JP4634283B2 - Oxygen selective adsorbent - Google Patents
Oxygen selective adsorbent Download PDFInfo
- Publication number
- JP4634283B2 JP4634283B2 JP2005332581A JP2005332581A JP4634283B2 JP 4634283 B2 JP4634283 B2 JP 4634283B2 JP 2005332581 A JP2005332581 A JP 2005332581A JP 2005332581 A JP2005332581 A JP 2005332581A JP 4634283 B2 JP4634283 B2 JP 4634283B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- exchange resin
- selective adsorbent
- cation exchange
- strongly acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CC(C)CC1=C**C(C(C)C)=C1 Chemical compound CC(C)CC1=C**C(C(C)C)=C1 0.000 description 3
- OXTZNOOSRDELEG-UHFFFAOYSA-N CCc1cc(CC(C)C)ccc1 Chemical compound CCc1cc(CC(C)C)ccc1 OXTZNOOSRDELEG-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、酸素選択性吸着剤に関する。さらに詳しくは、含酸素雰囲気から高い選択性で大量に酸素を吸着することができ、しかも脱着再生が容易でかつ安価な酸素選択性吸着剤に関する。 The present invention relates to an oxygen selective adsorbent. More specifically, the present invention relates to an oxygen-selective adsorbent that can adsorb a large amount of oxygen with high selectivity from an oxygen-containing atmosphere and that is easy to desorb and regenerate and is inexpensive.
酸素選択性吸着剤は、例えば食品の酸化防止を目的とした脱酸素剤のほか、例えば燃焼排ガスの排熱を利用して酸素脱着を行う熱脱着式酸素濃縮装置や熱脱着式燃焼酸化剤製造装置などの、空気から窒素と酸素とを分離濃縮するための吸着式分離装置に用いる吸着剤などとして、従来より広く利用されている(例えば、特許文献1及び2参照)。
The oxygen-selective adsorbent is, for example, a deoxidizer for the purpose of preventing oxidation of foods, for example, a thermal desorption-type oxygen concentrator that performs oxygen desorption using exhaust heat from combustion exhaust gas, and a thermal desorption-type combustion oxidant Conventionally, it has been widely used as an adsorbent and the like used in an adsorption separation apparatus for separating and concentrating nitrogen and oxygen from air, such as an apparatus (see, for example,
前記酸素選択性吸着剤としては、例えば鉄粉末などの金属の酸化反応を利用した吸着剤や、窒素と酸素との吸着速度差を利用した分子篩い炭が一般的である。しかしながら、かかる金属の酸化反応を利用した吸着剤は、酸素選択性は良好であるものの、酸素吸着後の再生の際に、還元ガス雰囲気下で約300℃以上といった非常に高温の温度場が必要であり、容易に再生することが困難であるといった問題がある。また分子篩い炭は、吸着容量そのものが小さく、さらに平衡時の酸素選択性が低いなどの問題がある。 As the oxygen selective adsorbent, for example, an adsorbent that utilizes an oxidation reaction of a metal such as iron powder, or a molecular sieve charcoal that utilizes an adsorption rate difference between nitrogen and oxygen is generally used. However, although the adsorbent using such metal oxidation reaction has good oxygen selectivity, a very high temperature field of about 300 ° C. or higher is required in a reducing gas atmosphere during regeneration after oxygen adsorption. There is a problem that it is difficult to reproduce easily. In addition, molecular sieve charcoal has problems such as small adsorption capacity and low oxygen selectivity at equilibrium.
また前記の他にも、例えば多孔質担体にサルコミン系コバルト化合物を担持させた酸素吸着分離剤などの、酸素親和性を利用したポルフィリン類やシッフ塩基錯体などの有機金属錯体からなる酸素選択性吸着剤が提案されている(例えば、特許文献3参照)。しかしながら、このような有機金属錯体からなる酸素選択性吸着剤は、高い酸素選択性を有するものの、非常に高価であり、しかも製造の際に複雑な工程及び多量の薬品が必要であるといった問題がある。 In addition to the above, oxygen-selective adsorption comprising organometallic complexes such as porphyrins and Schiff base complexes utilizing oxygen affinity, such as oxygen adsorption / separation agents in which a salcomine-based cobalt compound is supported on a porous carrier, for example. An agent has been proposed (see, for example, Patent Document 3). However, the oxygen-selective adsorbent composed of such an organometallic complex has a high oxygen selectivity, but is very expensive and has a problem that a complicated process and a large amount of chemicals are required for production. is there.
