JPH0810593B2 - Method for manufacturing negative electrode of secondary battery - Google Patents
Method for manufacturing negative electrode of secondary batteryInfo
- Publication number
- JPH0810593B2 JPH0810593B2 JP61058353A JP5835386A JPH0810593B2 JP H0810593 B2 JPH0810593 B2 JP H0810593B2 JP 61058353 A JP61058353 A JP 61058353A JP 5835386 A JP5835386 A JP 5835386A JP H0810593 B2 JPH0810593 B2 JP H0810593B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- alloy
- secondary battery
- hydrogen
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素を可逆的に吸蔵・放出し得る金属(以下
水素吸蔵合金と記す)を用いて作成する二次電池の負極
の製造方法に関する。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a negative electrode for a secondary battery, which is prepared by using a metal capable of reversibly occluding and releasing hydrogen (hereinafter referred to as hydrogen occluding alloy).
水素吸蔵合金は、水素雰囲気中で発熱反応により水素
を固溶・吸蔵する性質を示し、この吸蔵された水素は水
素分圧の低い雰囲気中で可逆的に放出される。この反応
は次式のように表わすことができる。The hydrogen storage alloy has a property of solid-dissolving and storing hydrogen by an exothermic reaction in a hydrogen atmosphere, and the stored hydrogen is reversibly released in an atmosphere having a low hydrogen partial pressure. This reaction can be expressed as the following equation.
一方、この合金を、電解液中で卑な方向(還元方向)
に分極することによって電極液中の水を分解して水素を
吸蔵させることもできる。 On the other hand, when this alloy is used in the electrolytic solution, the base direction (reduction direction)
It is also possible to occlude hydrogen by decomposing water in the electrode liquid by polarization into.
この反応は次のように表わせる。 This reaction can be expressed as follows.
この後者の反応は、水素吸蔵合金の、与えられた電荷
を合金の水素化物の系で貯蔵する性質を示すものであ
り、換言すれば、この合金に充電した電荷を必要なとき
に放電させることが可能であることを示している。 This latter reaction shows the property of a hydrogen storage alloy to store a given charge in the hydride system of the alloy, in other words, to discharge the charge stored in this alloy when necessary. Is possible.
したがって、このような性質を有する水素吸蔵合金は
二次電池の負極として使用することができる。Therefore, the hydrogen storage alloy having such properties can be used as the negative electrode of the secondary battery.
水素吸像合金を用いた二次電池の負極は、ニッケル/
カドミウム二次電池に用いるカドミウム負極や、鉛蓄電
池に用いる鉛負極より軽量であるため、基本的にはこれ
らの従来形の負極材料より、単位重量当りの理論容量が
大きい。しかし実際に有効に充放電できる容量の値は、
用いる合金の種類のみでなく、電極作成プロセスの差異
に大きく依存する。The negative electrode of the secondary battery using the hydrogen absorbing alloy is nickel /
Since it is lighter in weight than the cadmium negative electrode used in the cadmium secondary battery and the lead negative electrode used in the lead storage battery, it basically has a larger theoretical capacity per unit weight than these conventional negative electrode materials. However, the value of the capacity that can be effectively charged and discharged is
It depends not only on the type of alloy used, but also on the differences in the electrode fabrication process.
この電極作成プロセスとしては、水素吸蔵合金の粉末
を適当なバインダー(結着剤)を用いて結着させたのち
成形する方法;合金の粉末を不活性ガス雰囲気、水素ガ
ス雰囲気、または真空中で焼結する方法;合金をアモル
ファス化して用いる方法;等があるが、焼結やアモルフ
ァス化は各々複雑な技術を要するほか成形性が悪いた
め、実際に電池中に組み込んで使用するには困難な点が
多い。アモルファス化した合金の場合には、合金の種類
によっては水素吸蔵能力の減少する場合もある。As the process of making this electrode, a method of binding the powder of the hydrogen storage alloy using an appropriate binder (binder) and then molding it; the powder of the alloy in an inert gas atmosphere, a hydrogen gas atmosphere, or in a vacuum There is a method of sintering; a method of using the alloy in an amorphous state; etc., but since sintering and amorphization require complicated techniques and poor moldability, it is difficult to actually incorporate and use in a battery. There are many points. In the case of an amorphous alloy, the hydrogen storage capacity may decrease depending on the type of alloy.
これらの観点から、電極作成に当って、水素吸蔵合金
の粉末を結着させる方法が最も一般的に用いられてお
り、特に、結着力の作業性等の観点から弗素樹脂系結着
剤が広く用いられている。From these viewpoints, the method of binding the powder of the hydrogen storage alloy is most commonly used in the production of the electrode, and in particular, the fluororesin binder is widely used from the viewpoint of workability of the binding force. It is used.
しかし、この場合にも用いる結着剤の量や結着後の処
理方法等によって電極の容量が左右される。However, also in this case, the capacity of the electrode depends on the amount of the binder used, the treatment method after binding, and the like.
本発明は、以上のような問題に鑑みて、弗素樹脂を結
着剤として水素吸蔵合金を用いた二次電池用負極を製造
する際に、その充放電容量の大きい負極を製造する方法
を提供することを目的とする。In view of the above problems, the present invention provides a method for producing a negative electrode having a large charge / discharge capacity when producing a negative electrode for a secondary battery using a hydrogen storage alloy with a fluororesin as a binder. The purpose is to do.
本発明は、水素吸蔵合金粉末を、弗素樹脂を用いて結
着したのち成形して二次電池の負極を製造する方法にお
いて、負極重量に対する重量が0.2〜5.0%の範囲になる
量の前記弗素樹脂を前記水素吸蔵合金粉末と混合しシー
ト状成形体を作成し、ついで前記シート状成形体を100
〜800kg/cm2の圧力で集電体に圧着することを特徴とす
る二次電池の負極の製造方法である。The present invention provides a method for producing a negative electrode for a secondary battery by binding a hydrogen storage alloy powder using a fluororesin and then forming the negative electrode. A resin is mixed with the hydrogen-absorbing alloy powder to form a sheet-shaped compact, and then the sheet-shaped compact is mixed with 100
A method for producing a negative electrode for a secondary battery, which comprises press-bonding a current collector at a pressure of about 800 kg / cm 2 .
本発明で言う水素吸蔵合金とは、水素を可逆的に吸蔵
・放出し得る金属であり、具体的には、(i)LaNi5系
合金:LaNi5,あるいはLaNi5のLa元素をランタノイド金属
の未精製混合物(以下ミッシュメタルと記す)もしくは
ミッシュメタルの特定成分元素を増減させた混合物で置
換した合金,あるいはこれらの合金のうちNiをCu,Co,A
l,Mnなどで置換した合金;(ii)FeTi系合金:FeTi,ある
いはFeTiのTiの一部または全部をMn,Ni等で置換した合
金,あるいはこれらの合金のうちFeの一部または全部を
Co,Cr,Be等で置換した合金;(iii)Mg系合金:Mg2Ni,Mg
2Cu;などであるが、本発明の効果はこれらの合金の種類
を問わず有効である。The hydrogen storage alloy referred to in the present invention is a metal capable of reversibly storing and releasing hydrogen. Specifically, (i) LaNi 5 type alloy: LaNi 5 or LaNi 5 is a lanthanoid metal. Unpurified mixture (hereinafter referred to as "Misch metal") or an alloy substituted with a mixture of increased or decreased specific constituent elements of Misch metal, or Ni of these alloys containing Cu, Co, A
(ii) FeTi-based alloy: FeTi, or an alloy in which part or all of Ti in FeTi is replaced by Mn, Ni, or part or all of Fe in these alloys
Alloys substituted with Co, Cr, Be, etc .; (iii) Mg-based alloys: Mg 2 Ni, Mg
2 Cu; etc., but the effect of the present invention is effective regardless of the type of these alloys.
また、本発明で結着剤として用いる弗素樹脂とは有機
高分子化合物の水素原子の一部もしくは全部が弗素原子
に置換された形態を有する化合物で、たとえば、ポリテ
トラフロロエチレン(PTFE),テトラフロロエチレン−
ヘキサフロロプロピレン共重合体(FEP),エチレン−
テトラフロロエチレン共重合体,ポリトリフロロエチレ
ン,およびこれらの混合物などを挙げることができる。The fluororesin used as the binder in the present invention is a compound having a form in which some or all of the hydrogen atoms of an organic polymer compound are replaced with fluorine atoms, such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene. Fluoroethylene-
Hexafluoropropylene copolymer (FEP), ethylene-
Examples thereof include tetrafluoroethylene copolymer, polytrifluoroethylene, and mixtures thereof.
本発明の製造方法では、以上に示した弗素樹脂結着剤
の混合重量を、負極重量の0.2〜5.0%の範囲とする。こ
こで言う負極重量とは、負極活物質である水素吸蔵合金
粉末、結着剤である弗素樹脂の重量の総和を意味する。
この弗素樹脂よりなる結着剤重量が0.2%より少ないと
合金は十分に結着されず成形が困難になる。また、結着
剤重量が5.0%より多いと合金表面の結着剤による被覆
が増すために容量が低下すると共に、大電流による充放
電ができなくなる。In the production method of the present invention, the mixed weight of the above-mentioned fluororesin binder is set in the range of 0.2 to 5.0% of the weight of the negative electrode. The negative electrode weight here means the total weight of the hydrogen storage alloy powder that is the negative electrode active material and the fluororesin that is the binder.
If the weight of the binder made of this fluororesin is less than 0.2%, the alloy is not sufficiently bound and molding becomes difficult. On the other hand, if the weight of the binder is more than 5.0%, the coating on the surface of the alloy with the binder is increased, so that the capacity is reduced and charging / discharging due to a large current cannot be performed.
以上の条件に基づいて混合・混練した電極材料は適度
な粘性を有する可塑性固体となるが、電池用電極として
用いる場合には、これを適当は形状に成形する必要があ
る。通常は負極の有効面積を増加させるために負極はシ
ート状にされるがこの際、電極の集電効率を高めるため
に多孔性金属や金属金網などの集電体に該負極材料シー
トを圧着して用いられている。The electrode material mixed and kneaded based on the above conditions becomes a plastic solid having an appropriate viscosity, but when it is used as a battery electrode, it needs to be molded into an appropriate shape. Usually, the negative electrode is formed into a sheet to increase the effective area of the negative electrode.At this time, the negative electrode material sheet is pressure-bonded to a current collector such as a porous metal or a metal wire mesh to improve the current collection efficiency of the electrode. Is used.
本発明の製造方法では上記の負極シートと集電体との
圧着を100〜800kg/cm2の圧力で行なう。この圧着の圧力
が100kg/cm2より低いと集電体と負極材料との密着性力
が不十分となり、十分な容量および電流を取り出すこと
ができない。また、圧着圧が800kg/cm2を越えると、負
極合金粒子間の空隙が小さくなり、電解液と合金粒子と
の接触が父さくなってやはり十分な容量および電流を取
り出すことができなくなるからである。In the production method of the present invention, the above-mentioned negative electrode sheet and the current collector are pressure-bonded at a pressure of 100 to 800 kg / cm 2 . If the pressure of the pressure bonding is lower than 100 kg / cm 2 , the adhesive force between the current collector and the negative electrode material becomes insufficient, and sufficient capacity and current cannot be taken out. Further, when the pressure bonding pressure exceeds 800 kg / cm 2 , the voids between the negative electrode alloy particles become small, and the contact between the electrolytic solution and the alloy particles becomes difficult, which also makes it impossible to take out sufficient capacity and current. is there.
以上に示した本発明の二次電池の製造方法により、充
放電電流を低減させることなしに負極の充放電容量を増
加させることを可能にする。すなわち、本発明のごと
く、結着剤の含有率を0.2〜0.5%以内に押えることによ
り、負極の容量が増大するが、この際集電体に対する圧
着圧が100kg/cm2以下になると、集電体と負極材料との
間の密着性が低下するのみでなく、少量の弗素樹脂によ
り結着されている合金粒子間の接合も悪くなる。また逆
に、5.0%以上の結着剤を含む負極材料を800kg/cm2以上
の圧力で圧着すると、合金粒子は結着剤中に埋もれた様
になり、合金粒子の有効表面積および合金粒子間の接合
性が悪くなり、電極特性の劣化をまねく。The method for manufacturing a secondary battery of the present invention described above makes it possible to increase the charge / discharge capacity of the negative electrode without reducing the charge / discharge current. That is, as in the present invention, by holding the content of the binder within 0.2 to 0.5%, the capacity of the negative electrode increases, but at this time, when the pressure bonding to the current collector is 100 kg / cm 2 or less, Not only does the adhesion between the electric body and the negative electrode material deteriorate, but also the bonding between the alloy particles bound by a small amount of fluororesin deteriorates. Conversely, when a negative electrode material containing 5.0% or more of a binder is pressed under a pressure of 800 kg / cm 2 or more, the alloy particles appear to be buried in the binder, and the effective surface area of the alloy particles and Of the electrode deteriorates, leading to deterioration of electrode characteristics.
以下に本発明を具体的な実施例に従って説明する。 The present invention will be described below according to specific examples.
水素吸蔵合金LmNi4.2Mn0.6Al0.2(LmはLaの富化ミッ
シュメタルであり、主にLa45〜50重量%Nd30〜35重量%
を含む)を水素ガス吸脱着サイクルにより活性化および
微粉化し、さらに200メッシュ(目開き寸法74μm)の
ふるいを通過した粒子を試料とする。ここで用いた水素
ガス吸脱着サイクルとは、まず合金を常温、10-3torrで
6時間脱気し、次いで常温、30kg/cm2の水素ガス下に6
時間曝す。このときLmNi4.2Mn0.6Al0.2は水素を吸蔵し
て発熱するため、容器は水浴中に浸しておく。最後に、
この合金を60℃で6時間脱気しAr中に保存する。Hydrogen storage alloy LmNi 4.2 Mn 0.6 Al 0.2 (Lm is La-rich misch metal, mainly La 45-50 wt% Nd 30-35 wt%
Is activated and finely divided by a hydrogen gas adsorption / desorption cycle, and the particles that have passed through a 200 mesh (mesh size 74 μm) sieve are used as samples. The hydrogen gas adsorption / desorption cycle used here is that the alloy is first degassed at room temperature at 10 -3 torr for 6 hours, and then at room temperature at 30 kg / cm 2 under hydrogen gas for 6 hours.
Expose for hours. At this time, LmNi 4.2 Mn 0.6 Al 0.2 absorbs hydrogen and generates heat, so the container is immersed in a water bath. Finally,
The alloy is degassed at 60 ° C. for 6 hours and stored in Ar.
こうして得た水素吸蔵合金粉末に、弗素樹脂としてPT
FE粉末を種々の割合で混ぜ、乳鉢中でよく混練したのち
ローラーを用いて0.5mm厚のシートとした。そしてこれ
を線径0.15mmの40メッシュニッケルネットからなる集電
体に種々の圧力で圧着し負極とした。The hydrogen-absorbing alloy powder thus obtained was treated with PT as fluororesin.
The FE powder was mixed at various ratios, thoroughly kneaded in a mortar, and then a roller was used to form a sheet having a thickness of 0.5 mm. Then, this was pressure-bonded to a current collector composed of a 40-mesh nickel net having a wire diameter of 0.15 mm under various pressures to obtain a negative electrode.
この負極の両側に厚さ0.2mmのポリプロピレン製不織
布を介してニッケル酸化物電極(Ni(OH)2/NiOOH)を
密着させ8N−KOH溶液中でニッケル酸化物電極(正極)
/水素吸蔵合金負極間に通電して充放電を行なった。A nickel oxide electrode (Ni (OH) 2 / NiOOH) was adhered to both sides of this negative electrode through a 0.2 mm thick polypropylene non-woven fabric, and the nickel oxide electrode (positive electrode) was placed in 8N-KOH solution.
/ Hydrogen storage alloy negative electrode was energized for charging and discharging.
このとき充放電電流は水素吸蔵合金1g当り100mAと
し、「1時間充電→15分休止→電池電圧が1.0Vに低下す
るまで放電→15休止→1時間充電」という充放電サイク
リルを10回以上繰り返して電極が十分健全に機能し始め
てから充電時間を種々変えて、充電電気量に体する放電
電気量の割合(以下充放電効率と記す)が100%(有効
数字4桁)を示す最大電気容量を調べた。At this time, the charging / discharging current is 100 mA per 1 g of hydrogen storage alloy, and the charging / discharging cycle of “1 hour charging → 15 minutes rest → Discharge until battery voltage drops to 1.0V → 15 pauses → 1 hour charge” is repeated 10 times or more. The maximum electric capacity at which the ratio of the amount of discharged electricity to the amount of charged electricity (hereinafter referred to as charge / discharge efficiency) shows 100% (4 significant digits) by varying the charging time after the electrode has started to function sufficiently soundly. I checked.
第1表に、上記の方法で調べた最大電気容量の値を、
負極材料中の結着剤の重量比および集電体の圧着圧力に
対してまとめて示す。Table 1 shows the values of the maximum electric capacity measured by the above method.
The weight ratio of the binder in the negative electrode material and the pressure applied to the current collector are shown together.
さらに、表中の「結着不可」および「圧着不可」以外
のデータについて、それぞれの値を第1図に示す。図中
の数字は結着剤の重量比率(%)である。 Further, with respect to data other than "unbondable" and "unbondable" in the table, respective values are shown in FIG. The numbers in the figure are the weight ratio (%) of the binder.
第1表および第1図で明らかなように、本発明の製造
方法によって作成した二次電池の負極は、高効率で充放
電し得る容量の値が大きく、かつ、電極作成が確実かつ
容易に行なえ、電池の性能および作業効率の向上にとっ
て極めて有用である。As is clear from Table 1 and FIG. 1, the negative electrode of the secondary battery manufactured by the manufacturing method of the present invention has a large capacity value that can be charged and discharged with high efficiency, and the electrode can be manufactured reliably and easily. It is extremely useful for improving battery performance and work efficiency.
第1図は水素吸蔵合金を用いて作製した負極の最大容量
と結着剤の重量比および圧着圧力との関係を示した特性
図である。FIG. 1 is a characteristic diagram showing the relationship between the maximum capacity of a negative electrode manufactured using a hydrogen storage alloy, the weight ratio of a binder, and the pressure bonding pressure.
Claims (1)
着したのち成形して二次電池の負極を製造する方法にお
いて、負極重量に対する重量が0.2〜5.0%の範囲になる
量の前記弗素樹脂を前記水素吸蔵合金粉末と混合しシー
ト状成形体を作成し、ついで前記シート状成形体を100
〜800kg/cm2の圧力で集電体に圧着することを特徴とす
る二次電池の負極の製造方法。1. A method for producing a negative electrode for a secondary battery by binding hydrogen storage alloy powder using a fluororesin and then molding the same, wherein the weight of the negative electrode is in the range of 0.2 to 5.0%. A fluorine resin is mixed with the hydrogen storage alloy powder to form a sheet-shaped compact, and then the sheet-shaped compact is
A method for producing a negative electrode for a secondary battery, which comprises press-bonding to a current collector at a pressure of ~ 800 kg / cm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058353A JPH0810593B2 (en) | 1986-03-18 | 1986-03-18 | Method for manufacturing negative electrode of secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058353A JPH0810593B2 (en) | 1986-03-18 | 1986-03-18 | Method for manufacturing negative electrode of secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62216163A JPS62216163A (en) | 1987-09-22 |
JPH0810593B2 true JPH0810593B2 (en) | 1996-01-31 |
Family
ID=13081955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61058353A Expired - Fee Related JPH0810593B2 (en) | 1986-03-18 | 1986-03-18 | Method for manufacturing negative electrode of secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0810593B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2916156B2 (en) * | 1988-12-28 | 1999-07-05 | 学校法人東海大学 | Manufacturing method of sheet electrode and battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6193556A (en) * | 1984-10-12 | 1986-05-12 | Asahi Glass Co Ltd | Electrode for battery |
-
1986
- 1986-03-18 JP JP61058353A patent/JPH0810593B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6193556A (en) * | 1984-10-12 | 1986-05-12 | Asahi Glass Co Ltd | Electrode for battery |
Also Published As
Publication number | Publication date |
---|---|
JPS62216163A (en) | 1987-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11162505A (en) | Nickel-hydrogen battery | |
US20070054158A1 (en) | Combination of photovoltaic devices and batteries which utilize a solid polymeric electrolyte | |
JP2003249222A (en) | Nickel/hydrogen storage battery | |
US5776626A (en) | Hydrogen-occluding alloy and hydrogen-occluding alloy electrode | |
JPH05205746A (en) | Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery | |
US20060234129A1 (en) | Batteries utilizing a solid polymeric electrolyte | |
JPH0810593B2 (en) | Method for manufacturing negative electrode of secondary battery | |
JPS59181459A (en) | Metal oxide hydrogen battery | |
JP3567021B2 (en) | Alkaline secondary battery | |
JP3182757B2 (en) | Nickel-hydrogen alkaline storage battery | |
JPH11162459A (en) | Nickel-hydrogen secondary battery | |
JPS61163569A (en) | Metal oxide-hydrogen secondary cell | |
JPH11162468A (en) | Alkaline secondary battery | |
JP2989877B2 (en) | Nickel hydride rechargeable battery | |
JP2566912B2 (en) | Nickel oxide / hydrogen battery | |
JP3182790B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPH097591A (en) | Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy | |
JPH0517659B2 (en) | ||
JPS62291862A (en) | Enclosed nickel-hydrogen storage battery | |
JP3152845B2 (en) | Nickel-metal hydride battery | |
JP3306058B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride secondary battery | |
JPH06168719A (en) | Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery | |
JPH0541210A (en) | Enclosed type alkaline storage battery negative electrode | |
JPH1197003A (en) | Nickel hydrogen secondary cell | |
JPH10275620A (en) | Positive electrode for alkaline storage battery, alkaline storage battery, and manufacture of alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |