JPH0810622A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH0810622A
JPH0810622A JP7033469A JP3346995A JPH0810622A JP H0810622 A JPH0810622 A JP H0810622A JP 7033469 A JP7033469 A JP 7033469A JP 3346995 A JP3346995 A JP 3346995A JP H0810622 A JPH0810622 A JP H0810622A
Authority
JP
Japan
Prior art keywords
catalyst
atomic ratio
ratio
component
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033469A
Other languages
Japanese (ja)
Inventor
Yasuhide Kano
保英 狩野
Takashi Katsuno
尚 勝野
Yoshimi Kawashima
義実 河島
Hiroshi Akama
弘 赤間
Goji Masuda
剛司 増田
Hiroyuki Kanesaka
浩行 金坂
Masanori Kamikubo
真紀 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Nissan Motor Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Nissan Motor Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP7033469A priority Critical patent/JPH0810622A/en
Publication of JPH0810622A publication Critical patent/JPH0810622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst efficiently purifying exhaust gas discharged from an internal combustion engine or various combustors. CONSTITUTION:In a catalyst based on crystalline alumnosilicate and containing a copper (Cu) component and a phosphorus (p) component, an SiO2/Al2O3 mol ratio is 20-60 and the contents of Cu and P are respectively 4-15% and 0.01-1.7% by wt. of crystalline aluminosilicate from which adsorbed water is removed. An atomic ratio of P/Cu is above 0-0.5 and the ratio [s(Cu/Si)/b(Cu/Si)@{9147/28 }of an atomic ratio of Cu/Si of the whole of the catalyst that is [s(Cu/Si)] and an atomic ratio of Cu/Si in the part up to a depth of 5nm from the surface of the catalyst calculated by an X-ray photoelectronic spectrum analysis method (XPS method) that is [s(Cu/Si)] is above 0-10.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用触媒に関
し、特に、自動車エンジン等の内燃機関や各種燃焼器等
から排出される排ガスを効率良く浄化すると共に、低温
活性と耐熱性や耐久性とに優れた排ガス浄化用触媒に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to efficiently purifying exhaust gas discharged from an internal combustion engine such as an automobile engine and various combustors, as well as low temperature activity, heat resistance and durability. And an exhaust gas purifying catalyst excellent in

【0002】[0002]

【従来技術】従来、各種の金属を結晶性アルミノケイ酸
塩(以下、ゼオライトという)に担持して得られる触媒
は、様々な分野で幅広く使用されている。さらに、近
年、この触媒系は、特に酸素の含有率が高い排ガス中に
おいても、炭化水素類が存在していれば、NOX を浄化
することができるという顕著な能力があることで注目さ
れている。
2. Description of the Related Art Conventionally, catalysts obtained by supporting various metals on crystalline aluminosilicate (hereinafter referred to as zeolite) have been widely used in various fields. Furthermore, in recent years, this catalyst system, in particular content is high in the exhaust gas of oxygen, if hydrocarbons are present, being noted that there are remarkable ability of being able to purify the NO X There is.

【0003】とりわけ、金属として銅(Cu)を担持し
たCu−ゼオライト系触媒は活性が高く、高流速ガス条
件下で、比較的幅広い温度範囲においても優れたNOX
浄化性能を有している。このため、自動車のような移動
発生源やオンサイト型の自家発電用エンジン等から排出
される排ガスの浄化に大きな期待が掛けられている。
[0003] Especially, a metal as copper (Cu) carrying a Cu- zeolite catalyst has high activity, high flow rate gas conditions, NO X even better in a relatively wide temperature range
Has purification performance. For this reason, great expectations are placed on purification of exhaust gas emitted from mobile sources such as automobiles and on-site type engines for private power generation.

【0004】しかしながら、このCu−ゼオライト系触
媒は600℃以上の高温に曝されたり、排ガス中に水分
が多く含まれていたり、排ガスの酸化還元雰囲気が変動
したりすると、排ガス浄化性能が経時的に低下し、長期
使用には耐えられないという欠点があるため、実用化に
は至っていない。
However, when the Cu-zeolite catalyst is exposed to a high temperature of 600 ° C. or higher, the exhaust gas contains a large amount of water, or the oxidation-reduction atmosphere of the exhaust gas fluctuates, the exhaust gas purification performance is deteriorated with time. However, it has not been put to practical use because it has a drawback that it cannot withstand long-term use.

【0005】上記触媒が高温に曝された際の主な劣化原
因は、ゼオライト中のイオン交換サイトに保持されてい
たCuイオンが熱によって担持サイトから抜けて移動
し、シンタリングを起こすためと考えられている。排ガ
ス中の水分や雰囲気条件の変動が大きい場合には、この
シンタリングが一層促進される。従って、触媒の耐熱性
や耐久性を向上させるためには、活性成分であるCuを
安定化し、シンタリングを抑制することが必要である。
The main cause of deterioration when the above catalyst is exposed to high temperature is thought to be that Cu ions retained at the ion exchange site in zeolite move out of the supporting site due to heat and migrate to cause sintering. Has been. When the water content in the exhaust gas and the atmospheric conditions fluctuate greatly, this sintering is further promoted. Therefore, in order to improve the heat resistance and durability of the catalyst, it is necessary to stabilize Cu as an active ingredient and suppress sintering.

【0006】このため、種々の添加物によってCuイオ
ンを安定化する方法が精力的に研究、提案されている。
例えば、特開平3−131345号公報にはゼオライト
にCuとCa、Sr及びBaから成る群から選ばれた少
なくとも1種とを担持させた触媒が提案されている。ま
た、特開平3−202157号公報にはCuとアルカリ
土類金属の少なくとも1種及び希土類金属の少なくとも
1種とを担持させた触媒が提案されている。更に、特開
平3−135437号公報にはCuとFe(鉄)、Co
(コバルト)、Ni(ニッケル)、V(バナジウム)等
から成る群から選ばれた少なくとも1種の原子価可変金
属とを担持させた触媒が提案されている。加えて、特開
平4−4045号公報には特定のX線回折パターン、化
学式を有する結晶性シリケートにCu及び27種類もの
元素から選ばれた少なくとも1種の成分を担持させた触
媒が提案されている。
Therefore, vigorous research and proposals have been made on methods of stabilizing Cu ions by various additives.
For example, JP-A-3-131345 proposes a catalyst in which zeolite is loaded with Cu and at least one selected from the group consisting of Ca, Sr and Ba. Further, JP-A-3-202157 proposes a catalyst supporting Cu and at least one kind of alkaline earth metal and at least one kind of rare earth metal. Further, in JP-A-3-135437, Cu, Fe (iron), Co
A catalyst supporting at least one variable valence metal selected from the group consisting of (cobalt), Ni (nickel), V (vanadium) and the like has been proposed. In addition, Japanese Patent Laid-Open No. 4-4045 proposes a catalyst in which crystalline silicate having a specific X-ray diffraction pattern and a chemical formula carries at least one component selected from Cu and 27 kinds of elements. There is.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記公
報に係る触媒は、いずれも触媒の耐熱性や耐久性の向上
に著しい効果が期待されるか否かは明確ではなく、未だ
実用化に十分な性能を有するCu−ゼオライト系触媒は
得られてないのが実状である。特に、自動車排気ガスの
ような過酷な条件であっても使用可能な耐熱性や耐久性
に優れた触媒の開発が望まれていた。従って本発明は、
低温活性に優れ、かつ高温で長時間使用しても劣化が少
なく、耐熱性や耐久性に優れた触媒を提供することを目
的とする。
However, it is not clear whether the catalysts according to the above publications are expected to have a significant effect in improving the heat resistance or durability of the catalysts, and they are still sufficient for practical use. The actual situation is that a Cu-zeolite catalyst having performance has not been obtained. In particular, it has been desired to develop a catalyst having excellent heat resistance and durability that can be used even under severe conditions such as automobile exhaust gas. Therefore, the present invention is
It is an object of the present invention to provide a catalyst which has excellent low-temperature activity, little deterioration even when used at high temperatures for a long time, and has excellent heat resistance and durability.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者らは、
上記課題を解決するために鋭意研究した結果、ゼオライ
トを主成分とする無機物にCu成分及びP成分を含有し
てなる触媒体において、限定されたSiO2 /Al2
3 のモル比を有するゼオライトに特定量のCu及びPを
含有させ、かつP/Cu原子比を特定範囲に制御すると
共に、触媒全体のCu/Si原子比に対する触媒表面の
Cu/Si原子比の比率及び触媒全体のP/Si原子比
に対する触媒表面のP/Si原子比の比率を特定範囲内
に制御した場合に、上記目的を達成できることを見出
し、本発明に到達した。
Means and Action for Solving the Problems The present inventors have
As a result of earnest research to solve the above-mentioned problems, in a catalyst body comprising a Cu component and a P component in an inorganic material containing zeolite as a main component, limited SiO 2 / Al 2 O
A specific amount of Cu and P is contained in a zeolite having a molar ratio of 3 and the P / Cu atomic ratio is controlled within a specific range, and the Cu / Si atomic ratio of the catalyst surface to the Cu / Si atomic ratio of the entire catalyst is The inventors have found that the above objects can be achieved when the ratio and the ratio of the P / Si atomic ratio on the catalyst surface to the P / Si atomic ratio of the entire catalyst are controlled within a specific range, and have reached the present invention.

【0009】本発明の目的は、ゼオライトを主成分とす
る無機物に、Cu成分及びP成分を含有してなる触媒体
において、前記ゼオライトのSiO2 /Al2 3 のモ
ル比が20〜60の範囲であり、Cu及びPの含有量が
吸着した水を除いた状態の前記ゼオライトに対して、そ
れぞれ4〜15重量%及び0.01〜1.7重量%の範
囲であり、かつP/Cuの原子比が0を超えて0.5以
下であり、更に触媒全体のCu/Siの原子比〔b(C
u/Si)〕とX線光電子分光分析法(XPS法)によ
り求められる触媒表面から5nmの深さまでの部分にお
けるCu/Siの原子比〔s(Cu/Si)〕との比率
〔s(Cu/Si)/b(Cu/Si)〕が0を超えて
10.0以下であり、かつ触媒全体のP/Siの原子比
〔b(P/Si)〕とXPS法により求められる触媒表
面から5nmの深さまでの部分におけるP/Siの原子
比〔s(P/Si)〕との比率〔s(P/Si)/b
(P/Si)〕が0を超えて14.0以下であることを
特徴とする排ガス浄化用触媒により達成された。ここ
で、触媒表面のCu/Si原子比〔s(Cu/Si)〕
及びP/Si原子比〔s(P/Si)〕は、X線光電子
分光法(XPS法)により求めることができ、その分析
深さは表面からほぼ5nmである。以下、本発明につい
てさらに詳細に説明する。
An object of the present invention is to provide a catalyst body comprising a Cu component and a P component in an inorganic substance containing zeolite as a main component, wherein the zeolite has a SiO 2 / Al 2 O 3 molar ratio of 20 to 60. The content of Cu and P is in the range of 4 to 15% by weight and 0.01 to 1.7% by weight, respectively, with respect to the zeolite in a state where adsorbed water is excluded, and P / Cu Has an atomic ratio of more than 0 and 0.5 or less, and the atomic ratio of Cu / Si [b (C
u / Si)] and the atomic ratio of Cu / Si [s (Cu / Si)] in the portion from the catalyst surface to a depth of 5 nm, which is determined by X-ray photoelectron spectroscopy (XPS method) [s (Cu / Si) / b (Cu / Si)] is more than 0 and 10.0 or less, and the P / Si atomic ratio [b (P / Si)] of the entire catalyst and the catalyst surface obtained by the XPS method Ratio [s (P / Si) / b] with atomic ratio of P / Si [s (P / Si)] up to a depth of 5 nm
(P / Si)] is more than 0 and 14.0 or less. Here, the Cu / Si atomic ratio [s (Cu / Si)] on the catalyst surface
And P / Si atomic ratio [s (P / Si)] can be determined by X-ray photoelectron spectroscopy (XPS method), and the analysis depth is approximately 5 nm from the surface. Hereinafter, the present invention will be described in more detail.

【0010】Cu−ゼオライト系触媒の高温暴露時の活
性劣化を抑えるには、Cuを安定化させてシンタリング
を抑制する技術が不可欠である。このため、種々の添加
物によって、Cuイオンを安定化する方法が精力的に研
究、提案されている。本発明者らは、各種成分の添加効
果に関して広範囲かつ詳細に研究した結果、P成分に注
目するに至った。
In order to suppress the activity deterioration of the Cu-zeolite type catalyst upon exposure to high temperature, a technique of stabilizing Cu and suppressing sintering is indispensable. Therefore, various methods have been vigorously studied and proposed for stabilizing Cu ions. As a result of extensive and detailed research on the effect of adding various components, the present inventors have come to pay attention to the P component.

【0011】P成分はCuと比較的強く相互作用して安
定化する効果があるが、その相互作用が強すぎると触媒
活性が低下する。従って、この相互作用力を適度な強度
に制御することが肝要で、これによってCu成分の熱安
定性と触媒活性が効果的にバランスされて極めて高性能
の触媒が得られることになる。
The P component has a relatively strong interaction with Cu to stabilize it, but if the interaction is too strong, the catalytic activity will decrease. Therefore, it is essential to control this interaction force to an appropriate strength, and thereby, the thermal stability of the Cu component and the catalytic activity are effectively balanced to obtain an extremely high performance catalyst.

【0012】これを決定する重要なパラメーターは、
(1)触媒中のCu量及びP量、及び(2)触媒全体に
対する触媒表面部分のCu及びPの比率である。P成分
はゼオライト細孔内に侵入し難いため、その表面層部分
に偏析しやすく、Cu成分との強い相互作用により、C
uの分散性を低下させて、触媒活性の低下を引き起こ
す。上記パラメーターを本発明の範囲内とすることによ
り、このような不都合を回避することができるものと考
えられる。本発明の特徴は、このパラメーターとその適
切な範囲を見いだしたことにある。
The important parameters that determine this are
They are (1) the amount of Cu and P in the catalyst, and (2) the ratio of Cu and P on the surface of the catalyst to the entire catalyst. Since the P component is difficult to penetrate into the zeolite pores, it tends to segregate in the surface layer portion thereof, and due to the strong interaction with the Cu component, C
It lowers the dispersibility of u and causes a decrease in catalytic activity. It is considered that such an inconvenience can be avoided by setting the above parameters within the range of the present invention. The feature of the present invention is to find out this parameter and its appropriate range.

【0013】ここで、ゼオライトのSiO2 /Al2
3 のモル比を20〜60の範囲に限定したのは、触媒に
対するCu及びPの担持量を本発明の範囲内に納めるの
に必要なためである。ゼオライトのSiO2 /Al2
3 のモル比が20未満になると、Cu及びPの担持量が
本発明の範囲内を超えることに加え、ゼオライト自体の
熱安定性が不十分なために触媒の耐熱性や耐久性が低下
する。逆に、このモル比が60を超えると必要なCu成
分の担持量が得られなくなり、触媒活性が不十分とな
る。
Here, the zeolite SiO 2 / Al 2 O
The molar ratio of 3 is limited to the range of 20 to 60 because it is necessary for the supported amounts of Cu and P on the catalyst to fall within the range of the present invention. Zeolite SiO 2 / Al 2 O
When the molar ratio of 3 is less than 20, in addition to the amount of Cu and P supported exceeding the range of the present invention, the heat stability and durability of the catalyst decrease due to insufficient thermal stability of the zeolite itself. . On the other hand, if this molar ratio exceeds 60, the required amount of supported Cu component cannot be obtained, and the catalytic activity becomes insufficient.

【0014】本発明において用いられるゼオライトとし
ては、公知のゼオライトの中から適宜選択して使用する
ことができるが、特にペンタシル型のものが有効であ
る。このようなゼオライトとしては、例えば、モルデナ
イト、フェリエライト、ZSM−5、ZSM−11等が
挙げられる。またゼオライトによれば、水熱処理や再合
成などによって結晶性を良くしたり、安定化すると、よ
り耐熱性や耐久性の高い触媒が得られる。
The zeolite used in the present invention can be appropriately selected and used from known zeolites, and the pentasil type is particularly effective. Examples of such zeolite include mordenite, ferrierite, ZSM-5, ZSM-11 and the like. Further, when zeolite is used to improve crystallinity or stabilize it by hydrothermal treatment or resynthesis, a catalyst having higher heat resistance and durability can be obtained.

【0015】本発明の排ガス浄化用触媒を得るに当たっ
て用いられるP成分の原料としては、無機酸塩、酸化
物、有機酸塩、塩化物、炭酸塩、ナトリウム塩、アンモ
ニウム塩等の各種化合物を使用することができるが、こ
の成分をゼオライトに担持させるには、水溶液としてイ
オン交換法や含浸法で担持させることが簡便かつ有効で
あるため、水に対する溶解度の大きい原料を用いること
が好ましい。水に対する溶解度が小さい原料であって
も、各種アルコールや有機溶媒を用いて同様に担持させ
ることができる。更には、塩化物を用いた気相担持法も
可能である。
As the raw material of the P component used in obtaining the exhaust gas purifying catalyst of the present invention, various compounds such as inorganic acid salts, oxides, organic acid salts, chlorides, carbonates, sodium salts and ammonium salts are used. However, in order to support this component on zeolite, it is preferable to use a raw material having a high solubility in water, because it is simple and effective to carry it as an aqueous solution by an ion exchange method or an impregnation method. Even a raw material having a low solubility in water can be similarly supported by using various alcohols and organic solvents. Furthermore, a vapor phase supporting method using chloride is also possible.

【0016】また、Cu成分の原料としても、同様に無
機酸塩、酸化物、有機酸塩、塩化物、炭酸塩、ナトリウ
ム塩、アンモニウム塩、アンミン錯化合物等の各種化合
物を使用することができ、P成分と同様な担持法をとる
ことができる。P又はCu成分の水溶液には、適当な酸
や塩基を添加することによりpHを調整することが好ま
しい結果を与える。
Similarly, as the raw material of the Cu component, various compounds such as inorganic acid salts, oxides, organic acid salts, chlorides, carbonates, sodium salts, ammonium salts and ammine complex compounds can be used. The same loading method as for the P component can be used. It is preferable to adjust the pH by adding a suitable acid or base to the aqueous solution of the P or Cu component.

【0017】本発明においては、Cu及びPの含有量
は、吸着した水を除いた状態のゼオライトに対して、そ
れぞれ4〜15重量%及び0.01〜1.7重量%の範
囲である。Cuの含有量が4重量%未満になると、活性
成分の量が十分でなく、逆に15重量%を超えると触媒
表面に余りでる酸化銅(CuO)が過剰となってゼオラ
イトの細孔閉塞を引き起こすなどの触媒活性への悪影響
が生じる。一方、P成分は極少量であっても効果が現れ
るが、0.01重量%未満になると、ほとんど効果が見
られず、逆に1.7重量%を超えるとPによるCuの安
定化が進みすぎて、かえって触媒活性の低下を引き起こ
す。Cu及びPのより望ましい含有量は、それぞれ5〜
12重量%及び0.1〜1.2重量%の範囲である。
In the present invention, the contents of Cu and P are in the ranges of 4 to 15% by weight and 0.01 to 1.7% by weight, respectively, with respect to the zeolite excluding the adsorbed water. When the content of Cu is less than 4% by weight, the amount of the active component is not sufficient, and when it exceeds 15% by weight, the excess copper oxide (CuO) on the surface of the catalyst is excessive and the pores of the zeolite are blocked. It causes an adverse effect on the catalytic activity such as causing. On the other hand, the P component is effective even if it is a very small amount, but when it is less than 0.01% by weight, almost no effect is observed, and conversely, when it exceeds 1.7% by weight, the stabilization of Cu by P progresses. Too much, rather, causes a decrease in catalytic activity. A more desirable content of Cu and P is 5 to 5, respectively.
It is in the range of 12% by weight and 0.1 to 1.2% by weight.

【0018】P成分によるCuの過剰安定化を抑えなが
ら、P成分の効果を最大限に引き出すためには、P/C
u(原子比)を制御することが重要であり、本発明にお
いては、0.5を超えるとCuの不活性化が顕著になっ
て、触媒活性の低下を引き起こす。
In order to maximize the effect of the P component while suppressing the excessive stabilization of Cu by the P component, P / C
It is important to control u (atomic ratio), and in the present invention, when it exceeds 0.5, inactivation of Cu becomes remarkable and the catalytic activity is lowered.

【0019】触媒全体におけるCu/Si原子比〔b
(Cu/Si)〕と触媒粒子表面層部分におけるCu/
Si原子比〔s(Cu/Si)〕との比率〔s(Cu/
Si)/b(Cu/Si)〕は、0を超えて10.0以
下の範囲が有効であるが、特に、7.0以下であること
が好ましい。
Cu / Si atomic ratio [b
(Cu / Si)] and Cu / in the catalyst particle surface layer portion
Si atomic ratio [s (Cu / Si)] and ratio [s (Cu /
Si) / b (Cu / Si)] is effectively in the range of more than 0 and 10.0 or less, and particularly preferably 7.0 or less.

【0020】一方、触媒全体のP/Si原子比〔b(P
/Si)〕と触媒粒子表面層部分のP/Si原子比〔s
(P/Si)〕との比率〔s(P/Si)/b(P/S
i)〕は0を超えて14.0以下であることが有効であ
るが、特に11.0以下であることが好ましい。
On the other hand, the P / Si atomic ratio [b (P
/ Si)] and the P / Si atomic ratio [s of the catalyst particle surface layer portion [s
(P / Si)] ratio [s (P / Si) / b (P / S)
i)] is effectively more than 0 and 14.0 or less, and particularly preferably 11.0 or less.

【0021】本発明の触媒の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、ハ
ニカム状の各種基材に触媒粉末を塗布して用いられる。
このハニカム材料としては、一般にコージェライト質の
ものが多く用いられるが、これに限定されるものではな
く、金属材料からなるハニカム担体を用いることもでき
るし、更には触媒粉末そのものをハニカム形状に成形し
てもよい。触媒の形状をハニカム状とすることにより、
触媒と排ガスとの接触面積が大きくなり、圧力損失も抑
えられるため、振動のある限られた空間内で多量の排ガ
スを処理することが要求される自動車用触媒として用い
る場合に極めて有利となる。
The shape of the catalyst of the present invention is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and the catalyst powder is applied to various honeycomb-shaped base materials for use.
As the honeycomb material, a cordierite material is generally used, but the material is not limited to this, and a honeycomb carrier made of a metal material can be used. Further, the catalyst powder itself is formed into a honeycomb shape. You may. By making the shape of the catalyst a honeycomb,
Since the contact area between the catalyst and the exhaust gas is large and the pressure loss is suppressed, it is extremely advantageous when used as an automobile catalyst which requires processing of a large amount of exhaust gas in a limited space with vibration.

【0022】[0022]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0023】実施例1 ピロリン酸ナトリウム(Na4 2 7 )と酢酸銅とを
イオン交換水に溶かし、PとCuを含む混合水溶液を得
た。この混合水溶液にアンモニア水と硝酸とを適当に添
加し、溶液のpHを8.0に調節した後、この溶液中に
SiO2 /Al 2 3 モル比が約30のNa型ZSM−
5の粉末を添加し良く攪拌した。この攪拌に際しては、
硝酸とアンモニアを適当に加え、溶液のpHを8.5〜
9.0に保った。
Example 1 Sodium pyrophosphate (NaFourP2O7) And copper acetate
Dissolve in ion-exchanged water to obtain a mixed aqueous solution containing P and Cu.
Was. Ammonia water and nitric acid are appropriately added to this mixed aqueous solution.
The pH of the solution was adjusted to 8.0 and then added to this solution.
SiO2/ Al 2O3Na-type ZSM with a molar ratio of about 30-
The powder of No. 5 was added and stirred well. When stirring,
Add nitric acid and ammonia appropriately to adjust the pH of the solution to 8.5.
I kept it at 9.0.

【0024】混合溶液中のP量は、吸着水を除いた状態
のゼオライト粉に対して(Pとして)0.5重量%に相
当する量であり、また同じくCu量はゼオライトのイオ
ン交換容量に換算して300%に相当する量であった。
上記攪拌操作を8時間行った後、混合溶液を濾過して得
られたゼオライトケーキをオーブン中、120℃で24
時間以上乾燥し、次いで大気雰囲気下500℃で4時間
焼成することにより、Cu−P−ZSM−5触媒粉を得
た。得られた触媒粉の定量分析結果(ICP法による)
を表1に示す。
The amount of P in the mixed solution is an amount corresponding to 0.5% by weight (as P) with respect to the zeolite powder in a state where the adsorbed water is removed, and the amount of Cu also corresponds to the ion exchange capacity of the zeolite. The amount was 300% when converted.
After carrying out the stirring operation for 8 hours, the zeolite cake obtained by filtering the mixed solution was placed in an oven at 120 ° C. for 24 hours.
By drying for at least hours, and then calcining at 500 ° C. for 4 hours in an air atmosphere, Cu-P-ZSM-5 catalyst powder was obtained. Quantitative analysis result of the obtained catalyst powder (by ICP method)
Is shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1中の値はいずれも吸着水を除いた状態
のゼオライト粉を規準としたものである。以上のように
して得られた触媒粉末2250g、シリカゾル(固形分
20重量%)1250g及び水1500gをボールミル
ポットに投入し、4時間粉砕・混合してスラリーを得
た。このスラリーを1平方インチ断面当たり、約400
個の流路を持つコージェライト製ハニカム担体に塗布
し、120℃で熱風乾燥した後、400℃で1時間焼成
し、実施例1の触媒(1) を得た。この触媒のハニカムへ
の触媒粉末の塗布量は230g/Lであった。
All the values in Table 1 are based on the zeolite powder with adsorbed water removed. 2250 g of the catalyst powder obtained as described above, 1250 g of silica sol (solid content 20% by weight) and 1500 g of water were put into a ball mill pot and pulverized and mixed for 4 hours to obtain a slurry. About 400 of this slurry per square inch cross section
The catalyst (1) of Example 1 was obtained by coating on a cordierite honeycomb carrier having individual channels, drying with hot air at 120 ° C., and then firing at 400 ° C. for 1 hour. The coating amount of the catalyst powder on the honeycomb of this catalyst was 230 g / L.

【0027】実施例2 実施例1と同じNa型ZSM−5の粉末を塩化アンモニ
ウム水溶液を用いてイオン交換し、オーブン中80〜1
00℃で24時間以上乾燥し、NH4 型ZSM−5を得
た。得られたゼオライト粉末をガラス製反応管中に静置
し、乾燥窒素気流中で約150℃に保ちながら、3塩化
リン(PCl3 )の蒸気を徐々に吹き込むことにより、
Pを担持したZSM−5の粉末を得た。ZSM−5に対
するPの担持量は、吸着水を除いた状態のゼオライト粉
末を規準として、0.56重量%であった。
Example 2 The same Na-type ZSM-5 powder as in Example 1 was subjected to ion exchange using an aqueous ammonium chloride solution, and then 80-1 in an oven.
It was dried at 00 ° C. for 24 hours or more to obtain NH 4 type ZSM-5. The obtained zeolite powder was allowed to stand still in a glass reaction tube, and phosphorus trichloride (PCl 3 ) vapor was gradually blown in while maintaining the temperature at about 150 ° C. in a dry nitrogen stream,
A powder of ZSM-5 carrying P was obtained. The amount of P supported on ZSM-5 was 0.56% by weight, based on the zeolite powder in the state where adsorbed water was removed.

【0028】一方、酢酸銅をイオン交換水に溶かしてC
u水溶液を得た。この水溶液に上記のようにして得られ
たP−ZSM−5粉末を添加し、実施例1と同様にして
8時間攪拌した後、混合液を濾過し、乾燥、焼成の工程
を経て、Cu−P−ZSM−5触媒粉を得た。この触媒
粉の定量分析結果を表2に示す。
On the other hand, copper acetate was dissolved in ion-exchanged water to form C.
A u aqueous solution was obtained. The P-ZSM-5 powder obtained as described above was added to this aqueous solution, the mixture was stirred for 8 hours in the same manner as in Example 1, and then the mixed solution was filtered, dried, and calcined, and then Cu- P-ZSM-5 catalyst powder was obtained. The results of quantitative analysis of this catalyst powder are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】以上のようにして得られた触媒粉末を実施
例1と全く同様にして、実施例2のハニカム触媒(2) を
得た。
The catalyst powder obtained as described above was treated exactly as in Example 1 to obtain a honeycomb catalyst (2) of Example 2.

【0031】実施例3〜10 P−Cu混合溶液中のCu量及びP量を代えた他は、実
施例1と全く同様にして、Cu及びP担持量の異なった
触媒を得、同様にしてハニカム触媒(3) 〜(10)を得た。
各触媒の定量分析結果を表3に示す。
Examples 3 to 10 Catalysts having different loadings of Cu and P were obtained in the same manner as in Example 1 except that the amounts of Cu and P in the P-Cu mixed solution were changed. Honeycomb catalysts (3) to (10) were obtained.
Table 3 shows the quantitative analysis results of each catalyst.

【0032】[0032]

【表3】 [Table 3]

【0033】実施例11〜13 SiO2 /Al2 3 モル比の異なるNa型ZSM−5
を用いた他は、実施例1と全く同様にしてハニカム触媒
(11)〜(13)を得た。各触媒におけるSiO2 /Al2
3 モル比は、それぞれ約23,45,58であった。各
触媒の定量分析結果を表4に示す。
Examples 11 to 13 Na-type ZSM-5 having different SiO 2 / Al 2 O 3 molar ratios
A honeycomb catalyst was prepared in the same manner as in Example 1 except that
(11) to (13) were obtained. SiO 2 / Al 2 O in each catalyst
The 3 molar ratios were about 23, 45 and 58, respectively. Table 4 shows the results of quantitative analysis of each catalyst.

【0034】[0034]

【表4】 [Table 4]

【0035】実施例14 SiO2 /Al2 3 モル比が約30のNa型ZSM−
5に代えて、SiO2/Al2 3 モル比が約28のN
a型モルデナイトを用いた他は、実施例1と全く同様に
してハニカム触媒(14)を得た。この触媒の定量分析結果
を表5に示す。
Example 14 Na-type ZSM-having a SiO 2 / Al 2 O 3 molar ratio of about 30
Instead of 5, N 2 with a SiO 2 / Al 2 O 3 molar ratio of about 28
A honeycomb catalyst (14) was obtained in exactly the same manner as in Example 1 except that a-type mordenite was used. Table 5 shows the quantitative analysis results of this catalyst.

【0036】[0036]

【表5】 [Table 5]

【0037】比較例1 実施例1と同じNa型ZSM−5を硝酸銅水溶液中で8
時間攪拌し、イオン交換法によってCuを担持した。次
いで、同様に乾燥、焼成の工程を経て、実施例1と全く
同様にしてハニカム触媒(15)を得た。この触媒の定量分
析結果は、以下の通りであった。 Cu;3.3重量%,P;0重量%,P/Cu原子比;
Comparative Example 1 The same Na-type ZSM-5 as in Example 1 was used in an aqueous solution of copper nitrate.
After stirring for an hour, Cu was supported by the ion exchange method. Then, the honeycomb catalyst (15) was obtained in the same manner as in Example 1 through the steps of drying and firing. The quantitative analysis results of this catalyst are as follows. Cu; 3.3% by weight, P; 0% by weight, P / Cu atomic ratio;
0

【0038】比較例2〜3 実施例3〜7と同様にしてCu及びP担持量の異なった
触媒を得、同様にして、比較例2〜3の触媒(16)〜(17)
を得た。各触媒の定量分析結果を表6に示す。
Comparative Examples 2 to 3 Catalysts having different loadings of Cu and P were obtained in the same manner as in Examples 3 to 7, and catalysts (16) to (17) of Comparative Examples 2 to 3 were obtained in the same manner.
I got Table 6 shows the quantitative analysis results of each catalyst.

【0039】[0039]

【表6】 [Table 6]

【0040】比較例4〜5 SiO2 /Al2 3 モル比の異なるNa型ZSM−5
を用いた他は、実施例1と全く同様にして比較例4〜5
のハニカム触媒(18)〜(19)を得た。各触媒におけるSi
2 /Al2 3 モル比は、それぞれ約18,70であ
った。各触媒の定量分析結果を表7に示す。
Comparative Examples 4 to 5 Na-type ZSM-5 having different SiO 2 / Al 2 O 3 molar ratios
Comparative Examples 4-5 in the same manner as in Example 1 except that
The following honeycomb catalysts (18) to (19) were obtained. Si in each catalyst
The O 2 / Al 2 O 3 molar ratio was about 18,70, respectively. Table 7 shows the quantitative analysis results of each catalyst.

【0041】[0041]

【表7】 [Table 7]

【0042】比較例6 実施例3と同様にしてCu及びP担持量の異なった触媒
を得、全く同様にして比較例6のハニカム触媒(20)を得
た。得られた触媒の定量分析結果を表8に示す。
Comparative Example 6 A catalyst having different loadings of Cu and P was obtained in the same manner as in Example 3, and a honeycomb catalyst (20) of Comparative Example 6 was obtained in exactly the same manner. Table 8 shows the quantitative analysis results of the obtained catalyst.

【0043】[0043]

【表8】 [Table 8]

【0044】比較例7 オルトリン酸(H3 PO4 )の水溶液を、実施例1と同
じNa型ZSM−5の粉末に接触させ、P成分を含浸し
た後、150℃で24時間以上乾燥し、更に450℃で
焼成することにより、P成分をZSM−5ゼオライトに
固着した。得られたP担持ZSM−5を酢酸銅水溶液中
に添加、攪拌し、比較例1と全く同様にして比較例7の
ハニカム触媒(21)を得た。得られた触媒の定量分析結果
を表9に示す。
Comparative Example 7 An aqueous solution of orthophosphoric acid (H 3 PO 4 ) was brought into contact with the same Na-type ZSM-5 powder as in Example 1, impregnated with the P component, and then dried at 150 ° C. for 24 hours or more, Further, the P component was fixed to the ZSM-5 zeolite by calcining at 450 ° C. The obtained P-supporting ZSM-5 was added to an aqueous solution of copper acetate and stirred, and a honeycomb catalyst (21) of Comparative Example 7 was obtained in exactly the same manner as Comparative Example 1. Table 9 shows the results of quantitative analysis of the obtained catalyst.

【0045】[0045]

【表9】 [Table 9]

【0046】比較例8 比較例1において、硝酸銅を酢酸銅に代え、酢酸銅水溶
液中でZSM−5の粉末を8時間攪拌した後、硝酸とア
ンモニア水とを適当に添加して溶液のpHを8.0〜
8.2に制御し、更に4時間の攪拌を継続した。この混
合溶液を濾過し、比較例1と同様に乾燥、焼成の工程を
経てCu−ZSM−5粉末を得た。一方、リン酸二水素
アンモニウム(NH4 2 PO4 )の水溶液に、上記C
u−ZSM−5粉末を添加し、スラリー状になった液を
約2時間攪拌することにより、Cu−ZSM−5粉末に
P成分を含浸担持した。次いで、オーブン中120℃で
乾燥した後、大気雰囲気下500℃で2時間の焼成工程
を経て触媒粉末を得た。以下、比較例1と同様にしてハ
ニカム触媒(22)を得た。得られた触媒の定量分析結果を
表10に示す。
Comparative Example 8 In Comparative Example 1, the copper nitrate was replaced with copper acetate, the ZSM-5 powder was stirred in an aqueous solution of copper acetate for 8 hours, and nitric acid and aqueous ammonia were added appropriately to adjust the pH of the solution. To 8.0
The temperature was controlled to 8.2, and stirring was continued for another 4 hours. This mixed solution was filtered and dried and calcined in the same manner as in Comparative Example 1 to obtain Cu-ZSM-5 powder. On the other hand, the above-mentioned C was added to an aqueous solution of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ).
u-ZSM-5 powder was added, and the liquid slurry was stirred for about 2 hours to impregnate and carry the P component on the Cu-ZSM-5 powder. Then, after drying in an oven at 120 ° C., a catalyst powder was obtained through a calcination process at 500 ° C. for 2 hours in an air atmosphere. Thereafter, a honeycomb catalyst (22) was obtained in the same manner as in Comparative Example 1. Table 10 shows the quantitative analysis results of the obtained catalyst.

【0047】[0047]

【表10】 [Table 10]

【0048】(1) 触媒のX線光電子分光分析(XPS) 分析装置;Parkin Elmer社製ESCA 5600型 X
線光電子分光分析装置 分析条件;X線源としてMg−Kα線(1253.6e
V)を用い、15KV×26.7mAで操作した。 帯電補正;SiO2 の結合エネルギーを103.2eV
として帯電補正した。 測定試料;加圧成形機により、230Kg/cm2 の圧
力でディスク状に成形した。 上記方法により、実施例及び比較例の各触媒について、
触媒表面から5nmの深さまでの部分におけるSi,C
u,Pについて定量分析を行った結果から、触媒表面か
ら5nmの深さまでの部分におけるCu/Siの原子比
〔s(Cu/Si)〕及びP/Siの原子比〔s(P/
Si)〕を算出した。一方、触媒全体のCu,P,Si
の含有量をICP法で求め、触媒全体のCu/Si原子
比〔b(Cu/Si)〕及びP/Si原子比〔b(P/
Si)〕を算出した。以上から、各触媒について、更に
〔s(Cu/Si)/b(Cu/Si)〕比及び〔s
(P/Si)/b(P/Si)〕を算出し、性能評価結
果とともに表11及び表12に示す。
(1) X-ray photoelectron spectroscopy (XPS) analyzer for catalyst; ESCA 5600 type X manufactured by Parkin Elmer
X-ray photoelectron spectroscopy analyzer Analysis conditions: Mg-Kα ray (1253.6e as X-ray source
V) and operated at 15 KV × 26.7 mA. Charge correction; binding energy of SiO 2 is 103.2 eV
As a result, the charge was corrected. Measurement sample: A pressure molding machine was used to mold a disk at a pressure of 230 Kg / cm 2 . By the above method, for each catalyst of Examples and Comparative Examples,
Si, C in the part from the catalyst surface to a depth of 5 nm
From the results of quantitative analysis of u and P, the atomic ratio of Cu / Si [s (Cu / Si)] and the atomic ratio of P / Si [s (P /
Si)] was calculated. On the other hand, Cu, P, Si of the entire catalyst
Content of Cu / Si atomic ratio [b (Cu / Si)] and P / Si atomic ratio [b (P /
Si)] was calculated. From the above, the [s (Cu / Si) / b (Cu / Si)] ratio and [s
(P / Si) / b (P / Si)] was calculated and shown in Tables 11 and 12 together with the performance evaluation results.

【0049】(2)触媒性能試験例 エンジンの実排ガスを用いた急速耐久試験及び活性評価
により、上記実施例及び比較例の触媒の耐久性能を表1
1及び表12に示す。
(2) Example of catalyst performance test Table 1 shows the durability performance of the catalysts of the above Examples and Comparative Examples by the rapid durability test using the actual exhaust gas of the engine and the activity evaluation.
1 and Table 12.

【0050】[0050]

【表11】 [Table 11]

【0051】[0051]

【表12】 [Table 12]

【0052】活性評価条件 評価装置;エンジンからの実排ガスを用いた固定床流通
式装置 触媒容量;50cc ガス空間速度;約54000h-1 エンジン;日産自動車(株)社製 直列6気筒2Lエン
ジン使用 平均空燃比(A/F);約18 燃料;無鉛レギュラーガソリン
Activity evaluation condition evaluation device: Fixed bed flow type device using actual exhaust gas from engine Catalyst capacity: 50 cc Gas space velocity: Approximately 54000 h -1 engine; Air-fuel ratio (A / F); about 18 Fuel; unleaded regular gasoline

【0053】急速耐久処理条件 触媒入り口排ガス温度;630℃ エンジン;日産自動車(株)社製 V型6気筒3Lエン
ジン使用 平均空燃比(A/F);約15 燃料;無鉛レギュラーガソリン 処理時間;20時間
Rapid endurance treatment conditions Exhaust gas temperature at catalyst inlet: 630 ° C engine; V6 6L 3L engine manufactured by Nissan Motor Co., Ltd. Average air-fuel ratio (A / F); Approx. 15 fuel; Unleaded regular gasoline Treatment time: 20 time

【0054】表11及び表12に、急速耐久処理前後の
実施例及び比較例の触媒のNOx 浄化性能を示す。急速
耐久前については触媒入口温度300℃、急速耐久処理
後については触媒入口温度370℃におけるNOx 浄化
率を示す。本発明で定めたパラメータの規定範囲を超え
た触媒は、いずれも初期活性、耐熱性及び耐久性に劣る
のに対し、本発明になる触媒は初期の低温活性に優れ、
かつ600℃を超える温度での急速耐久処理後も高いN
x 浄化性能を維持しており、耐熱性及び耐久性に優れ
ている。
Tables 11 and 12 show the NO x purification performance of the catalysts of Examples and Comparative Examples before and after the rapid durability treatment. The NO x purification rate at a catalyst inlet temperature of 300 ° C. before the rapid durability treatment and at the catalyst inlet temperature of 370 ° C. after the rapid durability treatment are shown. Catalysts exceeding the specified range of the parameters defined in the present invention are all inferior in initial activity, heat resistance and durability, whereas the catalyst of the present invention is excellent in initial low temperature activity,
And high N even after rapid durability treatment at temperatures over 600 ° C
It maintains the O x purification performance and is excellent in heat resistance and durability.

【0055】[0055]

【発明の効果】以上説明した通り、本発明の排ガス浄化
用触媒は、酸素を多く含む排ガス中のNOx を効率よく
浄化することができ、かつ耐熱性及び耐久性に優れてい
るため、600℃以上の温度条件でも長時間使用するこ
とができる。従って、本発明の排ガス浄化用触媒によれ
ば、リーン・バーンエンジンを搭載した自動車排ガスか
らのNOx 浄化が可能となるため、環境汚染が少なく、
経済性(燃費)に優れた自動車を提供することができ
る。
As described above, the catalyst for purifying exhaust gas of the present invention can efficiently purify NO x in exhaust gas containing a large amount of oxygen and is excellent in heat resistance and durability. It can be used for a long time even under a temperature condition of ℃ or more. Therefore, according to the exhaust gas purifying catalyst of the present invention, it is possible to purify NO x from the exhaust gas of an automobile equipped with a lean burn engine, so that environmental pollution is reduced,
An automobile excellent in economy (fuel efficiency) can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102 H 104 A (72)発明者 河島 義実 千葉県袖ヶ浦市上泉1280番地 出光興産株 式会社内 (72)発明者 赤間 弘 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 増田 剛司 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 金坂 浩行 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 上久保 真紀 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/36 102 H 104 A (72) Inventor Yoshimi Kawashima 1280, Kamizumi, Sodegaura, Chiba Idemitsu Kosan Stock company (72) Inventor Hiroshi Akama 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Goji Masuda 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa (72) Invention Hiroyuki Kanasaka, 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Maki Kamikubo 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 結晶性アルミノケイ酸塩を主成分とする
無機物に、銅(Cu)成分及びリン(P)成分を含有し
てなる触媒体において、前記結晶性アルミノケイ酸塩の
SiO2 /Al2 3 のモル比が20〜60の範囲であ
り、Cu及びPの含有量が吸着した水を除いた状態の前
記結晶性アルミノケイ酸塩に対して、それぞれ4〜15
重量%及び0.01〜1.7重量%の範囲であり、かつ
P/Cuの原子比が0を超えて0.5以下であり、更に
触媒全体のCu/Siの原子比〔b(Cu/Si)〕と
X線光電子分光分析法(XPS法)により求められる触
媒表面から5nmの深さまでの部分におけるCu/Si
の原子比〔s(Cu/Si)〕との比率〔s(Cu/S
i)〕との比率〔s(Cu/Si)/b(Cu/S
i)〕が0を超えて10.0以下であり、かつ触媒全体
のP/Siの原子比〔b(P/Si)〕とXPS法によ
り求められる触媒表面から5nmの深さまでの部分にお
けるP/Siの原子比〔s(P/Si)〕との比率〔s
(P/Si)/b(P/Si)〕が0を超えて14.0
以下であることを特徴とする排ガス浄化用触媒。
1. A catalyst body comprising a copper (Cu) component and a phosphorus (P) component in an inorganic substance containing crystalline aluminosilicate as a main component, wherein SiO 2 / Al 2 of the crystalline aluminosilicate is used. The molar ratio of O 3 is in the range of 20 to 60, and the crystalline aluminosilicate in the state in which the water adsorbed by the contents of Cu and P is removed is 4 to 15 respectively.
% By weight and in the range of 0.01 to 1.7% by weight, the atomic ratio of P / Cu is more than 0 and 0.5 or less, and the atomic ratio of Cu / Si of the entire catalyst [b (Cu / Si)] and X / ray photoelectron spectroscopy (XPS method), and Cu / Si in the portion from the catalyst surface to a depth of 5 nm
And atomic ratio [s (Cu / Si)] of [s (Cu / S
i)] ratio [s (Cu / Si) / b (Cu / S
i)] is more than 0 and not more than 10.0, and the P / Si atomic ratio [b (P / Si)] of the entire catalyst and P in the portion from the catalyst surface to a depth of 5 nm determined by the XPS method. / Si atomic ratio [s (P / Si)] and ratio [s
(P / Si) / b (P / Si)] exceeds 0 to 14.0
An exhaust gas-purifying catalyst characterized by being:
JP7033469A 1994-04-28 1995-02-22 Catalyst for purifying exhaust gas Pending JPH0810622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033469A JPH0810622A (en) 1994-04-28 1995-02-22 Catalyst for purifying exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-92348 1994-04-28
JP9234894 1994-04-28
JP7033469A JPH0810622A (en) 1994-04-28 1995-02-22 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH0810622A true JPH0810622A (en) 1996-01-16

Family

ID=26372172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033469A Pending JPH0810622A (en) 1994-04-28 1995-02-22 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH0810622A (en)

Similar Documents

Publication Publication Date Title
EP1166856B1 (en) Exhaust gas purifying catalyst
KR101286006B1 (en) β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
JP5987010B2 (en) Method for treating a gas containing nitric oxide (NOx) using a composition containing zirconium, cerium and niobium as a catalyst
JP5622944B2 (en) Method for converting nitrogen-containing compounds
CN110546108B (en) Copper-containing small pore zeolites with low alkali metal content, method for their preparation and their use as SCR catalysts
KR20090098662A (en) High temperature ammonia scr catalyst and method of using the catalyst
US5141906A (en) Catalyst for purifying exhaust gas
EP0801972B1 (en) Exhaust emission control catalyst
JP6171255B2 (en) NOx selective reduction catalyst, method for producing the same, and NOx purification method using the same
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JPH07144134A (en) Catalyst for purifying exhaust gas
US20190176087A1 (en) SCR-Active Material Having Enhanced Thermal Stability
JPH0810622A (en) Catalyst for purifying exhaust gas
JP2012051782A (en) Crystalline silica aluminophosphate and method for synthesis of the same
CN108698034B (en) Composition for exhaust gas purification
JP3498753B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH09201533A (en) Catalyst for nitrogen oxide catalytic reduction
JP3197711B2 (en) Exhaust gas purification catalyst
JP6339306B1 (en) Exhaust gas purification composition
JP3278510B2 (en) Exhaust gas purification catalyst and method for producing the same
US10434502B2 (en) Exhaust gas-purifying composition
JPH1024237A (en) Production of catalyst for purifying exhaust gas
JPH07289909A (en) Catalyst for purifying exhaust gas
JPH07289910A (en) Catalyst for purifying exhaust gas
JPH06226105A (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019