JPH07289910A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH07289910A
JPH07289910A JP6092033A JP9203394A JPH07289910A JP H07289910 A JPH07289910 A JP H07289910A JP 6092033 A JP6092033 A JP 6092033A JP 9203394 A JP9203394 A JP 9203394A JP H07289910 A JPH07289910 A JP H07289910A
Authority
JP
Japan
Prior art keywords
catalyst
component
exhaust gas
metal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6092033A
Other languages
Japanese (ja)
Inventor
Yasuhide Kano
保英 狩野
Yoshimi Kawashima
義実 河島
Takashi Katsuno
尚 勝野
Hiroshi Akama
弘 赤間
Goji Masuda
剛司 増田
Hiroyuki Kanesaka
浩行 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Nissan Motor Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Nissan Motor Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6092033A priority Critical patent/JPH07289910A/en
Publication of JPH07289910A publication Critical patent/JPH07289910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for purifying exhaust gas effectively acting even within a lean burn region wherein the air/fuel ratio of an internal combustion engine such as a car engine is low and excellent in heat resistance and durability even when the catalyst is used for a long time at high temp. CONSTITUTION:In a catalyst for purifying exhaust gas obtained by further adding at least one kind of a metal component selected from a group consisting of alkali metal, alkaline earth metal and rare earth metal to a catalyst obtained by adding a copper(Cu) component and a phosphorous(P) component to inorg. matter based on crystalline aluminosilicate, the contents of Cu and P are respectively set to 4-15wt.% and 0.01-1.7wt.% with respect to crystalline aluminosilicate from which adsorbed water is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用触媒に関
し、特に、自動車エンジン等の内燃機関の空燃比が希薄
燃焼(リーン・バーン)領域であっても有効に作用し、
しかも高温で長時間使用しても耐熱性及び耐久性に優れ
た排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and in particular, it works effectively even when the air-fuel ratio of an internal combustion engine such as an automobile engine is in the lean burn region.
Moreover, the present invention relates to an exhaust gas-purifying catalyst that has excellent heat resistance and durability even when used at high temperatures for a long time.

【0002】[0002]

【従来技術】従来、内燃機関からの排気ガスを浄化する
触媒としては、一般に活性アルミナにPd、Pt及びR
h等の貴金属成分を担持したものが使用されている。こ
の触媒は、炭化水素(HC)、一酸化炭素(CO)及び
窒素酸化物(NOX )を一度に除去することができるこ
とから、3元触媒と呼ばれている。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas from an internal combustion engine, activated alumina is generally used as Pd, Pt and R.
Those carrying a noble metal component such as h are used. This catalyst is called a three-way catalyst because it can remove hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) at once.

【0003】しかしながら、この触媒は内燃機関を理論
空燃比(ストイキ)近傍の条件で運転した場合にのみ有
効であり、酸素の含有率が多く、より燃費の良好なリー
ン条件で内燃機関を運転した場合には、十分なNOX
去性能が得られないという欠点があった。
However, this catalyst is effective only when the internal combustion engine is operated under conditions close to the stoichiometric air-fuel ratio (stoichiometric ratio), the oxygen content is high, and the internal combustion engine is operated under lean conditions with better fuel economy. In this case, there is a drawback that a sufficient NO x removal performance cannot be obtained.

【0004】このようなリーン条件において、NOX
除去するには、金属イオン交換担持ゼオライトからなる
触媒が有効であることが知られている〔例えば、岩本、
小討論会「窒素酸化物低減のための触媒技術」予稿集、
p71(1990)〕。特に、Cuをイオン交換法でゼ
オライトに担持したCu−ゼオライト系触媒は高いガス
空間速度(GHSV)や比較的幅広い温度範囲において
優れた性能を示す。
Under such lean conditions, it is known that a catalyst composed of a zeolite carrying metal ion exchange is effective for removing NO x [eg, Iwamoto,
Proceedings of a brief discussion “Catalyst Technology for Nitrogen Oxide Reduction”
p71 (1990)]. In particular, a Cu-zeolite catalyst in which Cu is supported on zeolite by an ion exchange method exhibits excellent performance in a high gas space velocity (GHSV) and a relatively wide temperature range.

【0005】しかしながら、この触媒は600℃以上の
高温に曝されると、急激に熱劣化を起こし、長時間の使
用には耐えられず、実用化には至っていない。上記触媒
が高温に曝された際の活性劣化の主原因は、ゼオライト
中のイオン交換サイトに保持されたCuイオンが熱によ
って移動し、シンタリングを起こすためであると考えら
れている。このため、種々の添加物によってCuイオン
を安定化する方法が精力的に研究、提案されているが、
未だ十分な結果を得ているとは言い難い。
However, when this catalyst is exposed to a high temperature of 600 ° C. or higher, it undergoes rapid thermal deterioration, cannot withstand long-term use, and has not been put to practical use. It is considered that the main cause of the activity deterioration when the above catalyst is exposed to high temperature is that Cu ions retained at the ion exchange sites in zeolite move by heat and cause sintering. For this reason, methods for stabilizing Cu ions by various additives have been vigorously studied and proposed.
It is hard to say that we are still getting sufficient results.

【0006】特開平3−131345号公報には、ゼオ
ライトにCuとCa、Sr及びBaから成る群から選ば
れた少なくとも1種のアルカリ土類金属とを担持させた
耐久性の高い触媒が提案されている。この特許公報によ
れば、これらのアルカリ土類金属のうち、特にBaはそ
の添加によって活性成分のCu含有量が少なくなるにも
かかわらず、触媒耐久性の向上効果が著しいことが示さ
れている。また、CaについてはCu含有量を低下する
ことなく、触媒の耐久性を高めることができるとされて
いる。
Japanese Unexamined Patent Publication (Kokai) No. 3-131345 proposes a highly durable catalyst in which zeolite is loaded with at least one alkaline earth metal selected from the group consisting of Cu, Ca, Sr and Ba. ing. According to this patent publication, among these alkaline earth metals, particularly Ba has a remarkable effect of improving the catalyst durability even though the addition thereof reduces the Cu content of the active ingredient. . Further, regarding Ca, it is said that the durability of the catalyst can be enhanced without lowering the Cu content.

【0007】特開平3−202157号公報には、ゼオ
ライトにCuとアルカリ土類金属の1種以上と希土類金
属の1種以上とを担持させた耐久性の高い触媒が提案さ
れている。この公報の触媒活性評価の条件は、上記特開
平3−131345号公報と同一であるので、各種添加
金属の効果を比較すると、上記公報で効果の著しいBa
の添加は、この公報ではむしろ逆効果とされている。ま
たこの公報は、上記特開平3−131345号公報を改
良したものと解釈されるが、実際に最も高い性能を示す
触媒は、上記公報中のCuとCaを複合担持した触媒と
なっており、アルカリ土類金属と希土類金属とを複合担
持させた効果については不明確である。
Japanese Unexamined Patent Publication (Kokai) No. 3-202157 proposes a highly durable catalyst in which zeolite is loaded with Cu and at least one alkaline earth metal and at least one rare earth metal. Since the conditions of the catalyst activity evaluation in this publication are the same as those in the above-mentioned JP-A-3-131345, when comparing the effects of various added metals, the effect of Ba in the above publication is remarkable.
In this publication, the addition of is described as an opposite effect. Further, this publication is interpreted as an improvement of the above-mentioned Japanese Patent Laid-Open No. 3-131345, but the catalyst that actually exhibits the highest performance is the catalyst in which Cu and Ca are combined and supported in the above publication, The effect of the composite support of alkaline earth metal and rare earth metal is unclear.

【0008】また、特開平3−135437号公報に
は、ゼオライトにCuと、Fe(鉄)、Co(コバル
ト)、Ni(ニッケル)、V(バナジウム)、Mn(マ
ンガン)、W(タングステン)、Mo(モリブデン)、
Cr(クロム)、Ti(チタン)、Nb(ネオビウム)
から成る群から選ばれた少なくとも1種の原子価可変金
属を担持させた耐久性の高い触媒が提案されている。こ
の公報の触媒活性評価の条件は、上記2公報(特開平3
−131345号公報、特開平3−202157号公
報)の条件とほとんど同等である。
Further, in Japanese Laid-Open Patent Publication No. 3-135437, Cu is added to zeolite, and Fe (iron), Co (cobalt), Ni (nickel), V (vanadium), Mn (manganese), W (tungsten), Mo (molybdenum),
Cr (chromium), Ti (titanium), Nb (neobium)
A highly durable catalyst supporting at least one variable valence metal selected from the group consisting of is proposed. The conditions for the catalyst activity evaluation in this publication are the same as those in the above-mentioned 2 publications (Japanese Patent Laid-Open No. Hei 3 (1999) -311).
(-131345 gazette and Japanese Patent Laid-Open No. 3-202157).

【0009】しかしながら、この公報の触媒の劣化処理
条件は、上記2公報の条件より緩和されているが、比較
例触媒の性能を比較すると、むしろこの公報における処
理の方が厳しい結果となっているため、公報中の実施例
の触媒の性能レベル及び原子価可変金属の添加効果につ
いては不明確である。
However, the deterioration treatment conditions of the catalyst of this publication are relaxed as compared with the conditions of the above-mentioned publications 2. However, comparing the performances of the comparative catalysts, the treatment of this publication shows a rather severe result. Therefore, the performance level of the catalyst of the examples and the effect of adding the variable valence metal are unclear.

【0010】以上説明したように、Cu−ゼオライト系
触媒にアルカリ土類金属、希土類金属、又は原子価可変
金属を単純に添加担持させる方法によっては、真に触媒
の耐久性の向上が図れるか否かについては不明確であ
る。上記した触媒以外にも、例えば特開平4−4045
号公報に見られるように数多くの成分を添加した触媒が
提案されているが、この触媒では触媒の耐熱性や耐久性
の向上に著しい効果が期待させるか否かについては明確
でない。
As described above, whether or not the durability of the catalyst can be truly improved by the method of simply adding and supporting the alkaline earth metal, the rare earth metal or the variable valence metal on the Cu-zeolite catalyst can be achieved. It is unclear as to what. In addition to the above-mentioned catalyst, for example, JP-A-4-4045
As can be seen from the publication, a catalyst added with a large number of components has been proposed, but it is not clear whether or not this catalyst is expected to have a significant effect in improving the heat resistance and durability of the catalyst.

【0011】このため、本発明者らは各種成分の添加効
果に関してより広範囲にかつ詳細に鋭意研究した結果、
B、P、Sb、Biといった一連の成分に着目し、これ
らの成分の添加量及びCuとの比率を特定の範囲に調製
することにより、耐熱性や耐久性を著しく向上させた触
媒を提案した(特開平5−170325号公報等)。
For this reason, the present inventors have extensively and in detail studied the effect of adding various components, and as a result,
Focusing on a series of components such as B, P, Sb, and Bi, and proposing a catalyst with significantly improved heat resistance and durability by adjusting the addition amount of these components and the ratio with Cu within a specific range. (JP-A-5-170325, etc.).

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記公
報に係る触媒によっても、自動車排気ガスのようなより
厳しい環境では、必ずしも触媒の耐熱性や耐久性は十分
とは言えず、更に優れた触媒の開発が望まれていた。従
って本発明は、高温で長時間使用しても劣化が少なく、
耐熱性や耐久性に優れた触媒を提供することを目的とす
る。
However, even with the catalyst according to the above publication, it cannot be said that the heat resistance and durability of the catalyst are sufficient in a more severe environment such as automobile exhaust gas. Development was desired. Therefore, the present invention is less deteriorated even when used at high temperature for a long time,
It is intended to provide a catalyst having excellent heat resistance and durability.

【0013】[0013]

【課題を解決するための手段及び作用】本発明者らは、
上記課題を解決するために鋭意検討した結果、結晶性ア
ルミノケイ酸塩を主成分とする無機物に、銅(Cu)成
分及びリン(P)成分を含有してなる触媒体に、更にア
ルカリ金属、アルカリ土類金属及び希土類金属から成る
群から選ばれた少なくとも1種の金属成分を含有させて
なる排ガス浄化用触媒において、CuとPとを特定の範
囲に限定した場合には、高温で長時間使用しても劣化が
少なく、耐熱性や耐久性に優れた触媒を得られることを
見いだし、本発明に到達した。
Means and Actions for Solving the Problems The present inventors have
As a result of diligent studies to solve the above problems, as a result, an inorganic substance containing a crystalline aluminosilicate as a main component, a catalyst body containing a copper (Cu) component and a phosphorus (P) component, an alkali metal, an alkali In an exhaust gas purifying catalyst containing at least one metal component selected from the group consisting of earth metals and rare earth metals, when Cu and P are limited to a specific range, use at high temperature for a long time However, they have found that a catalyst that is less deteriorated and has excellent heat resistance and durability can be obtained, and has reached the present invention.

【0014】本発明の上記の目的は、結晶性アルミノケ
イ酸塩を主成分とする無機物に、銅(Cu)成分及びリ
ン(P)成分を含有してなる触媒体に、更にアルカリ金
属、アルカリ土類金属及び希土類金属から成る群から選
ばれた少なくとも1種の金属成分を含有させてなる排ガ
ス浄化用触媒において、Cu及びPの含有量が吸着した
水を除いた状態の前記結晶性アルミノケイ酸塩に対し
て、それぞれ4〜15重量%及び0.01〜1.7重量
%の範囲であることを特徴とする排ガス浄化用触媒によ
り達成された。以下、本発明について更に詳細に説明す
る。
The above object of the present invention is to provide a catalyst body containing an inorganic material mainly composed of crystalline aluminosilicate, a copper (Cu) component and a phosphorus (P) component, and further an alkali metal or alkaline earth. In a catalyst for purification of exhaust gas, which contains at least one metal component selected from the group consisting of group metals and rare earth metals, the crystalline aluminosilicate in a state in which water having Cu and P contents adsorbed is removed. In contrast, the exhaust gas purifying catalyst is characterized in that the ranges are 4 to 15% by weight and 0.01 to 1.7% by weight, respectively. Hereinafter, the present invention will be described in more detail.

【0015】Cu−ゼオライト系触媒は、リーン領域に
おいても効率良くNOX を除去することができるが、6
00℃以上の温度に曝されると、活性成分であるCuが
シンタリングするため短時間で劣化してしまう。このC
uのシンタリングには2つの因子が考えられる。1つは
Cu自信のシンタリングの容易さであり、もう1つはゼ
オライト担体のCu保持力である。前者に関しては、C
u自体の安定性が必要となる。後者に関しては、ゼオラ
イトの脱アルミニウム現象によりCuを保持するサイト
(イオン交換サイト)が崩壊するので、ゼオライト骨格
中のアルミニウムの安定化が重要となる。
The Cu- zeolitic catalyst can be removed efficiently NO X even in the lean region, 6
When exposed to a temperature of 00 ° C. or higher, Cu, which is an active ingredient, is sintered and deteriorates in a short time. This C
There are two possible factors in the sintering of u. One is the ease of sintering Cu and the other is the Cu holding power of the zeolite carrier. Regarding the former, C
u itself needs to be stable. Regarding the latter, since the site that retains Cu (ion exchange site) collapses due to the dealumination phenomenon of zeolite, it is important to stabilize aluminum in the zeolite skeleton.

【0016】本発明の排ガス浄化用触媒は、P成分とア
ルカリ金属、アルカリ土類金属及び希土類金属から成る
群から選ばれた少なくとも1種の金属成分とを組み合わ
せることによって、上記Cuイオン及びゼオライトのイ
オン交換サイトの安定化を効率よく実現していると考え
られる。即ち、P成分は、Li、Na、K、Rb、C
s、Mg、Ca、Sr、Ba、Ce及びLaなどの金属
成分と互いに共存して相互作用することによって著しい
効果を発揮する。
The exhaust gas purifying catalyst of the present invention comprises a P component and at least one metal component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, whereby the above Cu ions and zeolite are combined. It is considered that the ion exchange site is efficiently stabilized. That is, P component is Li, Na, K, Rb, C
Remarkable effects are exhibited by coexisting and interacting with metal components such as s, Mg, Ca, Sr, Ba, Ce and La.

【0017】上記の詳細な機構は明らかではないが、P
成分のみならず、Ca、Mg、Sr等の成分もゼオライ
トの脱アルミニウムを抑制する効果を併せ持つ。更に、
特筆すべき効果としてP成分にはCu成分と強く相互作
用して安定化する効果があるが、その相互作用が強すぎ
ると触媒活性が低下してしまう。Ca、Mg、Sr等の
成分は、Cu成分とP成分との相互作用を適度な強度に
することができ、その結果Cu成分の熱安定性と触媒活
性の両立が図られるものと考えられる。このような効果
を得るには成分の量及び比率が重要なパラメーターであ
り、本発明の特徴はP成分とCa、Mg、Sr等の成分
との相互作用効果とその適切なパラメーターの範囲を見
出したことにある。
Although the detailed mechanism described above is not clear, P
Not only the components, but also Ca, Mg, Sr and other components also have the effect of suppressing dealumination of the zeolite. Furthermore,
As a notable effect, the P component has the effect of strongly interacting with the Cu component to stabilize it, but if the interaction is too strong, the catalytic activity will decrease. It is considered that the components such as Ca, Mg, and Sr can make the interaction between the Cu component and the P component have an appropriate strength, and as a result, the thermal stability of the Cu component and the catalytic activity can both be achieved. The amount and ratio of the components are important parameters for obtaining such an effect, and the feature of the present invention is to find out the interaction effect of the P component and the components such as Ca, Mg and Sr and the range of the appropriate parameter. There is something.

【0018】本発明において用いられる結晶性アルミノ
ケイ酸塩とは、ゼオライトであって、公知のゼオライト
の中から適宜選択して使用することができるが、特にペ
ンタシル型のものが有効である。このようなゼオライト
としては、例えばモルデナイト、フェリエライト、ZS
M−5、ZSM−11等が挙げられ、これらの中でもS
iO2 /Al2 3 のモル比が20〜60の範囲である
ことが好ましい。SiO2 /Al2 3 のモル比が20
未満になると、脱アルミニウム現象が起こり易く、熱安
定性が十分でないため触媒耐久性が低くなる。逆に、モ
ル比が60を超えるとゼオライトへの活性金属成分の担
持量が少なくなって触媒活性が不十分となる。またゼオ
ライトは、水熱処理、再合成などによって結晶性を良く
したり、安定化するとより耐久性の高い触媒が得られ
る。
The crystalline aluminosilicate used in the present invention is a zeolite, which can be appropriately selected and used from known zeolites, and the pentasil type is particularly effective. Examples of such zeolites include mordenite, ferrierite, and ZS.
M-5, ZSM-11 and the like are mentioned, and among these, S
The molar ratio of iO 2 / Al 2 O 3 is preferably in the range of 20-60. SiO 2 / Al 2 O 3 molar ratio is 20
If it is less than the above range, dealumination phenomenon is likely to occur, and the thermal stability is not sufficient, resulting in low catalyst durability. On the other hand, when the molar ratio exceeds 60, the amount of the active metal component supported on the zeolite becomes small and the catalytic activity becomes insufficient. In addition, zeolite has a crystal having higher crystallinity due to hydrothermal treatment, re-synthesis, or the like, and when stabilized, a catalyst having higher durability can be obtained.

【0019】本発明においては、P成分の含有量は、吸
着した水を除いた状態の結晶性アルミノケイ酸塩に対し
て、0.01〜1.7重量%の範囲であり、またCa、
Mg及びSr等から成る群から選ばれた少なくとも1種
の金属成分の含有量は0.01〜4重量%の範囲であ
る。これらの含有量が0.01重量%未満になると本発
明の効果が十分に得られず、逆に双方の成分の含有量が
上記範囲、即ち、P成分が1.7重量%、及びCa、M
g、Sr等の金属成分が4重量%を超えて過剰になる
と、P成分によってCuが過剰安定化することによるC
uの不活性化、又はCa、Mg及びSr等の金属成分に
よってCuの被覆効果によると考えられる触媒活性の低
下が起こる。P成分によるCuの過剰安定化を抑えなが
ら、P成分の効果を最大限に引き出すためには、P/C
u(モル比)を制御することも重要であり、本発明の場
合においては0.5を超えるとCuの不活性化が顕著に
なって、触媒活性の低下を引き起こす。
In the present invention, the content of the P component is in the range of 0.01 to 1.7% by weight with respect to the crystalline aluminosilicate excluding the adsorbed water, and Ca,
The content of at least one metal component selected from the group consisting of Mg and Sr is in the range of 0.01 to 4% by weight. If the content of these is less than 0.01% by weight, the effect of the present invention is not sufficiently obtained, and conversely, the content of both components is in the above range, that is, P component is 1.7% by weight, and Ca, M
When the metal component such as g or Sr exceeds 4% by weight and becomes excessive, Cu is excessively stabilized by the P component, and thus C
The inactivation of u, or the metal components such as Ca, Mg and Sr cause a decrease in catalytic activity, which is considered to be due to the coating effect of Cu. In order to maximize the effect of the P component while suppressing the excessive stabilization of Cu by the P component, P / C
It is also important to control u (molar ratio), and in the case of the present invention, when it exceeds 0.5, inactivation of Cu becomes remarkable and the catalytic activity is lowered.

【0020】P成分又はCa、Mg、Sr等の金属成分
の原料としては、硝酸塩、無機酸塩、酸化物、有機酸
塩、塩化物、炭酸塩、ナトリウム塩、アンモニウム塩等
の各種化合物を使用することができる。これらの成分を
ゼオライトに担持、含浸させる方法としては、特別な方
法に限定されず、公知のイオン交換法、含浸法及び混練
法等の種々の方法を使用することができ、更には物理的
に塩を混合する等の各種の方法を使用することができ
る。
As the raw material of the P component or the metal component such as Ca, Mg and Sr, various compounds such as nitrates, inorganic acid salts, oxides, organic acid salts, chlorides, carbonates, sodium salts and ammonium salts are used. can do. The method of supporting and impregnating these components on zeolite is not limited to a special method, and various known methods such as ion exchange method, impregnation method and kneading method can be used, and further, physically. Various methods such as mixing salt can be used.

【0021】ゼオライトに対するCuの担持量は、吸着
水を除いた状態の結晶性アルミナケイ酸塩に対して4〜
15重量%の範囲である。Cuの担持量が4重量%未満
になると、活性成分の量が十分でなく、逆に15重量%
を超えると触媒表面に余り出る酸化銅(CuO)が過剰
となってゼオライトの細孔閉塞を引き起こすなどの悪影
響が生じる。
The amount of Cu supported on the zeolite is 4 to 4 with respect to the crystalline alumina silicate without adsorbed water.
It is in the range of 15% by weight. If the supported amount of Cu is less than 4% by weight, the amount of the active ingredient is not sufficient, and conversely 15% by weight.
If it exceeds, excess copper oxide (CuO) left on the surface of the catalyst becomes excessive, which causes adverse effects such as blocking of pores of the zeolite.

【0022】Cuの原料は、酢酸塩、硝酸塩、塩化物、
アンミン錯化合物等各種のものを使用することができ、
その担持方法としては、特別な方法に限定されず、イオ
ン交換法や含浸法等の一般的な方法が用いられる。ま
た、ゼオライトに対するCu成分、P成分、又はCa、
Mg、Sr等の金属成分の担持順序に関しては、特に規
定されず、数種類の成分を一度に添加しても良い。
The raw materials of Cu are acetate, nitrate, chloride,
Various things such as ammine complex compounds can be used,
The supporting method is not limited to a special method, and a general method such as an ion exchange method or an impregnation method is used. In addition, Cu component, P component, or Ca for zeolite,
The order of loading the metal components such as Mg and Sr is not particularly limited, and several types of components may be added at once.

【0023】本発明の触媒の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、ハ
ニカム状の各種基材に触媒粉末を塗布して用いられる。
このハニカム材料としては、一般にコージェライト質の
ものが多く用いられるが、金属材料からなるハニカムを
用いることも可能であり、更には触媒粉末そのものをハ
ニカム形状に成形しても良い。触媒の形状をハニカム状
とすることにより、触媒と排気ガスの接触面積が大きく
なり、圧力損失も抑えられるため自動車用として用いる
場合に極めて有利である。
The shape of the catalyst of the present invention is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and the catalyst powder is applied to various honeycomb-shaped base materials for use.
As the honeycomb material, a cordierite material is generally used, but a honeycomb made of a metal material can be used, and the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst honeycomb, the contact area between the catalyst and the exhaust gas becomes large and the pressure loss can be suppressed, which is extremely advantageous when used for automobiles.

【0024】[0024]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto.

【0025】実施例1 SiO2 /Al2 3 モル比が約30のH型ZSM−5
ゼオライト粉を、オルトリン酸(H3 PO4 )を含有し
た水溶液に含浸し、吸着水を除いた状態のゼオライト粉
に対してP成分を0.42重量%担持させた。得られた
P成分含有ゼオライト粉を、酢酸銅水溶液中で攪拌し、
イオン交換法によってCu成分を担持した後、120℃
で8時間以上乾燥した。得られた乾燥粉を、酢酸カルシ
ウム水溶液に含浸し、吸着水を除いた状態のゼオライト
粉に対してCaを1.1重量%担持した後、150℃で
8時間以上乾燥した。
Example 1 H-type ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio of about 30.
Zeolite powder was impregnated with an aqueous solution containing orthophosphoric acid (H 3 PO 4 ), and 0.42% by weight of P component was supported on the zeolite powder in a state where adsorbed water was removed. The obtained P component-containing zeolite powder is stirred in a copper acetate aqueous solution,
After loading Cu component by ion exchange method, 120 ℃
And dried for 8 hours or more. The obtained dry powder was impregnated with an aqueous solution of calcium acetate, and 1.1 wt% of Ca was supported on the zeolite powder in a state where the adsorbed water was removed, and then dried at 150 ° C. for 8 hours or more.

【0026】得られた粉末を電気炉により大気中550
℃で2時間焼成してCu、P及びCa成分を含有するZ
SM−5触媒粉を得た。この触媒中のCu担持量(Cu
として)5.2重量%であった。この触媒を次のように
表記する。 Cu(5.2)−P(0.42)−Ca(1.1)/Z
SM−5(P/Cu=0.17)
The obtained powder was heated in the atmosphere at 550 with an electric furnace.
Z containing Cu, P and Ca components after firing at ℃ for 2 hours
SM-5 catalyst powder was obtained. Cu loading in this catalyst (Cu
(As of) 5.2% by weight. This catalyst is described as follows. Cu (5.2) -P (0.42) -Ca (1.1) / Z
SM-5 (P / Cu = 0.17)

【0027】この触媒粉末2250gを、シリカゾル
(固形分20%)1250g及び水1500gと共にボ
ールミルポットに入れ、4時間粉砕してスラリーを得
た。このスラリーを1平方インチ断面当たり約300個
の流路を持つコージェライト製のハニカム(容量0.7
L)に塗布し、熱風乾燥器中、120℃で1時間乾燥し
た後、400℃で1時間焼成し、実施例1の触媒(1) を
得た。この時の触媒粉末の塗布量は170g/Lであっ
た。
2250 g of this catalyst powder was placed in a ball mill pot together with 1250 g of silica sol (solid content 20%) and 1500 g of water, and pulverized for 4 hours to obtain a slurry. This slurry was made of cordierite honeycomb (capacity 0.7
L), dried in a hot air drier at 120 ° C. for 1 hour, and then calcined at 400 ° C. for 1 hour to obtain a catalyst (1) of Example 1. The coating amount of the catalyst powder at this time was 170 g / L.

【0028】実施例2 実施例1と同じH型ZSM−5ゼオライトを、硝酸カル
シウム水溶液中で8時間攪拌し、イオン交換法によりC
aを0.72重量%担持した後、乾燥器中150℃で2
4時間乾燥した。次いで、P原料をピロリン酸ナトリウ
ム(Na4 27 )に代えて実施例1と全く同様にし
てPを0.012重量%担持した後、Cuを同様に担持
し、次の触媒粉末を得た。以下実施例1と全く同様にし
て、次のように表示されるハニカム触媒(2) を得た。 Cu(4.2)−P(0.012)−Ca(0.72)
/ZSM−5(P/Cu=0.006)
Example 2 The same H-type ZSM-5 zeolite as in Example 1 was stirred in an aqueous solution of calcium nitrate for 8 hours, and C was added by an ion exchange method.
After carrying 0.72% by weight of a, it was dried in a dryer at 150 ° C. for 2
It was dried for 4 hours. Then, the raw material of P was replaced with sodium pyrophosphate (Na 4 P 2 O 7 ), and 0.012% by weight of P was loaded in exactly the same manner as in Example 1, and then Cu was loaded in the same manner to obtain the next catalyst powder. Obtained. Thereafter, in the same manner as in Example 1, a honeycomb catalyst (2) represented as follows was obtained. Cu (4.2) -P (0.012) -Ca (0.72)
/ ZSM-5 (P / Cu = 0.006)

【0029】実施例3 Pの添加量を0.83重量%とした他は、実施例1と全
く同様にして次のように表示されるハニカム触媒(3) を
得た。 Cu(5.7)−P(0.83)−Ca(1.08)/
ZSM−5(P/Cu=0.30)
Example 3 A honeycomb catalyst (3) represented as follows was obtained in exactly the same manner as in Example 1 except that the amount of P added was 0.83% by weight. Cu (5.7) -P (0.83) -Ca (1.08) /
ZSM-5 (P / Cu = 0.30)

【0030】実施例4 Pの添加量を1.66重量%とし、実施例1と全く同様
にしてCu成分、Ca成分をゼオライトに担持した後、
更に酢酸銅水溶液に含浸させることによりCu成分の担
持量を6.9重量%とした他は、実施例1と全く同様に
して次のように表示されるハニカム触媒(4) を得た。 Cu(6.9)−P(1.66)−Ca(1.01)/
ZSM−5(P/Cu=0.49)
Example 4 P was added in an amount of 1.66% by weight, and the Cu component and Ca component were loaded on the zeolite in the same manner as in Example 1,
Further, a honeycomb catalyst (4) represented as follows was obtained in exactly the same manner as in Example 1 except that the amount of Cu component supported was 6.9% by weight by impregnation with an aqueous solution of copper acetate. Cu (6.9) -P (1.66) -Ca (1.01) /
ZSM-5 (P / Cu = 0.49)

【0031】実施例5 Pの添加量を0.54重量%とし、実施例4と全く同様
にしてCu成分、Ca成分をゼオライトに担持したハニ
カム触媒(5) を得た。本実施例では、Cu成分の担持量
を14.8重量%、Ca成分の担持量を3.89重量%
に増加させた。 Cu(14.8)−P(0.54)−Ca(3.89)
/ZSM−5(P/Cu=0.075)
Example 5 A honeycomb catalyst (5) having a Cu component and a Ca component supported on zeolite was obtained in exactly the same manner as in Example 4, except that the amount of P added was 0.54% by weight. In the present embodiment, the Cu component loading amount is 14.8% by weight, and the Ca component loading amount is 3.89% by weight.
Increased. Cu (14.8) -P (0.54) -Ca (3.89)
/ ZSM-5 (P / Cu = 0.075)

【0032】実施例6 Pの添加量を0.45重量%とした他は、実施例1と全
く同様にしてハニカム触媒(6) を得た。本実施例では、
Ca成分の担持量を0.012重量%とした。 Cu(5.4)−P(0.45)−Ca(0.012)
/ZSM−5(P/Cu=0.17)
Example 6 A honeycomb catalyst (6) was obtained in the same manner as in Example 1 except that the amount of P added was 0.45% by weight. In this embodiment,
The loading amount of the Ca component was 0.012% by weight. Cu (5.4) -P (0.45) -Ca (0.012)
/ ZSM-5 (P / Cu = 0.17)

【0033】実施例7 酢酸カルシウムの代わりに酢酸マグネシウムを用いた他
は、実施例1と全く同様にしてハニカム触媒(7) を得
た。 Cu(5.3)−P(0.41)−Ca(1.23)/
ZSM−5(P/Cu=0.16)
Example 7 A honeycomb catalyst (7) was obtained in the same manner as in Example 1 except that magnesium acetate was used instead of calcium acetate. Cu (5.3) -P (0.41) -Ca (1.23) /
ZSM-5 (P / Cu = 0.16)

【0034】実施例8 酢酸カルシウムの代わりに硝酸リチウムを用いた他は、
実施例1と全く同様にしてハニカム触媒(8) を得た。 Cu(4.8)−P(0.38)−Li(0.87)/
ZSM−5(P/Cu=0.16)
Example 8 Except that lithium nitrate was used instead of calcium acetate,
A honeycomb catalyst (8) was obtained in exactly the same manner as in Example 1. Cu (4.8) -P (0.38) -Li (0.87) /
ZSM-5 (P / Cu = 0.16)

【0035】実施例9 酢酸カルシウムの代わりに硝酸ストロンチウムを用いた
他は、実施例1と全く同様にしてハニカム触媒(9) を得
た。 Cu(4.8)−P(0.38)−Sr(1.1)/Z
SM−5(P/Cu=0.17)
Example 9 A honeycomb catalyst (9) was obtained in exactly the same manner as in Example 1 except that strontium nitrate was used instead of calcium acetate. Cu (4.8) -P (0.38) -Sr (1.1) / Z
SM-5 (P / Cu = 0.17)

【0036】実施例10 酢酸カルシウムの代わりに酢酸カリウムを用いた他は、
実施例1と全く同様にしてハニカム触媒(10)を得た。 Cu(5.0)−P(0.38)−K(0.68)/Z
SM−5(P/Cu=0.16)
Example 10 Except that potassium acetate was used instead of calcium acetate,
A honeycomb catalyst (10) was obtained in exactly the same manner as in Example 1. Cu (5.0) -P (0.38) -K (0.68) / Z
SM-5 (P / Cu = 0.16)

【0037】実施例11 酢酸カルシウムの代わりに酢酸バリウムを用いた他は、
実施例1と全く同様にしてハニカム触媒(11)を得た。 Cu(5.1)−P(0.41)−Ba(0.12)/
ZSM−5(P/Cu=0.16)
Example 11 Barium acetate was used instead of calcium acetate,
A honeycomb catalyst (11) was obtained in exactly the same manner as in Example 1. Cu (5.1) -P (0.41) -Ba (0.12) /
ZSM-5 (P / Cu = 0.16)

【0038】実施例12 酢酸カルシウムの代わりに硝酸セシウムを用いた他は、
実施例1と全く同様にしてハニカム触媒(12)を得た。 Cu(5.2)−P(0.40)−Cs(0.24)/
ZSM−5(P/Cu=0.16)
Example 12 Except that cesium nitrate was used instead of calcium acetate,
A honeycomb catalyst (12) was obtained in exactly the same manner as in Example 1. Cu (5.2) -P (0.40) -Cs (0.24) /
ZSM-5 (P / Cu = 0.16)

【0039】実施例13 酢酸カルシウムの代わりに硝酸セリウムを用いた他は、
実施例1と全く同様にしてハニカム触媒(13)を得た。 Cu(5.0)−P(0.38)−Ce (1.43)/
ZSM−5(P/Cu=0.16)
Example 13 Except that cerium nitrate was used instead of calcium acetate,
A honeycomb catalyst (13) was obtained in exactly the same manner as in Example 1. Cu (5.0) -P (0.38) -Ce (1.43) /
ZSM-5 (P / Cu = 0.16)

【0040】実施例14 酢酸カルシウムの代わりに硝酸ランタンを用いた他は、
実施例1と全く同様にしてハニカム触媒(14)を得た。 Cu(5.3)−P(0.38)−La(0.97)/
ZSM−5(P/Cu=0.15)
Example 14 Except that lanthanum nitrate was used instead of calcium acetate,
A honeycomb catalyst (14) was obtained in exactly the same manner as in Example 1. Cu (5.3) -P (0.38) -La (0.97) /
ZSM-5 (P / Cu = 0.15)

【0041】実施例15 酢酸カルシウムの代わりに硝酸ナトリウムを用いた他
は、実施例1と全く同様にしてハニカム触媒(15)を得
た。 Cu(5.4)−P(0.36)−Na(0.44)/
ZSM−5(P/Cu=0.14)
Example 15 A honeycomb catalyst (15) was obtained in exactly the same manner as in Example 1 except that sodium nitrate was used instead of calcium acetate. Cu (5.4) -P (0.36) -Na (0.44) /
ZSM-5 (P / Cu = 0.14)

【0042】実施例16 酢酸カルシウムの代わりに硝酸ルビジウムを用いた他
は、実施例1と全く同様にしてハニカム触媒(16)を得
た。 Cu(5.3)−P(0.35)−Rb(0.32)/
ZSM−5(P/Cu=0.14)
Example 16 A honeycomb catalyst (16) was obtained in the same manner as in Example 1 except that rubidium nitrate was used instead of calcium acetate. Cu (5.3) -P (0.35) -Rb (0.32) /
ZSM-5 (P / Cu = 0.14)

【0043】実施例17 酢酸カルシウム水溶液の代わりに酢酸カルシウム及び酢
酸マグネシウムの混合水溶液を用いた他は、実施例1と
全く同様にしてハニカム触媒(17)を得た。 Cu(5.0)−P(0.4)−Ca(0.31)・M
g(0.2)/ZSM−5(P/Cu=0.16)
Example 17 A honeycomb catalyst (17) was obtained in the same manner as in Example 1 except that a mixed aqueous solution of calcium acetate and magnesium acetate was used instead of the calcium acetate aqueous solution. Cu (5.0) -P (0.4) -Ca (0.31) ・ M
g (0.2) / ZSM-5 (P / Cu = 0.16)

【0044】実施例18 酢酸カルシウム及び酢酸マグネシウムの混合水溶液に更
に硝酸ストロンチウムを加え、3成分とした混合水溶液
を用いた他は、実施例17と全く同様にしてハニカム触
媒(18)を得た。 Cu(4.6)−P(0.35)−Ca(0.25)・
Mg(0.17)・Sr(0.12)/ZSM−5(P
/Cu=0.16)
Example 18 A honeycomb catalyst (18) was obtained in exactly the same manner as in Example 17, except that strontium nitrate was further added to the mixed aqueous solution of calcium acetate and magnesium acetate to use the mixed aqueous solution of three components. Cu (4.6) -P (0.35) -Ca (0.25) ・
Mg (0.17) ・ Sr (0.12) / ZSM-5 (P
/Cu=0.16)

【0045】実施例19 硝酸ストロンチウムに代えて酢酸バリウムを用いた他
は、実施例18と全く同様にしてハニカム触媒(19)を得
た。 Cu(4.5)−P(0.32)−Ca(0.25)・
Mg(0.22)・Ba(0.07)/ZSM−5(P
/Cu=0.15)
Example 19 A honeycomb catalyst (19) was obtained in exactly the same manner as in Example 18 except that barium acetate was used instead of strontium nitrate. Cu (4.5) -P (0.32) -Ca (0.25) ・
Mg (0.22) ・ Ba (0.07) / ZSM-5 (P
/Cu=0.15)

【0046】実施例20 硝酸ストロンチウムに代えて硝酸セシウムを用いた他
は、実施例18と全く同様にしてハニカム触媒(20)を得
た。 Cu(5.0)−P(0.41)−Ca(0.22)・
Mg(0.27)・Cs(0.11)/ZSM−5(P
/Cu=0.17)
Example 20 A honeycomb catalyst (20) was obtained in the same manner as in Example 18 except that cesium nitrate was used instead of strontium nitrate. Cu (5.0) -P (0.41) -Ca (0.22) ・
Mg (0.27) ・ Cs (0.11) / ZSM-5 (P
/Cu=0.17)

【0047】実施例21 硝酸ストロンチウムに代えて硝酸ランタンを用いた他
は、実施例18と全く同様にしてハニカム触媒(21)を得
た。 Cu(5.1)−P(0.38)−Ca(0.26)・
Mg(0.2)・La(0.36)/ZSM−5(P/
Cu=0.15)
Example 21 A honeycomb catalyst (21) was obtained in the same manner as in Example 18 except that lanthanum nitrate was used instead of strontium nitrate. Cu (5.1) -P (0.38) -Ca (0.26) ・
Mg (0.2) ・ La (0.36) / ZSM-5 (P /
Cu = 0.15)

【0048】実施例22 SiO2 /Al2 3 モル比が約30のH型ZSM−5
ゼオライトに代えてSiO2 /Al2 3 モル比が約3
4のH型モルデナイトを用いた他は、実施例1と全く同
様にしてハニカム触媒(22)を得た。 Cu(5.5)−P(0.44)−Ca(0.9)/モ
ルデナイト(P/Cu=0.16)
Example 22 H-type ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio of about 30.
Instead of zeolite, the SiO 2 / Al 2 O 3 molar ratio is about 3
A honeycomb catalyst (22) was obtained in exactly the same manner as in Example 1 except that the H-type mordenite of 4 was used. Cu (5.5) -P (0.44) -Ca (0.9) / mordenite (P / Cu = 0.16)

【0049】比較例1 実施例1で用いたH型ZSM−5を、酢酸銅水溶液中で
12時間攪拌し、イオン交換法によってCuを担持した
後、乾燥器中120℃で8時間以上乾燥、焼成した後、
実施例1と全く同様にしてスラリー化し、ハニカム触媒
(23)を得た。 Cu(3.2)/ZSM−5
Comparative Example 1 The H-type ZSM-5 used in Example 1 was stirred in an aqueous solution of copper acetate for 12 hours, supported with Cu by an ion exchange method, and then dried in a dryer at 120 ° C. for 8 hours or more. After firing
A slurry was prepared in the same manner as in Example 1 to obtain a honeycomb catalyst.
I got (23). Cu (3.2) / ZSM-5

【0050】比較例2 Ca成分を添加しない他は、実施例1と全く同様にして
ハニカム触媒(24)を得た。 Cu(5.0)−P(0.44)/ZSM−5(P/C
u=0.18)
Comparative Example 2 A honeycomb catalyst (24) was obtained in exactly the same manner as in Example 1 except that the Ca component was not added. Cu (5.0) -P (0.44) / ZSM-5 (P / C
u = 0.18)

【0051】比較例3 比較例1で得られた触媒粉末に、実施例1と全く同様な
方法でCa成分を添加し、同様にしてハニカム触媒(25)
を得た。 Cu(3.2)−Ca(1.2)/ZSM−5(P/C
u=0)
Comparative Example 3 A Ca component was added to the catalyst powder obtained in Comparative Example 1 in the same manner as in Example 1, and the honeycomb catalyst (25) was obtained in the same manner.
Got Cu (3.2) -Ca (1.2) / ZSM-5 (P / C
u = 0)

【0052】比較例4 Pの添加量を1.73重量%とした他は、実施例4と全
く同様にしてハニカム触媒(26)を得た。 Cu(7.0)−P(1.73)−Ca(0.96)/
ZSM−5(P/Cu=0.51)
Comparative Example 4 A honeycomb catalyst (26) was obtained in exactly the same manner as in Example 4, except that the amount of P added was 1.73% by weight. Cu (7.0) -P (1.73) -Ca (0.96) /
ZSM-5 (P / Cu = 0.51)

【0053】比較例5 Caの添加量を4.3重量%とした他は、実施例1と全
く同様にしてハニカム触媒(27)を得た。 Cu(5.1)−P(0.44)−Ca(4.3)/Z
SM−5(P/Cu=0.18)
Comparative Example 5 A honeycomb catalyst (27) was obtained in exactly the same manner as in Example 1 except that the amount of Ca added was 4.3% by weight. Cu (5.1) -P (0.44) -Ca (4.3) / Z
SM-5 (P / Cu = 0.18)

【0054】比較例6 Pの添加量を0.51重量%とし、更にCuの担持量を
15.4重量%とした他は、実施例4と全く同様にして
ハニカム触媒(28)を得た。 Cu(15.4)−P(0.51)−Ca(0.81)
/ZSM−5(P/Cu=0.068)
Comparative Example 6 A honeycomb catalyst (28) was obtained in exactly the same manner as in Example 4 except that the amount of P added was 0.51% by weight and the amount of Cu supported was 15.4% by weight. . Cu (15.4) -P (0.51) -Ca (0.81)
/ ZSM-5 (P / Cu = 0.068)

【0055】試験例 上記実施例及び比較例で得られた触媒について、エンジ
ンの実排ガスを下記条件で処理し、触媒の耐久性能を評
価した。
Test Example With respect to the catalysts obtained in the above Examples and Comparative Examples, the actual exhaust gas of the engine was treated under the following conditions, and the durability performance of the catalyst was evaluated.

【0056】活性評価条件 評価装置:常圧固定床流通式反応装置 触媒容量:0.05L(0.7Lサイズの触媒から切り
出したもの) ガス空間速度:約40,000h-1 排気模擬ガス組成: 全炭化水素=約2,000ppm(C1換算) NO=約400ppm CO=1,000ppm O2 =7.5% CO2 =12% H2 O=8.5% N2 =残部急速耐久処理条件 触媒入口排気ガス温度:630℃ エンジン:日産自動車株式会社製V型8気筒4400c
cエンジン使用 平均空燃比(A/F):約15(燃料カットあり) 燃料:無鉛レギュラーガソリン 処理時間:30h 耐久試験後の触媒入口温度370℃における実施例及び
比較例で得られた触媒のNOX 除去性能を表1に示す。
Activity evaluation conditions Evaluation device: atmospheric pressure fixed bed flow type reaction device Catalyst capacity: 0.05 L (cut out from a 0.7 L size catalyst) Gas space velocity: about 40,000 h −1 Exhaust gas composition: Total hydrocarbons = about 2,000 ppm (converted to C1) NO = about 400 ppm CO = 1,000 ppm O 2 = 7.5% CO 2 = 12% H 2 O = 8.5% N 2 = balance rapid endurance treatment condition catalyst Inlet exhaust gas temperature: 630 ° C Engine: Nissan V8 cylinder 4400c
c Engine use Average air-fuel ratio (A / F): Approximately 15 (with fuel cut) Fuel: Unleaded regular gasoline Treatment time: 30 h NO of catalyst obtained in Examples and Comparative Examples at catalyst inlet temperature of 370 ° C. after durability test The X removal performance is shown in Table 1.

【0057】[0057]

【表1】 [Table 1]

【0058】表1の結果から、本発明の触媒は600℃
を超える温度での急速耐久処理後も高いNOX 除去活性
を維持しており、耐熱性や耐久性に優れていることが判
る。また、触媒中のCa成分の含有量が0.32〜1.
1重量%の範囲で、P成分の含有量を代えた場合のNO
X 除去率をみると、P成分が0.01重量%以上でその
効果が現れ、0.4〜0.9重量%の範囲で大きな効果
が得られるが、1.7重量%を超えるとむしろ逆効果と
なることが判る。
From the results shown in Table 1, the catalyst of the present invention is 600 ° C.
It can be seen that the high NO x removal activity is maintained even after the rapid endurance treatment at a temperature exceeding 2,000 ° C., and the heat resistance and durability are excellent. Further, the content of the Ca component in the catalyst is 0.32-1.
NO when the content of P component is changed within the range of 1% by weight
Looking at the X removal rate, the effect appears when the P component is 0.01% by weight or more, and a large effect is obtained in the range of 0.4 to 0.9% by weight, but when it exceeds 1.7% by weight, it is rather It turns out that it is the opposite effect.

【0059】更に、触媒中のCa成分の含有量を代えた
場合のNOX 除去率をみると、Ca成分が0.01重量
%以上で効果が現れ、0.3〜3.0重量%で明確な効
果が得られるが、4.0重量%を超えるとむしろ逆効果
になることが判る。Ca、Mg、Sr等のアルカリ金
属、アルカリ土類金属、希土類金属成分は2成分や3成
分等の多成分を共存させても悪影響は特に認められず、
同等の効果が得られる。
Further, looking at the NO x removal rate when the content of the Ca component in the catalyst is changed, the effect appears when the Ca component is 0.01 wt% or more, and when the Ca component is 0.3 to 3.0 wt%. It can be seen that a clear effect can be obtained, but when it exceeds 4.0% by weight, the opposite effect is obtained. Alkali metals such as Ca, Mg, and Sr, alkaline earth metals, and rare earth metal components have no particular adverse effect even when multiple components such as two or three components coexist.
The same effect can be obtained.

【0060】[0060]

【発明の効果】本発明の排ガス浄化用触媒は、リーン・
バーンエンジン排気ガスのような酸素を多く含む排気ガ
ス中のNOX を効率良く浄化することができると共に、
600℃以上の温度であっても長時間使用可能な耐熱性
や耐久性を有しているので、環境汚染が極めて少なく、
燃費の良い自動車を提供することができる。
The exhaust gas purifying catalyst of the present invention is
It is possible to efficiently purify NO X in exhaust gas containing much oxygen such as burn engine exhaust gas,
Since it has heat resistance and durability that can be used for a long time even at a temperature of 600 ° C or higher, environmental pollution is extremely low,
It is possible to provide a fuel-efficient car.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102 H (72)発明者 勝野 尚 千葉県袖ヶ浦市上泉1280番地 出光興産株 式会社内 (72)発明者 赤間 弘 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 増田 剛司 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 金坂 浩行 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/36 102 H (72) Inventor Takashi Katsuno 1280 Kamizumi, Sodegaura-shi, Chiba Idemitsu Kosan Co., Ltd. Company (72) Inventor Hiroshi Akama 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Goji Masuda 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor, Kanasaka Hiroyuki 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結晶性アルミノケイ酸塩を主成分とする
無機物に、銅(Cu)成分及びリン(P)成分を含有し
てなる触媒体に、更にアルカリ金属、アルカリ土類金属
及び希土類金属から成る群から選ばれた少なくとも1種
の金属成分を含有させてなる排ガス浄化用触媒におい
て、Cu及びPの含有量が吸着した水を除いた状態の前
記結晶性アルミノケイ酸塩に対して、それぞれ4〜15
重量%及び0.01〜1.7重量%の範囲であることを
特徴とする排ガス浄化用触媒。
1. A catalyst body comprising a crystalline aluminosilicate as a main component, a copper (Cu) component and a phosphorus (P) component, and an alkali metal, an alkaline earth metal or a rare earth metal. An exhaust gas-purifying catalyst containing at least one metal component selected from the group consisting of 4 parts of each of the crystalline aluminosilicates in a state in which water having adsorbed Cu and P contents is removed. ~ 15
%, And 0.01 to 1.7% by weight.
【請求項2】 アルカリ金属、アルカリ土類金属及び希
土類金属成分がリチウム(Li)、ナトリウム(N
a)、カリウム(K)、ルビジウム(Rb)、セシウム
(Cs)、マグネシウム(Mg)、カルシウム(C
a)、ストロンチウム(Sr)、バリウム(Ba)、セ
リウム(Ce)及びランタン(La)であることを特徴
とする請求項1記載の排ガス浄化用触媒。
2. The alkali metal, alkaline earth metal and rare earth metal components are lithium (Li) and sodium (N
a), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg), calcium (C
The exhaust gas purifying catalyst according to claim 1, which is a), strontium (Sr), barium (Ba), cerium (Ce), or lanthanum (La).
【請求項3】 PとCuとの比〔P/Cu(モル比)〕
が0を超えて0.5以下であることを特徴とする請求項
1記載の排ガス浄化用触媒。
3. A ratio of P and Cu [P / Cu (molar ratio)]
Is more than 0 and 0.5 or less, The exhaust gas purifying catalyst according to claim 1.
【請求項4】 Li、Na、K、Rb、Cs、Mg、C
a、Sr、Ba、Ce及びLaから成る群から選ばれた
少なくとも1種の金属成分の含有量が吸着した水を除い
た状態の結晶性アルミノケイ酸塩に対して0.01〜4
重量%の範囲であることを特徴とする排ガス浄化用触
媒。
4. Li, Na, K, Rb, Cs, Mg, C
The content of at least one metal component selected from the group consisting of a, Sr, Ba, Ce, and La is 0.01 to 4 with respect to the crystalline aluminosilicate in the state where the adsorbed water is removed.
An exhaust gas-purifying catalyst characterized by being in a weight% range.
JP6092033A 1994-04-28 1994-04-28 Catalyst for purifying exhaust gas Pending JPH07289910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092033A JPH07289910A (en) 1994-04-28 1994-04-28 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092033A JPH07289910A (en) 1994-04-28 1994-04-28 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH07289910A true JPH07289910A (en) 1995-11-07

Family

ID=14043224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092033A Pending JPH07289910A (en) 1994-04-28 1994-04-28 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH07289910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045765A1 (en) * 2002-11-18 2004-06-03 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
US7393804B2 (en) 2002-11-18 2008-07-01 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purification of exhaust gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045765A1 (en) * 2002-11-18 2004-06-03 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
JPWO2004045765A1 (en) * 2002-11-18 2006-03-16 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
KR100774576B1 (en) * 2002-11-18 2007-11-12 아이씨티 코., 엘티디. Exhaust gas purifying catalyst and method for purifying exhaust gas
US7393804B2 (en) 2002-11-18 2008-07-01 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purification of exhaust gas
US7396793B2 (en) 2002-11-18 2008-07-08 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purifying exhaust gas
JP2009066596A (en) * 2002-11-18 2009-04-02 Ict:Kk Method for suppressing oxidization of sulfur dioxide in exhaust gas
CN101664641A (en) * 2002-11-18 2010-03-10 株式会社Ict Exhaust gas purifying catalyst and method for purifying exhaust gas
JP4594097B2 (en) * 2002-11-18 2010-12-08 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method

Similar Documents

Publication Publication Date Title
EP1166856B1 (en) Exhaust gas purifying catalyst
US6232253B1 (en) Sol-gel alumina membrane for lean NOx catalysts and method of making same
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH06106065A (en) Catalyst for purification of exhaust gas
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH07144134A (en) Catalyst for purifying exhaust gas
JPH07144133A (en) Catalyst for purifying exhaust gas, its production and production of honeycomb catalyst for purifying exhaust gas
JPH07289910A (en) Catalyst for purifying exhaust gas
JPH07289909A (en) Catalyst for purifying exhaust gas
JP2936416B2 (en) Exhaust gas purification method
JPH07194973A (en) Exhaust gas purifying catalyst
JP3197711B2 (en) Exhaust gas purification catalyst
JPH0957066A (en) Catalyst for purification of exhaust gas
JPH06226105A (en) Catalyst for exhaust gas purification
JP3323233B2 (en) Method for producing exhaust gas purifying catalyst
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas
JPH06226106A (en) Catalyst for exhaust gas purification
JPH09141106A (en) Exhaust gas purifying catalyst
JP2772117B2 (en) Manufacturing method of exhaust gas treatment catalyst
JP3787504B2 (en) Exhaust gas purification catalyst
JPH08299801A (en) Exhaust gas purifying catalyst
JP3300053B2 (en) Exhaust gas purification catalyst
JPH07289911A (en) Catalyst for purifying exhaust gas
JPH09271640A (en) Removal of nitrogen oxide, nitrogen oxide removing production of catalyst of catalyst
JPH0623272A (en) Production of catalyst for cleaning waste gas

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406