section through the three-way valve 13 and the pipe 10, and the raw water is mixed with the softened water in the mixing section by 20 to 30 times.
%, Preferably 24-26%, steam generator 22
Is supplied to.

【0056】陽イオン交換樹脂再生時には、三方弁13
を排水パイプ15側に、三方弁20を排水パイプ21側
に切り換えて、水は隔膜8によって陽極室6及び陰極室
7を分離形成し、これら極室にそれぞれ電極4、5を配
設した電気分解装置3に供給される。電極4、5の両極
間に直流電圧を印加し、陽極室6で得られた酸性水を陽
極水出口パイプ9を介して軟水化装置17の上部から供
給する。陽イオン交換樹脂16は酸性水によって水素イ
オン型に再生され、再生排水は三方弁20、排水パイプ
21を介して排水される。
When regenerating the cation exchange resin, the three-way valve 13
Is switched to the drain pipe 15 side and the three-way valve 20 is switched to the drain pipe 21 side, and water separates the anode chamber 6 and the cathode chamber 7 by the diaphragm 8 and the electrodes 4 and 5 are respectively arranged in these electrode chambers. It is supplied to the decomposition device 3. A direct current voltage is applied between both electrodes of the electrodes 4 and 5, and the acidic water obtained in the anode chamber 6 is supplied from the upper part of the water softening device 17 through the anode water outlet pipe 9. The cation exchange resin 16 is regenerated into a hydrogen ion type by acidic water, and the regenerated waste water is drained through the three-way valve 20 and the drain pipe 21.

【0057】以上のように本実施例では、陽イオン交換
樹脂で水中のカルシウム、マグネシウムイオン等の硬度
成分を除去し、蒸気発生装置の缶体へのスケールの付着
を防止出来、原水を混入することで蒸気発生装置の腐食
を防止でき、水の電気分解で得られた酸性水で陽イオン
交換樹脂の再生を行うことで、連続的に軟水を蒸気発生
装置に供給することができる。
As described above, in this embodiment, hardness components such as calcium and magnesium ions in water are removed by the cation exchange resin to prevent the scale from adhering to the can body of the steam generator and to mix the raw water. Thus, corrosion of the steam generator can be prevented, and soft water can be continuously supplied to the steam generator by regenerating the cation exchange resin with acidic water obtained by electrolysis of water.

【0058】また、原水混入量を10〜30%好ましく
は19〜21%とすることで、原水硬度成分濃度の変動
に対応し、安定した軟水を蒸気発生装置に供給すること
が出来る。
By setting the raw water content to be 10 to 30%, preferably 19 to 21%, it is possible to supply stable soft water to the steam generator in response to fluctuations in the raw water hardness component concentration.

【0059】表1に原水、軟水化処理水、軟水化処理水
にアルカリ水混入した水中の全硬度、塩素イオン濃度、
亜硝酸イオン濃度、硝酸イオン濃度、硫酸イオン濃度、
電導度、遊離炭酸濃度、pHを測定した結果を示す。
Table 1 shows the total hardness and chlorine ion concentration of raw water, softened water, and water mixed with alkaline water in softened water.
Nitrite ion concentration, nitrate ion concentration, sulfate ion concentration,
The results of measuring the electric conductivity, the free carbonic acid concentration and the pH are shown.

【0060】軟水化処理水はpHが低下し、遊離炭酸濃
度が原水よりも増加しているが、アルカリ水混入した水
では遊離炭酸濃度、電導度は減少し、塩素イオン、亜硝
酸イオン、硝酸イオン、硫酸イオン等の腐食性イオン濃
度も減少している。また、pHは6以上、全硬度は30
ppm以下である。
The softened water has a lowered pH and a free carbonic acid concentration higher than that of the raw water. However, in the water mixed with alkaline water, the free carbonic acid concentration and the electric conductivity decrease, and chlorine ion, nitrite ion and nitric acid are reduced. The concentration of corrosive ions such as ions and sulfate ions is also decreasing. Also, the pH is 6 or more, and the total hardness is 30.
It is below ppm.

【0061】[0061]

【発明の効果】以上の説明から明らかなように、本発明
の蒸気発生装置用の軟水器によれば次の効果が得られ
る。
As is apparent from the above description, the water softener for a steam generator of the present invention has the following effects.

【0062】第1の手段によれば、陽イオン交換樹脂で
水中のカルシウム、マグネシウムイオン等の硬度成分を
除去し、蒸気発生装置の缶体へのスケールの付着を防止
出来、水の電気分解で得られたアルカリ水を混入するこ
とで蒸気発生装置の腐食を防止でき、水の電気分解で得
られた酸性水で陽イオン交換樹脂の再生を行うことで、
連続的に軟水を蒸気発生装置に供給することができる。
According to the first means, hardness components such as calcium and magnesium ions in water can be removed by the cation exchange resin to prevent the scale from adhering to the can body of the steam generator, and the electrolysis of water can be performed. By mixing the obtained alkaline water, it is possible to prevent corrosion of the steam generator, and by regenerating the cation exchange resin with acidic water obtained by electrolysis of water,
Soft water can be continuously supplied to the steam generator.

【0063】また、アルカリ水混入量を10〜20%好
ましくは14〜16%とすることで、原水硬度成分濃度
の変動に対応し、安定した軟水を蒸気発生装置に供給す
ることができる。
Further, by setting the mixed amount of alkaline water to 10 to 20%, preferably 14 to 16%, it is possible to supply stable soft water to the steam generator in response to fluctuations in the concentration of raw water hardness component.

【0064】第2の手段によれば、陽イオン交換樹脂で
水中のカルシウム、マグネシウムイオン等の硬度成分を
除去し、蒸気発生装置の缶体へのスケールの付着を防止
出来、水の電気分解で得られたアルカリ水を混入するこ
とで蒸気発生装置の腐食を防止でき、水の電気分解で得
られた酸性水で陽イオン交換樹脂の再生を向流方向に行
うことで、効率良く連続的に、軟水を蒸気発生装置に供
給することができる。
According to the second means, the cation exchange resin can remove hardness components such as calcium and magnesium ions in the water to prevent scale from adhering to the can body of the steam generator, and the electrolysis of water can be performed. Corrosion of the steam generator can be prevented by mixing the obtained alkaline water, and the cation-exchange resin can be regenerated in the countercurrent direction with the acidic water obtained by electrolysis of water, thus enabling efficient and continuous operation. , Soft water can be supplied to the steam generator.

【0065】第3の手段によれば、陽イオン交換樹脂で
水中のカルシウム、マグネシウムイオン等の硬度成分を
除去し、蒸気発生装置の缶体へのスケールの付着を防止
出来、水の電気分解で得られたアルカリ水を混入するこ
とで蒸気発生装置の腐食を防止でき、水の電気分解で得
られた酸性水で陽イオン交換樹脂の再生を行うことで、
連続的に軟水を蒸気発生装置に供給することができる。
According to the third means, the cation exchange resin can remove hardness components such as calcium and magnesium ions in the water to prevent the scale from adhering to the can body of the steam generator, and the electrolysis of water can be performed. By mixing the obtained alkaline water, it is possible to prevent corrosion of the steam generator, and by regenerating the cation exchange resin with acidic water obtained by electrolysis of water,
Soft water can be continuously supplied to the steam generator.

【0066】また、タンクに貯水したアルカリ水を混入
水として用いるため、採水時の電気分解を不要化するこ
とが出来る。
Further, since the alkaline water stored in the tank is used as mixed water, electrolysis at the time of water sampling can be eliminated.

【0067】第4の手段によれば、陽イオン交換樹脂で
水中のカルシウム、マグネシウムイオン等の硬度成分を
除去し、蒸気発生装置の缶体へのスケールの付着を防止
出来、原水を混入することで蒸気発生装置の腐食を防止
でき、水の電気分解で得られた酸性水で陽イオン交換樹
脂の再生を行うことで、連続的に軟水を蒸気発生装置に
供給することができる。
According to the fourth means, the cation exchange resin can remove hardness components such as calcium and magnesium ions in the water, prevent the scale from adhering to the can body of the steam generator, and mix the raw water. With this, corrosion of the steam generator can be prevented, and soft water can be continuously supplied to the steam generator by regenerating the cation exchange resin with acidic water obtained by electrolysis of water.

【0068】また、原水混入量を10〜30%好ましく
は19〜21%とすることで、原水硬度成分濃度の変動
に対応し、安定した軟水を蒸気発生装置に供給すること
が出来る。
By setting the raw water content to be 10 to 30%, preferably 19 to 21%, it is possible to supply stable soft water to the steam generator in response to fluctuations in the raw water hardness component concentration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における蒸気発生装置用
の軟水器の構成を示す断面図
FIG. 1 is a sectional view showing the configuration of a water softener for a steam generator according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における蒸気発生装置用
の軟水器の構成を示す断面図
FIG. 2 is a sectional view showing the structure of a water softener for a steam generator according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における蒸気発生装置用
の軟水器の構成を示す断面図
FIG. 3 is a sectional view showing the structure of a water softener for a steam generator according to a third embodiment of the present invention.

【図4】本発明の第4の実施例における蒸気発生装置用
の軟水器の構成を示す断面図
FIG. 4 is a sectional view showing the structure of a water softener for a steam generator according to a fourth embodiment of the present invention.

【図5】一般的な炭酸の水酸化ナトリウムによる中和滴
定特性図
FIG. 5: Neutralization titration characteristic diagram of general carbonic acid with sodium hydroxide

【図6】硬度成分濃度50ppmの軟水化処理水のアル
カリ水による滴定特性図
FIG. 6 is a titration characteristic diagram of softened treated water having a hardness component concentration of 50 ppm with alkaline water.

【図7】硬度成分濃度100ppmの軟水化処理水のア
ルカリ水による滴定特性図
FIG. 7 is a titration characteristic diagram of softened treated water having a hardness component concentration of 100 ppm with alkaline water.

【図8】濃縮液中の硬度成分濃度とスケール析出の関係
FIG. 8 is a diagram showing the relationship between the hardness component concentration in the concentrated liquid and scale deposition.

【図9】硬度成分濃度50ppmの軟水化処理水へアル
カリ水混入後の硬度成分濃度特性図
FIG. 9 is a characteristic diagram of hardness component concentration after mixing alkaline water into softened water having a hardness component concentration of 50 ppm.

【図10】硬度成分濃度100ppmの軟水化処理水へ
アルカリ水混入後の硬度成分濃度特性図
FIG. 10 is a characteristic diagram of hardness component concentration after mixing alkaline water into softened water having a hardness component concentration of 100 ppm.

【図11】従来の軟水器の構成を示す断面図FIG. 11 is a sectional view showing the structure of a conventional water softener.

【符号の説明】[Explanation of symbols]

1 原水供給パイプ 3 電気分解装置 4 陽極室 5 陰極室 8 隔膜 9 酸性水出口パイプ 10 アルカリ水パイプ 15 混合部 16 陽イオン交換樹脂 17 軟水化装置 18 軟水化処理水パイプ 19 混合水供給パイプ 22 蒸気発生装置 1 Raw Water Supply Pipe 3 Electrolyzer 4 Anode Chamber 5 Cathode Chamber 8 Diaphragm 9 Acidic Water Outlet Pipe 10 Alkaline Water Pipe 15 Mixing Section 16 Cation Exchange Resin 17 Water Softener 18 Softening Water Pipe 19 Mixed Water Supply Pipe 22 Steam Generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水道管と接続された原水供給パイプと、こ
の原水供給パイプに接続され隔膜によって陰極室と陽極
室に分離された電気分解装置と、この原水供給パイプに
バイパスで接続され陽イオン交換樹脂を充填した軟水化
装置と、前記電気分解装置の陽極室と前記軟水化装置の
上部とを接続した酸性水パイプと、前記電気分解装置の
陰極室と混合部を接続したアルカリ水パイプと、前記軟
水化装置と前記混合部を接続した軟水化処理水パイプ
と、前記混合部と蒸気発生装置とを接続した混合水供給
パイプとからなる蒸気発生装置用の軟水器。
1. A raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water supply pipe and separated into a cathode chamber and an anode chamber by a diaphragm, and a cation connected to the raw water supply pipe by bypass. A water softener filled with exchange resin, an acidic water pipe connecting the anode chamber of the electrolyzer and the upper part of the water softener, and an alkaline water pipe connecting the cathode chamber of the electrolyzer and the mixing section. A water softener for a steam generator comprising a water softening treated water pipe connecting the water softener and the mixing section, and a mixed water supply pipe connecting the mixing section and the steam generating apparatus.
【請求項2】水道管と接続された原水供給パイプと、こ
の原水供給パイプに接続され隔膜によって陰極室と陽極
室に分離された電気分解装置と、この原水供給パイプに
バイパスで接続され陽イオン交換樹脂を充填した軟水化
装置と、前記電気分解装置の陽極室と前記軟水化装置の
下部とを接続した酸性水パイプと、前記電気分解装置の
陰極室と混合部を接続したアルカリ水パイプと、前記軟
水化装置と前記混合部を接続した軟水化処理水パイプ
と、前記混合部と蒸気発生装置とを接続した混合水供給
パイプとからなる蒸気発生装置用の軟水器。
2. A raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water supply pipe and separated into a cathode chamber and an anode chamber by a diaphragm, and a cation connected to the raw water supply pipe by bypass. A water softener filled with an exchange resin, an acidic water pipe connecting the anode chamber of the electrolyzer and a lower portion of the water softener, and an alkaline water pipe connecting the cathode chamber of the electrolyzer and a mixing unit. A water softener for a steam generator comprising a water softening treated water pipe connecting the water softener and the mixing section, and a mixed water supply pipe connecting the mixing section and the steam generating apparatus.
【請求項3】水道管と接続された原水供給パイプと、こ
の原水供給パイプに接続され隔膜によって陰極室と陽極
室に分離された電気分解装置と、この電気分解装置の陽
極室と陽イオン交換樹脂を充填した軟水化装置を接続す
る酸性水パイプと、前記軟水化装置と混合部を接続する
軟水化処理水パイプと、前記電気分解装置の陰極室とア
ルカリ水タンクを接続するアルカリ水パイプと、前記ア
ルカリ水タンクと、前記混合部を接続する混合アルカリ
水パイプと、前記混合部と蒸気発生装置とを接続した混
合水供給パイプとからなる蒸気発生装置用の軟水器。
3. A raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water supply pipe and divided into a cathode chamber and an anode chamber by a diaphragm, and a cation exchange with the anode chamber of the electrolyzer. An acidic water pipe connecting a water softening device filled with resin, a water softening treated water pipe connecting the water softening device and a mixing section, and an alkaline water pipe connecting a cathode chamber of the electrolyzer and an alkaline water tank. A water softener for a steam generator comprising the alkaline water tank, a mixed alkaline water pipe connecting the mixing section, and a mixed water supply pipe connecting the mixing section and the steam generating apparatus.
【請求項4】水道管と接続された原水供給パイプと、こ
の原水供給パイプに接続され隔膜によって陰極室と陽極
室に分離された電気分解装置と、前記電気分解装置の陽
極室と軟水化装置を接続した酸性水パイプと、前記電気
分解装置の陰極室と混合部を接続したアルカリ水パイプ
と、前記軟水化装置と前記混合部を接続した軟水化処理
水パイプと、前記混合部と蒸気発生装置とを接続した混
合水供給パイプとからなる蒸気発生装置用の軟水器。
4. A raw water supply pipe connected to a water pipe, an electrolyzer connected to the raw water supply pipe and divided into a cathode chamber and an anode chamber by a diaphragm, an anode chamber and a water softening device of the electrolyzer. Acidic water pipe, an alkaline water pipe connecting the cathode chamber of the electrolyzer and the mixing unit, a water softening treated water pipe connecting the water softener and the mixing unit, the mixing unit and steam generation A water softener for a steam generator consisting of a mixed water supply pipe connected to the device.
JP6153526A 1994-07-05 1994-07-05 Water softener for steam generator Pending JPH0810761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6153526A JPH0810761A (en) 1994-07-05 1994-07-05 Water softener for steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6153526A JPH0810761A (en) 1994-07-05 1994-07-05 Water softener for steam generator

Publications (1)

Publication Number Publication Date
JPH0810761A true JPH0810761A (en) 1996-01-16

Family

ID=15564460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6153526A Pending JPH0810761A (en) 1994-07-05 1994-07-05 Water softener for steam generator

Country Status (1)

Country Link
JP (1) JPH0810761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227856B1 (en) * 2007-06-13 2013-01-31 삼성전자주식회사 Steam Cleaner
WO2021085163A1 (en) * 2019-10-30 2021-05-06 パナソニックIpマネジメント株式会社 Water softener
WO2021201023A1 (en) * 2020-04-03 2021-10-07 パナソニックIpマネジメント株式会社 Water softener apparatus and method for regenerating water softener apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227856B1 (en) * 2007-06-13 2013-01-31 삼성전자주식회사 Steam Cleaner
WO2021085163A1 (en) * 2019-10-30 2021-05-06 パナソニックIpマネジメント株式会社 Water softener
WO2021201023A1 (en) * 2020-04-03 2021-10-07 パナソニックIpマネジメント株式会社 Water softener apparatus and method for regenerating water softener apparatus

Similar Documents

Publication Publication Date Title
US6527940B1 (en) Production method of acid water and alkaline water
WO1998058880A1 (en) Method and apparatus for the electrochemical treatment of water and aqueous salt solutions
JP3820248B2 (en) Electrolytic water conditioner
JPH0416554B2 (en)
US3893901A (en) System for softening and dealkalizing water by electrodialysis
US7828980B2 (en) Water treatment process
WO2013038933A1 (en) Water treatment method
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP2003053339A (en) Water softener with regeneration function and its regeneration method
JPH0810761A (en) Water softener for steam generator
RU2110483C1 (en) Electrochemical water treatment apparatus
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP4505965B2 (en) Pure water production method
JP3501339B2 (en) Electric deionized water production equipment
NO742297L (en)
JP3340519B2 (en) Electrolytic ionic water generator
JPH0691260A (en) Water softening device for steam generating apparatus
JPH10216535A (en) Regeneration device for cation exchange resin and method therefor
JP3511459B2 (en) Electric deionized water production equipment
JP2003117554A (en) Cleaning water producing apparatus
KR101735529B1 (en) Apparatus for recycling waste washing water of wet scrubber
JP3979889B2 (en) How to produce deionized water
JPH07171564A (en) Water softener for steam generator
RU2095866C1 (en) Device for recovery of liquid radioactive wastes
JPH0724467A (en) Water softener for steam generator