また、ハロゲン化銅を担持させた活性炭からなる、高い酸素吸着能力を有する酸素吸収剤も提案されているが(例えば、特許文献4参照)、酸素吸着後の再生の際には約200〜300℃といった非常に高温の温度場が必要であり、やはり容易に再生することが困難であるといった問題がある。 In addition, an oxygen absorbent made of activated carbon carrying a copper halide and having a high oxygen adsorption capacity has been proposed (see, for example, Patent Document 4), but approximately 200 to 300 is required for regeneration after oxygen adsorption. There is a problem that a very high temperature field such as ° C. is necessary and it is difficult to regenerate easily.
さらに活性炭からなる吸着剤として、前記の他にも、例えば使用済の粒状有機イオン交換体を特定温度で加熱処理した炭化物を、さらに特定条件で活性化して得られるイオン交換樹脂由来の活性炭小粒子からなる吸着剤や(例えば、特許文献5参照)、粒状のイオン交換樹脂を特定温度で加熱処理した炭化物に、さらに特定条件で賦活処理を施した活性炭からなる吸着剤(例えば、特許文献6参照)なども提案されている。しかしながら、これらの吸着剤は、いずれも炭化物に薬品賦活処理や水蒸気/二酸化炭素賦活処理を施し、その比表面積及び細孔容積の増大を図ったものであるため、低コストにて容易に得られるものではなく、製造時の煩雑さに対して充分な酸素吸着能力及び高い酸素選択性を有するものではない。 Furthermore, as an adsorbent composed of activated carbon, in addition to the above, for example, activated carbon small particles derived from an ion exchange resin obtained by activating a carbide obtained by heating a used granular organic ion exchanger at a specific temperature under specific conditions. (For example, refer to Patent Document 5), or an adsorbent composed of activated carbon obtained by subjecting a granular ion exchange resin to heat treatment at a specific temperature and further activated under specific conditions (for example, refer to Patent Document 6). ) Etc. are also proposed. However, all of these adsorbents are obtained by subjecting the carbide to chemical activation treatment or water vapor / carbon dioxide activation treatment to increase its specific surface area and pore volume, and thus can be easily obtained at low cost. It is not a thing, and does not have sufficient oxygen adsorption capacity and high oxygen selectivity with respect to the complexity at the time of manufacture.
このように、これまで種々の酸素選択性吸着剤が提案されているが、酸素吸着能力、酸素選択性、コスト、再生条件など、総括的に高性能を有するものが得られていないのが現状である。
本発明は前記背景技術に鑑みてなされたものであり、含酸素雰囲気から高い選択性で大量に酸素を吸着することができ、しかも脱着再生が容易でかつ安価な酸素選択性吸着剤を提供することを課題とする。 The present invention has been made in view of the above-mentioned background art, and provides an oxygen-selective adsorbent that can adsorb a large amount of oxygen with high selectivity from an oxygen-containing atmosphere, and that is easy to desorb and regenerate and is inexpensive. This is the issue.
すなわち本発明は、アルカリ金属イオンを含むイオン交換基を有する強酸性陽イオン交換樹脂を、非酸素雰囲気下、500〜900℃で炭化処理してなる酸素選択性吸着剤に関する。 That is, the present invention relates to an oxygen-selective adsorbent obtained by carbonizing a strongly acidic cation exchange resin having an ion exchange group containing an alkali metal ion at 500 to 900 ° C. in a non-oxygen atmosphere.
本発明の酸素選択性吸着剤は、非常に簡単な方法で酸素を大量にかつ選択的に吸着することができ、さらに簡単な操作で脱着再生が可能である。また廃棄イオン交換樹脂を原料とすることもでき、安価でかつ資源の有効利用にも大きな効果を奏する。 The oxygen-selective adsorbent of the present invention can adsorb oxygen in a large amount and selectively by a very simple method, and can be desorbed and regenerated by a simple operation. Also, waste ion exchange resin can be used as a raw material, which is inexpensive and has a great effect on effective use of resources.
(第1の実施形態)
本発明の第1の実施形態に係る酸素選択性吸着剤は、前記したように、アルカリ金属イオンを含むイオン交換基を有する強酸性陽イオン交換樹脂を、非酸素雰囲気下、500〜900℃で炭化処理したものである。
(First embodiment)
As described above, the oxygen-selective adsorbent according to the first embodiment of the present invention is obtained by applying a strongly acidic cation exchange resin having an ion exchange group containing an alkali metal ion at 500 to 900 ° C. in a non-oxygen atmosphere. Carbonized.
本実施形態に用いられる強酸性陽イオン交換樹脂は、アルカリ金属イオンを含むイオン交換基を有する。このように強酸性陽イオン交換樹脂にアルカリ金属イオンが含まれることが大きな特徴の1つであり、これによって、得られる酸素選択性吸着剤に優れた酸素選択性及び酸素吸着性が付与される。 The strongly acidic cation exchange resin used in the present embodiment has an ion exchange group containing an alkali metal ion. As described above, one of the major characteristics is that the alkali acid ion is contained in the strongly acidic cation exchange resin, and this gives the oxygen selective adsorbent excellent in oxygen selectivity and oxygen adsorption. .
前記アルカリ金属イオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオンなどがあげられ、これらのアルカリ金属イオンは、強酸性陽イオン交換樹脂中に1種のみが含まれていてもよく、2種以上が同時に含まれていてもよい。 Examples of the alkali metal ions include lithium ions, sodium ions, potassium ions, and the like, and these alkali metal ions may be contained in one kind in the strong acid cation exchange resin. May be included at the same time.
アルカリ金属イオンを含むイオン交換基を有する強酸性陽イオン交換樹脂としては、例えばアルカリ金属スルホン酸塩基を有する強酸性陽イオン交換樹脂があげられ、酸素選択性吸着剤に付与される酸素選択性及び酸素吸着性が高く、かつ取り扱い性に優れるという点から好ましい。 Examples of the strong acid cation exchange resin having an ion exchange group containing an alkali metal ion include a strong acid cation exchange resin having an alkali metal sulfonate group, and oxygen selectivity imparted to an oxygen selective adsorbent and This is preferable from the viewpoint of high oxygen adsorption and excellent handleability.
本実施形態に用いられる強酸性陽イオン交換樹脂の代表例としては、例えば式(1):
強酸性陽イオン交換樹脂には、その構造から巨大網目構造を有するMR形強酸性陽イオン交換樹脂とゲル構造を有するゲル形強酸性陽イオン交換樹脂とがあり、本実施形態においてはいずれを用いることも可能であるが、酸素選択性吸着剤により高い酸素吸着性を付与することができるという点から、MR形強酸性陽イオン交換樹脂が特に好ましい。 Strongly acidic cation exchange resins include MR-type strongly acidic cation exchange resins having a giant network structure and gel-type strongly acidic cation exchange resins having a gel structure, and any of them is used in this embodiment. However, MR type strongly acidic cation exchange resin is particularly preferred from the viewpoint that high oxygen adsorptivity can be imparted by the oxygen selective adsorbent.
強酸性陽イオン交換樹脂の形状には特に限定がなく、例えば球状や粉末状であってもよく、これ以外の形状に加工したものであってもよい。またかかる強酸性陽イオン交換樹脂の平均分子量やイオン交換容量にも特に限定がなく、通常のイオン交換樹脂と同程度のものであればよい。 The shape of the strongly acidic cation exchange resin is not particularly limited, and may be, for example, spherical or powdery, or may be processed into other shapes. Further, the average molecular weight and ion exchange capacity of the strongly acidic cation exchange resin are not particularly limited, and may be the same as those of ordinary ion exchange resins.
さらに強酸性陽イオン交換樹脂としては、勿論未使用のものを用いることができるが、例えば水処理などの別の用途で使用した使用済のものを用いることもできる。なお、このような使用済の強酸性陽イオン交換樹脂が2価以上の陽イオンを含む場合、かかる2価以上の陽イオンを含んだままの状態でも用いることが可能であるが、得られる酸素選択性吸着剤の酸素選択性や酸素吸着性をより向上させるには、例えば水酸化ナトリウムなどのアルカリ金属水酸化物といった、アルカリ金属塩の水溶液などでイオン交換処理を行った後、用いることが好ましい。かかるアルカリ金属塩の水溶液としては、前記水酸化物の水溶液のみではなく、例えば、アルカリ金属の硝酸塩、硫酸塩、炭酸塩、シュウ酸塩、塩化物、酢酸塩などの水溶液を用いることも可能であるが、イオン交換能力、イオン交換速度や取り扱い性の点から、水酸化物の水溶液が好ましい。またイオン交換処理の方法にも特に限定がなく、通常のカラム方式や撹拌方式などを採用することができる。 Furthermore, as a strong acid cation exchange resin, an unused thing can be used of course, but the used thing used for another uses, such as a water treatment, can also be used, for example. In addition, when such a used strongly acidic cation exchange resin contains a cation having a valence of 2 or more, it can be used even in a state in which such a cation having a valence of 2 or more is included. In order to further improve the oxygen selectivity and the oxygen adsorption property of the selective adsorbent, it is necessary to use after performing an ion exchange treatment with an aqueous solution of an alkali metal salt such as an alkali metal hydroxide such as sodium hydroxide. preferable. As the aqueous solution of the alkali metal salt, not only the aqueous solution of the hydroxide, but also an aqueous solution of an alkali metal nitrate, sulfate, carbonate, oxalate, chloride, acetate or the like can be used. However, an aqueous solution of hydroxide is preferable from the viewpoint of ion exchange capacity, ion exchange speed, and handleability. Further, the ion exchange treatment method is not particularly limited, and a normal column method, stirring method, or the like can be employed.
前記のごとき強酸性陽イオン交換樹脂を炭化処理することにより、本実施形態に係る酸素選択性吸着剤が得られる。 The oxygen selective adsorbent according to the present embodiment can be obtained by carbonizing the strongly acidic cation exchange resin as described above.
強酸性陽イオン交換樹脂の炭化処理は、例えば窒素ガス、アルゴンガスなどの不活性ガス雰囲気下や真空下といった非酸素雰囲気下で行う。かかる炭化処理の温度は、熱分解現象が顕著に起こる範囲であるが、炭化処理の温度があまりにも低いばあいには、強酸性陽イオン交換樹脂の炭化が不充分になり、目的とする、高い酸素選択性、酸素吸着性及び脱着再生能力を有する酸素選択性吸着剤を得ることができなくなるので、500℃以上、好ましくは550℃以上、さらに好ましくは650℃以上である。また逆に炭化処理の温度があまりにも高い場合には、炭素化が進みすぎ、やはり目的とする高性能の酸素選択性吸着剤を得ることができなくなるので、900℃以下、好ましくは800℃以下、さらに好ましくは750℃以下である。 The carbonization treatment of the strongly acidic cation exchange resin is performed in an inert gas atmosphere such as nitrogen gas or argon gas or in a non-oxygen atmosphere such as vacuum. The temperature of the carbonization treatment is a range in which the thermal decomposition phenomenon occurs remarkably. However, if the temperature of the carbonization treatment is too low, the carbonization of the strong acid cation exchange resin becomes insufficient, which is the target. Since it becomes impossible to obtain an oxygen-selective adsorbent having high oxygen selectivity, oxygen adsorptivity and desorption / regeneration capability, the temperature is 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 650 ° C. or higher. On the other hand, if the carbonization temperature is too high, carbonization proceeds too much, and it becomes impossible to obtain the desired high-performance oxygen-selective adsorbent. Therefore, it is 900 ° C. or less, preferably 800 ° C. or less. More preferably, it is 750 degrees C or less.
前記炭化処理の温度に到達するまでの昇温速度には特に限定がなく、例えば用いる強酸性陽イオン交換樹脂の種類、形状、平均分子量などに応じて適宜設定すればよい。また炭化処理を行う時間も、目的とする酸素選択性吸着剤が得られる限り特に限定がなく、例えば10分間〜5時間程度、さらには0.5〜4時間程度とすることが好ましい。 There is no particular limitation on the rate of temperature rise until reaching the temperature of the carbonization treatment, and for example, it may be appropriately set according to the type, shape, average molecular weight, etc. of the strongly acidic cation exchange resin to be used. The time for performing the carbonization treatment is not particularly limited as long as the target oxygen-selective adsorbent can be obtained. For example, it is preferably about 10 minutes to 5 hours, more preferably about 0.5 to 4 hours.
また強酸性陽イオン交換樹脂に炭化処理を行う際の処理装置も、目的とする酸素選択性吸着剤が得られる限り特に限定がなく、非酸素雰囲気下、炭化処理の温度が前記範囲内で適宜調整され得るものであればよい。 Also, there is no particular limitation on the treatment apparatus used when carbonizing the strongly acidic cation exchange resin as long as the target oxygen-selective adsorbent can be obtained, and the temperature of the carbonization treatment is appropriately within the above range in a non-oxygen atmosphere. Anything that can be adjusted is acceptable.
このように、本実施形態に係る酸素選択性吸着剤は、特定の強酸性陽イオン交換樹脂を、非酸素雰囲気下、特定温度範囲で炭化処理し、適宜例えば室温程度まで放冷するだけで極めて容易に得られるものである。したがって、従来よりイオン交換樹脂を炭化処理する際に一般的に行われるような、薬品や水蒸気/二酸化炭素による賦活処理を炭化処理後に行い、比表面積及び細孔容積の増大を図る必要がない。 As described above, the oxygen-selective adsorbent according to the present embodiment can be obtained by carbonizing a specific strong acid cation exchange resin in a specific temperature range in a non-oxygen atmosphere, and cooling it to about room temperature as appropriate. It can be easily obtained. Therefore, there is no need to increase the specific surface area and pore volume by performing an activation treatment with chemicals or water vapor / carbon dioxide, which is conventionally performed when carbonizing an ion exchange resin, after the carbonization.
なお、強酸性陽イオン交換樹脂を炭化処理した後、もし若干の硫黄化合物臭気が認められる場合は、例えば真空下又は不活性ガス雰囲気下における室温〜100℃程度での放置、エージングなどにてかかる硫黄化合物臭気を容易に除去することができる。 In addition, after carbonizing the strongly acidic cation exchange resin, if a slight odor of sulfur compounds is observed, it takes place, for example, in a vacuum or in an inert gas atmosphere at room temperature to about 100 ° C., aging, etc. Sulfur compound odor can be easily removed.
かくして得られる酸素選択性吸着剤にて酸素吸着を行った後、かかる酸素選択性吸着剤は、例えば窒素ガス、アルゴンガスなどの不活性ガス雰囲気下、真空下、水素ガス、一酸化炭素ガスなどの還元ガス雰囲気下で、例えば80〜120℃程度の、従来と比較して非常に低い温度にて、3分〜3時間程度保持することによって極めて容易に脱着再生させることができる。 After oxygen adsorption with the oxygen selective adsorbent thus obtained, the oxygen selective adsorbent is, for example, under an inert gas atmosphere such as nitrogen gas or argon gas, under vacuum, hydrogen gas, carbon monoxide gas, etc. In a reducing gas atmosphere, the desorption / regeneration can be performed very easily by maintaining the temperature for about 3 minutes to 3 hours at a very low temperature, for example, about 80 to 120 ° C. as compared with the prior art.
次に本発明の酸素選択性吸着剤を以下の実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。 Next, the oxygen-selective adsorbent of the present invention will be described in more detail based on the following examples, but the present invention is not limited to such examples.
(実施例1)
MR形強酸性陽イオン交換樹脂(Rohm and Haas社製、アンバーライト200CT Na型、−SO3Na基含有スチレン系樹脂、球状)1.648gを、未処理の状態で燃焼ボートに投入し、次いでセラミック燃焼管内に挿入した。外部加熱源として電気管状炉を用いた。窒素ガス流通下、5℃/分の速度で700℃まで昇温し、700℃到達後、3時間炭化処理を行った。この後、室温まで冷却し、酸素選択性吸着剤1を0.638g得た。
Example 1
1.648 g of MR type strongly acidic cation exchange resin (Rumm and Haas, Amberlite 200CT Na type, —SO 3 Na group-containing styrene resin, spherical shape) was put into a combustion boat in an untreated state, and then Inserted into the ceramic combustion tube. An electric tubular furnace was used as an external heating source. Under nitrogen gas flow, the temperature was raised to 700 ° C. at a rate of 5 ° C./min, and after reaching 700 ° C., carbonization was performed for 3 hours. Then, it cooled to room temperature and obtained 0.638g of oxygen
(実施例2)
MR形強酸性陽イオン交換樹脂の代わりに、ゲル形強酸性陽イオン交換樹脂(三菱化学(株)製、ダイアイオン SK−1B Na型、−SO3Na基含有スチレン系樹脂、球状)0.837gを用いた他は、実施例1と同様にして酸素選択性吸着剤2を0.326g得た。
(Example 2)
Gel type strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, Diaion SK-1B Na type, —SO 3 Na group-containing styrenic resin, spherical) instead of MR type strongly acidic cation exchange resin 0.326 g of oxygen
次に、実施例1及び2で得られた酸素選択性吸着剤1及び2、並びに一般的な吸着剤として、前記特許文献3(特開平5−7771号公報)の実施例1に記載の、有機金属錯体であるコバルトジ(サリチラール)エチレンジイミン(通称サルコミン)を球状シリカに担持させる前のモノピリジン化物(比較例1)及び分子篩い活性炭(武田薬品工業(株)製、モルシーボンX2M4/6)(比較例2)を試料として用い、以下の試験を行った。
Next, the oxygen-
(試験例1)
各試料に対して、前処理として120℃で7時間真空引きを行った後、酸素吸着試験を行い、自動比表面積測定装置(日本ベル(株)製、BELSORP−miniII)を用いて、定容法にて25℃における酸素平衡吸着等温線を求めた。その結果を、酸素分圧に対する酸素平衡吸着量の変化を示すグラフとして図1に示す。また実施例1で得られた酸素選択性吸着剤1について、25℃における酸素/窒素平衡吸着等温線を求めた。その結果を、分圧に対する酸素/窒素平衡吸着量の変化を示すグラフとして図2に示す。なお図1及び図2において、各試料の結果と対応するグラフの種類は、凡例に示す通りである。
(Test Example 1)
Each sample was evacuated as a pretreatment at 120 ° C. for 7 hours, then subjected to an oxygen adsorption test, and a constant volume using an automatic specific surface area measuring device (BELSORP-miniII, manufactured by Nippon Bell Co., Ltd.). The oxygen equilibrium adsorption isotherm at 25 ° C. was determined by the method. The results are shown in FIG. 1 as a graph showing the change in the oxygen equilibrium adsorption amount with respect to the oxygen partial pressure. Moreover, about the oxygen
図1に示すように、実施例1及び2で得られた酸素選択性吸着剤1及び2はいずれも、従来の吸着剤である比較例1及び2のものと比較して、酸素吸着量が非常に多いことが明らかである。またこれら酸素選択性吸着剤1及び2は、比較例1及び2の従来の吸着剤とは異なり、低酸素分圧においても充分に高い酸素吸着能力を示すことが明らかである。特に実施例1の酸素選択性吸着剤1は、高酸素分圧では勿論のこと、低酸素分圧においても極めて高い酸素吸着性を示すことがわかる。
As shown in FIG. 1, the oxygen-
また図2に示すように、実施例1の酸素選択性吸着剤1は、酸素吸着量に対して窒素吸着量が非常に少なく、極めて高い酸素選択性を有することがわかる。
Further, as shown in FIG. 2, it can be seen that the oxygen-
(試験例2)
試験例1にて酸素吸着試験を行った実施例1の酸素選択性吸着剤1について、120℃で3時間真空引きを行い、再生処理を施した。これについて試験例1と同様にして25℃の条件で酸素吸着試験を行い、酸素吸着量を求めた(2回目)。
(Test Example 2)
About the oxygen
さらに前記2回目の酸素吸着試験を行った酸素選択性吸着剤1について、120℃で3時間真空引きを行い、再び再生処理を施した。これについて前記と同様にして25℃の条件で酸素吸着試験を行い、酸素吸着量を求めた(3回目)。
Further, the oxygen-
試験例1における酸素吸着量(1回目)を100とし、この1回目の酸素吸着量に対して2回目及び3回目の酸素吸着量を相対比で表した。その結果を図3のグラフに示す。 The oxygen adsorption amount (first time) in Test Example 1 was set to 100, and the second and third oxygen adsorption amounts were expressed as a relative ratio to the first oxygen adsorption amount. The result is shown in the graph of FIG.
図3に示すように、実施例1の酸素選択性吸着剤1は、2回、3回と再生/吸着を繰り返した場合であっても、最初の酸素吸着量に対して約50〜60%と高い割合で再度酸素を吸着することができ、極めて容易に脱着再生が可能なものであることがわかる。
As shown in FIG. 3, the oxygen
本発明の酸素選択性吸着剤は、例えば食品等の脱酸素剤として有用であり、安価でかつ長期間の食品保存が可能となる。また本発明の酸素選択性吸着剤は、空気分離装置である、吸着式窒素発生装置及び吸着式酸素発生装置用の吸着剤としても有用であり、高い選択性で大量に酸素を吸着することができるので、従来問題となっていた装置のコンパクト化に大きく貢献し、酸素分離効率が極めて高い空気分離装置の提供が可能となる。 The oxygen selective adsorbent of the present invention is useful as an oxygen scavenger for foods, for example, and can be stored at low cost for a long period of time. The oxygen-selective adsorbent of the present invention is also useful as an adsorbent for adsorption type nitrogen generators and adsorption type oxygen generators, which are air separation devices, and can adsorb large amounts of oxygen with high selectivity. Therefore, it is possible to provide an air separation device that greatly contributes to the downsizing of the device, which has been a problem in the past, and has extremely high oxygen separation efficiency.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005332581A JP4634283B2 (en) | 2005-11-17 | 2005-11-17 | Oxygen selective adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005332581A JP4634283B2 (en) | 2005-11-17 | 2005-11-17 | Oxygen selective adsorbent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007136320A JP2007136320A (en) | 2007-06-07 |
JP4634283B2 true JP4634283B2 (en) | 2011-02-16 |
Family
ID=38199814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005332581A Expired - Fee Related JP4634283B2 (en) | 2005-11-17 | 2005-11-17 | Oxygen selective adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4634283B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810614A (en) * | 1994-06-30 | 1996-01-16 | Kurita Water Ind Ltd | Carbonaceous separation agent having molecular sieve capacity |
JPH08208212A (en) * | 1995-02-06 | 1996-08-13 | Kurita Water Ind Ltd | Production of activated carbon |
-
2005
- 2005-11-17 JP JP2005332581A patent/JP4634283B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810614A (en) * | 1994-06-30 | 1996-01-16 | Kurita Water Ind Ltd | Carbonaceous separation agent having molecular sieve capacity |
JPH08208212A (en) * | 1995-02-06 | 1996-08-13 | Kurita Water Ind Ltd | Production of activated carbon |
Also Published As
Publication number | Publication date |
---|---|
JP2007136320A (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4914076A (en) | Method of producing an adsorbent for separation and recovery of CO | |
TWI312292B (en) | Purification of hydride gases | |
KR100884350B1 (en) | Adsorbent for selective adsorption of carbon monoxide and process for preparation thereof | |
JP5732451B2 (en) | Use of zeolitic microporous crystalline materials with RHO structure in natural gas processing | |
Díaz et al. | Enhancement of the CO2 retention capacity of X zeolites by Na-and Cs-treatments | |
JP5229916B2 (en) | Carbon dioxide adsorbent that can be adsorbed and desorbed depending on the pressure above atmospheric pressure | |
TWI389738B (en) | Cu-ZSM5 zeolite forming adsorbent, activation method thereof, temperature change type adsorption device and gas purification method | |
WO2016140266A1 (en) | Carbon porous body, method for manufacturing same, ammonia adsorbent, and canister and method for manufacturing same | |
JP2019042639A (en) | Carbon dioxide adsorbent, regeneration process of carbon dioxide adsorbent, and production process of elimination-type layered metal hydroxide | |
JP4025228B2 (en) | Preparation method of molecular sieve adsorbent for selective separation of air size / morphology | |
Qasem et al. | Enhancing CO 2 adsorption capacity and cycling stability of Mg-MOF-74 | |
JP4634283B2 (en) | Oxygen selective adsorbent | |
JP2008505750A (en) | Purification method of nitrogen trifluoride gas using zeolite ion exchanged with alkaline earth metal | |
JP2007512119A (en) | Method for producing molecular sieve adsorbent for selective adsorption of oxygen from air | |
JP6578704B2 (en) | Porous coordination polymer | |
CN115477282A (en) | Method for removing CO from high-purity hydrogen, purified hydrogen and application of purified hydrogen | |
JP4438145B2 (en) | Carbon monoxide adsorption separation method | |
RU2798457C1 (en) | Carbon dioxide absorber, methods for its preparation and method for cleaning gas mixtures | |
JP5752484B2 (en) | Method for producing CO adsorption / desorption agent | |
KR102677862B1 (en) | A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent | |
JP2000140549A (en) | Removal of carbon dioxide | |
JP2010269264A (en) | Method for producing co absorbing/desorbing agent | |
JP2009280423A (en) | Aluminum silicate that regularly arranges water molecule, and method for synthesizing the same | |
JPH0724762B2 (en) | Method for producing adsorbent for CO separation and recovery | |
KR20220145003A (en) | Chabazite zeolites comprising silver ion and method of preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |