JPH0810614A - Carbonaceous separation agent having molecular sieve capacity - Google Patents

Carbonaceous separation agent having molecular sieve capacity

Info

Publication number
JPH0810614A
JPH0810614A JP6171865A JP17186594A JPH0810614A JP H0810614 A JPH0810614 A JP H0810614A JP 6171865 A JP6171865 A JP 6171865A JP 17186594 A JP17186594 A JP 17186594A JP H0810614 A JPH0810614 A JP H0810614A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
waste
carbonaceous
separation agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6171865A
Other languages
Japanese (ja)
Other versions
JP3443952B2 (en
Inventor
Koichi Miura
孝一 三浦
Hiroyuki Nakagawa
浩行 中川
Kunio Watanabe
邦夫 渡▲辺▼
Wakako Satou
若子 佐藤
Isao Joko
勲 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17186594A priority Critical patent/JP3443952B2/en
Publication of JPH0810614A publication Critical patent/JPH0810614A/en
Application granted granted Critical
Publication of JP3443952B2 publication Critical patent/JP3443952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a carbonaceous separation agent having useful molecular sieve capacity by using a waste ion exchange resin as a raw material. CONSTITUTION:A carbonaceous separation agent having molecular sieve capacity is obtained by heating a waste ion exchange resin to 300-900 deg.C in inert gas to bake the same. By this constitution, waste can be reutilized as a separation agent having a variable use and the conservation of resources and preservation of environment are effectively achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は廃イオン交換樹脂の再利
用に関するもので、特に、廃イオン交換樹脂から製造し
た分子篩能を有する炭素質分離剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the reuse of waste ion exchange resins, and more particularly to a carbonaceous separating agent having a molecular sieving ability, produced from waste ion exchange resins.

【0002】[0002]

【従来の技術】イオン交換樹脂は、そのイオン交換能を
利用し、水中の不純物を分離して純水、軟水を製造した
り、特定イオンを除去して廃水を浄化したり、液中から
特定物質を濃縮、分離したり、物質を精製したりする
等、種々の目的で用いられている。 通常、イオン交換
樹脂は使用中イオン交換能力が低下した場合は、再生剤
により再生を行い繰り返し使用する。しかし、イオン交
換樹脂が汚染されたり、イオン交換能の回復が十分でき
なくなったり、破砕したりした場合あるいは再生を繰り
返し行わない場合には、イオン交換樹脂は廃イオン交換
樹脂となる。廃イオン交換樹脂は産業廃棄物として埋立
処分されているのが現状である。最近では廃イオン交換
樹脂のリサイクルも検討されてきており、廃イオン交換
樹脂を炭化して活性炭材料として利用することも提案さ
れている(第4回廃棄物学会研究発表会講演論文集第2
85−288ページ)。
2. Description of the Related Art Ion exchange resins utilize their ion exchange ability to separate impurities in water to produce pure water and soft water, remove specific ions to purify waste water, and identify from the liquid. It is used for various purposes such as concentration and separation of substances and purification of substances. Usually, when the ion exchange capacity of the ion exchange resin decreases during use, it is regenerated with a regenerant and used repeatedly. However, when the ion exchange resin is contaminated, the ion exchange capacity cannot be recovered sufficiently, or when it is crushed or when the regeneration is not repeated, the ion exchange resin becomes a waste ion exchange resin. The waste ion exchange resin is currently disposed of as landfill as industrial waste. Recently, recycling of waste ion-exchange resin has been studied, and it has been proposed to carbonize the waste ion-exchange resin and use it as an activated carbon material (Proceedings of the 4th Conference of the Japan Society for Waste Management, 2nd session).
Pp. 85-288).

【0003】[0003]

【発明が解決しようとする課題】廃イオン交換樹脂を埋
立処分する場合では、環境保全に十分な留意が必要であ
り、また、埋立地の不足の問題があり、廃イオン交換樹
脂の再利用が望まれている。上述の提案された活性炭の
製造方法は、廃イオン交換樹脂を空気中で500〜70
0℃に加熱処理して炭化し、さらに活性化ガスを用い9
00℃で賦活処理して活性炭を製造するものである。廃
イオン交換樹脂の再利用の観点から実用化が望まれると
ころである。本発明は、廃イオン交換樹脂を原料とし
た、比較的簡単に製造可能な、活性炭とは異なる機能す
なわち、分子篩作用を有する分離剤を提供することを目
的とする。なお、イオン交換樹脂の新品を焼成して、触
媒(特公昭58ー13488)や活性炭(特公平5ー6
9768)を製造することも知られているが、分子篩能
を有する分離剤の製造は知られていない。
When the waste ion-exchange resin is landfilled, it is necessary to pay sufficient attention to environmental protection, and there is a problem of a shortage of landfill. Is desired. The above-mentioned proposed method for producing activated carbon is performed by treating the waste ion exchange resin in the air at 500 to 70%.
Heat treatment at 0 ° C to carbonize, and use activating gas for 9
Activated carbon is produced by activation treatment at 00 ° C. Practical application is desired from the viewpoint of recycling the waste ion exchange resin. It is an object of the present invention to provide a separating agent which is made from a waste ion exchange resin and can be produced relatively easily and has a function different from that of activated carbon, that is, a molecular sieving action. It should be noted that, by burning a new ion exchange resin, catalyst (Japanese Patent Publication No. 58-13488) and activated carbon (Japanese Patent Publication No. 5-6)
9768) is also known, but the production of separating agents with molecular sieving ability is not known.

【0004】[0004]

【課題を解決するための手段】本発明は、廃イオン交換
樹脂を不活性ガス中で所定温度まで昇温して焼成してな
る分子篩能を有する炭素質分離剤である。本発明で用い
られる廃イオン交換樹脂は、アニオン性交換樹脂であっ
ても、カチオン性のものであってもよく、また、使用履
歴も問わない。例えば、純水製造装置、軟水製造装置、
糖製造プロセス、その他分離、濃縮、精製等に使用さ
れ、廃棄処分となる廃イオン交換樹脂を原料として使用
できる。イオン交換樹脂は、通常、スチレンとジビニル
ベンゼンの架橋共重合体を母材とし、イオン交換基とな
る官能基が導入された、粒状の粒子である。
The present invention is a carbonaceous separating agent having a molecular sieving ability, which is obtained by heating a waste ion exchange resin to a predetermined temperature in an inert gas and calcining it. The waste ion exchange resin used in the present invention may be an anion exchange resin or a cationic one, and its history of use is not limited. For example, pure water production equipment, soft water production equipment,
The waste ion exchange resin used in the sugar production process, other separation, concentration, purification, etc. and discarded can be used as a raw material. The ion exchange resin is usually a granular particle in which a cross-linking copolymer of styrene and divinylbenzene is used as a base material and a functional group serving as an ion exchange group is introduced.

【0005】本発明の分子篩能を有する分離剤は、廃イ
オン交換樹脂を用いるのが重要であり、新品の樹脂では
炭化収率が低く、分子篩能を有する分離剤の製造は困難
である。分離剤の製造においては、廃イオン交換樹脂を
耐熱カラムに充填し、不活性ガス中に、例えば、窒素気
流中において所定温度まで順次昇温していき、焼成す
る。昇温速度は原料によっても異なるが、毎分5〜50
℃程度が均質な焼成と強度の向上のために好ましい。
It is important to use a waste ion exchange resin for the separating agent having a molecular sieving ability of the present invention, and a new resin has a low carbonization yield, and it is difficult to produce a separating agent having a molecular sieving ability. In the production of the separating agent, the waste ion-exchange resin is packed in a heat-resistant column, and the temperature is sequentially raised to a predetermined temperature in an inert gas, for example, in a nitrogen stream, and then baked. The heating rate varies depending on the raw material, but is 5 to 50 per minute.
A temperature of about ℃ is preferable for uniform baking and improvement of strength.

【0006】焼成温度は、300〜900℃の任意の温
度を選択できるが、原料の廃イオン交換樹脂に応じて適
宜設定するとともに、分離剤の所望の細孔径に応じて最
適の温度を選択する。好ましくは600℃以上がよく、
600℃以下では原料によっては炭化が不十分な場合が
ある。廃イオン交換樹脂を上述のようにして焼成する
と、廃イオン交換樹脂は炭化し、収縮はするが元の形状
を保った、粒子となる。この粒子は分子レベルのほぼ均
一な細孔を有して分子篩作用を示し、比較的大孔径まで
のブロードなポアをもつ通常の活性炭とは異なった性能
を示す。本発明の分子篩作用を有する粒子は、窒素と酸
素の分離、炭酸ガスの選択的吸着、メタン、エタン、ブ
タン、ベンゼン等の混合ガスからのメタン、エタンの選
択的分離等通常の分子篩剤と同様種々の用途に適用でき
る。
The calcination temperature can be selected from any temperature in the range of 300 to 900 ° C., but it is appropriately set according to the waste ion exchange resin of the raw material and the optimum temperature is selected according to the desired pore size of the separating agent. . 600 ° C or higher is preferable,
At 600 ° C or lower, carbonization may be insufficient depending on the raw material. When the waste ion-exchange resin is fired as described above, the waste ion-exchange resin is carbonized and becomes particles that shrink but contract their original shape. The particles have a molecular size-like almost uniform pore and exhibit a molecular sieving action, and exhibit different performance from ordinary activated carbon having a broad pore up to a relatively large pore size. The particles having a molecular sieving action of the present invention are similar to ordinary molecular sieving agents such as separation of nitrogen and oxygen, selective adsorption of carbon dioxide, selective separation of methane and ethane from a mixed gas of methane, ethane, butane, benzene and the like. It can be applied to various purposes.

【0007】[0007]

【発明の効果】本発明により、廃イオン交換樹脂を有用
な用途を持つ分離剤として再利用でき、省資源、環境保
全に有効であるばかりでなく、本発明の分離剤は簡単な
プロセスにより製造でき、市販の分子篩剤に匹敵する強
度を持っている。
Industrial Applicability According to the present invention, the waste ion exchange resin can be reused as a separating agent having a useful application and is not only effective for resource saving and environmental protection, but also the separating agent of the present invention can be produced by a simple process. It has a strength comparable to that of commercially available molecular sieves.

【0008】[0008]

【実施例】用いた廃イオン交換樹脂(スチレンとジビニ
ルベンゼンの架橋共重合体)と比較のために用いた新イ
オン交換樹脂(同母材)の元素分析値と用途を表1に示
す。
[Examples] Table 1 shows the elemental analysis values and uses of the used ion exchange resin (crosslinked copolymer of styrene and divinylbenzene) and the new ion exchange resin (the same base material) used for comparison.

【表1】 各イオン交換樹脂を管の中に充填し、炉に入れ、管の一
方から窒素ガスを流しながら、10℃/分の割合で昇温
していき、300〜900℃まで加熱し、炭化温度の異
なる試料を調整した。各試料について4種類のガスの2
5℃での吸着等温線を定容式吸着量測定装置で測定し、
これにDubinin−Astakhov式を適用して
極限吸着容積を求め、それが吸着分子の分子径(二酸化
炭素:0.33nm、エタン:0.4nm、ブタン:
0.43nm、イソブタン:0.5nm)以上の細孔の
全容積を表すとして細孔容積分布を求めた。図1に結果
を示す。焼成温度300℃では廃樹脂A、Bは細孔が形
成されてきている。600℃では廃樹脂A、B、Cのい
ずれも細孔が生成している。900℃では細孔径が小さ
い方へシフトしており、0.4nm付近の細孔の収縮や
0.33nm程度のミクロポアが生成している。
[Table 1] Each ion-exchange resin was filled in a tube, placed in a furnace, and heated at a rate of 10 ° C./minute while flowing nitrogen gas from one side of the tube, heated to 300 to 900 ° C. Different samples were prepared. 2 of 4 gases for each sample
Measure the adsorption isotherm at 5 ℃ with a constant volume adsorption amount measuring device,
The Dubinin-Astakhov equation is applied to this to determine the limit adsorption volume, which is the molecular diameter of the adsorbed molecule (carbon dioxide: 0.33 nm, ethane: 0.4 nm, butane:
The pore volume distribution was obtained by expressing the total volume of pores having a size of 0.43 nm and isobutane: 0.5 nm or more. The results are shown in FIG. At the firing temperature of 300 ° C., the waste resins A and B have pores formed therein. At 600 ° C., pores are formed in all of the waste resins A, B and C. At 900 ° C., the pore diameter shifts to the smaller side, and shrinkage of pores around 0.4 nm and micropores of about 0.33 nm are generated.

【0009】図1の900℃のグラフには参考のため
に、市販の分子篩炭素質分離剤(図中、MSCと表示)
の累積細孔容積分布を表示した。A、Bはこの市販のも
のとほぼ同じ細孔分布を持っていることがわかる。ま
た、廃イオン交換樹脂A(廃樹脂A)に相当する新樹脂
A’を300℃で炭化した試料では、細孔がほとんど生
成されていなく、また、廃樹脂Bに相当する新樹脂B’
の試料では、細孔容積分布はブロードとなっており、分
子篩能が期待できないものとなっている(図1、炭化温
度300℃参照)。さらに、上述の加熱処理(炭化)に
おいて、熱重量変化をみた結果を図2に示す。廃イオン
交換樹脂Aは温度300℃〜900℃で炭化収率は約6
0%〜40%となった。一方、廃イオン交換樹脂Aに相
当する新品樹脂では約410℃で炭化収率は0となり、
灰分のみに変化した。また、廃イオン交換樹脂B、Cと
それらの新品樹脂との比較においても炭化収率は、廃イ
オン交換樹脂の方が優れていることがわかる。次に、上
述のようにして900℃で炭化、調製した分離剤試料を
用いて以下の試験を行った。試料1gを精秤し、200
℃で2時間真空脱気処理を行った後、二酸化炭素、メタ
ンについて圧力600mmHgにおける吸着量を測定し
た。測定は自動吸着量測定装置(BELSORP 28
日本ベル製)を用いて吸着温度25℃で測定した。結
果は次の通りであった。 上記結果から、本発明の分離剤は分子篩能を示すことが
明かである。
For reference, the graph of 900 ° C. in FIG. 1 is a commercially available molecular sieve carbonaceous separator (indicated as MSC in the figure).
The cumulative pore volume distribution of It can be seen that A and B have almost the same pore distribution as this commercially available product. Further, in the sample in which the new resin A'corresponding to the waste ion exchange resin A (waste resin A) was carbonized at 300 ° C, almost no pores were generated, and the new resin B'corresponding to the waste resin B was generated.
In the sample (1), the pore volume distribution is broad and the molecular sieving ability cannot be expected (see FIG. 1, carbonization temperature 300 ° C.). Further, the results of thermogravimetric changes in the above heat treatment (carbonization) are shown in FIG. The waste ion exchange resin A has a carbonization yield of about 6 at a temperature of 300 ° C to 900 ° C.
It became 0% to 40%. On the other hand, in the case of a new resin equivalent to the waste ion exchange resin A, the carbonization yield becomes 0 at about 410 ° C,
Only the ash changed. Further, it can be seen that the carbonization yield of the waste ion exchange resins B and C and the new resin thereof is superior to that of the waste ion exchange resins. Next, the following test was performed using the separating agent sample carbonized and prepared at 900 ° C. as described above. 1 g of sample is precisely weighed and 200
After vacuum deaeration treatment was carried out at 0 ° C. for 2 hours, the amount of carbon dioxide and methane adsorbed at a pressure of 600 mmHg was measured. The measurement is performed by an automatic adsorption amount measuring device (BELSORP 28
It was measured at an adsorption temperature of 25 ° C. using a product manufactured by Nippon Bell. The results were as follows. From the above results, it is clear that the separating agent of the present invention exhibits molecular sieving ability.

【0010】[0010]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、炭化温度別に、炭化試料の累積細孔容
積分布を示すグラフであり、横軸は細孔径[nm]、縦
軸は細孔容積[cc/g]である。
FIG. 1 is a graph showing a cumulative pore volume distribution of a carbonized sample for each carbonization temperature, in which the horizontal axis represents pore diameter [nm] and the vertical axis represents pore volume [cc / g].

【図2】図2は、樹脂別に、廃樹脂と新樹脂の熱重量変
化曲線を示し、横軸は炭化温度[℃]、縦軸は初期重量
(W0)に対する炭化後の重量(W)である。
FIG. 2 shows thermogravimetric change curves of waste resin and new resin for each resin, where the horizontal axis is the carbonization temperature [° C.] and the vertical axis is the weight (W) after carbonization with respect to the initial weight (W0). is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上甲 勲 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Kamiko 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】廃イオン交換樹脂を不活性ガス中で300
〜900℃の所定温度まで昇温して加熱焼成してなる分
子篩能を有する炭素質分離剤
1. A waste ion exchange resin containing 300 in an inert gas.
To 900 ° C, a carbonaceous separating agent having a molecular sieving ability, which is obtained by heating to a predetermined temperature and baking.
JP17186594A 1994-06-30 1994-06-30 Carbonaceous separation agent with molecular sieving ability Expired - Fee Related JP3443952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17186594A JP3443952B2 (en) 1994-06-30 1994-06-30 Carbonaceous separation agent with molecular sieving ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17186594A JP3443952B2 (en) 1994-06-30 1994-06-30 Carbonaceous separation agent with molecular sieving ability

Publications (2)

Publication Number Publication Date
JPH0810614A true JPH0810614A (en) 1996-01-16
JP3443952B2 JP3443952B2 (en) 2003-09-08

Family

ID=15931227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17186594A Expired - Fee Related JP3443952B2 (en) 1994-06-30 1994-06-30 Carbonaceous separation agent with molecular sieving ability

Country Status (1)

Country Link
JP (1) JP3443952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292360A (en) * 2001-03-29 2002-10-08 Japan Organo Co Ltd Method for reusing ion exchange resin
JP2007136320A (en) * 2005-11-17 2007-06-07 Takuma Co Ltd Oxygen-selective adsorbent
JP2009013013A (en) * 2007-07-04 2009-01-22 Araki Yogyo Kk Porous brick and its production method
JP2011147895A (en) * 2010-01-22 2011-08-04 Tohoku Electric Power Co Inc Method for manufacturing of adsorbent for nitrogen monoxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292360A (en) * 2001-03-29 2002-10-08 Japan Organo Co Ltd Method for reusing ion exchange resin
JP2007136320A (en) * 2005-11-17 2007-06-07 Takuma Co Ltd Oxygen-selective adsorbent
JP4634283B2 (en) * 2005-11-17 2011-02-16 株式会社タクマ Oxygen selective adsorbent
JP2009013013A (en) * 2007-07-04 2009-01-22 Araki Yogyo Kk Porous brick and its production method
JP2011147895A (en) * 2010-01-22 2011-08-04 Tohoku Electric Power Co Inc Method for manufacturing of adsorbent for nitrogen monoxide

Also Published As

Publication number Publication date
JP3443952B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
US5162286A (en) Method of producing granular activated carbon
JPH03502774A (en) Acid gas removal using aminated carbon molecular sieves
IE900320L (en) Carbon molecular sieves for purification of¹chlorofluorocarbons
US5238888A (en) Carbon molecular sieve
RU2093495C1 (en) Method of preparing carbon material
JP3443952B2 (en) Carbonaceous separation agent with molecular sieving ability
WO2015109385A1 (en) Carbon monolith, carbon monolith with metal impregnant and method of producing same
JPH08208212A (en) Production of activated carbon
EP0910543A1 (en) Process for hydrogen fluoride separation
JPH04243543A (en) Shaped adsorbent
US5597545A (en) Recovery of HF from aqueous streams
JPH03151041A (en) Molded adsorbent
JP4315337B2 (en) Non-particulate organic porous material having optical resolution and method for producing the same
RU2619322C1 (en) Method for composite carbon-fluoroplastic sorbent production for sewage treatment from oil products and organic pollutants
JPS62129144A (en) Porous composite structure and its preparation
JPS58124539A (en) Adsorbent for separating gas
CN111886066A (en) Process for decarbonation of a gas stream
JPH04318041A (en) Method for treating surface of filler for composite material
CA1110223A (en) Partially pyrolyzed polymer emulsion coagulate
JPS5820705A (en) Porous carbon particles
JP3588631B2 (en) Method for producing porous organic polymer
JPS60227831A (en) Gas adsorbent
SU1740103A1 (en) Method for processing metal powders
JPH03505697A (en) Hydrophobic carbon molecular sieve
CN109482142A (en) Useless brick prepares the methods and applications of fluorine adsorbent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees