JPH0810580B2 - Antistatic type cathode ray tube - Google Patents

Antistatic type cathode ray tube

Info

Publication number
JPH0810580B2
JPH0810580B2 JP63247662A JP24766288A JPH0810580B2 JP H0810580 B2 JPH0810580 B2 JP H0810580B2 JP 63247662 A JP63247662 A JP 63247662A JP 24766288 A JP24766288 A JP 24766288A JP H0810580 B2 JPH0810580 B2 JP H0810580B2
Authority
JP
Japan
Prior art keywords
cathode ray
ray tube
antistatic
face plate
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63247662A
Other languages
Japanese (ja)
Other versions
JPH0294223A (en
Inventor
安男 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63247662A priority Critical patent/JPH0810580B2/en
Priority to KR1019890012648A priority patent/KR920000328B1/en
Priority to US07/405,969 priority patent/US5002799A/en
Priority to GB8921574A priority patent/GB2224596B/en
Priority to DE3932343A priority patent/DE3932343C2/en
Publication of JPH0294223A publication Critical patent/JPH0294223A/en
Priority to KR1019910018350A priority patent/KR920004631B1/en
Publication of JPH0810580B2 publication Critical patent/JPH0810580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、フエース・プレート部の外表面の帯電に
よる空気中の微細なゴミの付着や放電現象による人体へ
の不快感を防止するようにした帯電防止処理型陰極線管
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is intended to prevent the discomfort to the human body due to the adhesion of fine dust in the air due to the charging of the outer surface of the face plate portion and the discharge phenomenon. The present invention relates to a method for manufacturing an antistatic cathode ray tube.

[従来の技術] 近年のカラー陰極線管の大型化および輝度性能やフオ
ーカス性能の改善にともない、陰極線管の蛍光面に印加
する電圧、すなわち電子ビームの加速電圧が高くなつて
きている。たとえば、21型クラスの従来のカラー陰極線
管において、蛍光面に印加する高圧は25〜27KV程度であ
つたのが、最近の30型以上のカラー陰極線管によれば、
その蛍光面に30〜34KVもの高圧が印加される。そのた
め、とくにテレビセツトの電源のON−OFF時にカラー陰
極線管のフエース・プレート部の外表面がチヤージアツ
プして、フエース・プレート部の外表面に空気中の細か
いゴミが付着して、汚れが目立ちやすくなり、結果とし
てカラー陰極線管の輝度性能を劣化させる原因になつて
いる。また、チヤージアツプしたフエース・プレート部
の外表面に観視者が近付いた時に放電現象が起こり、観
視者に不快感を与える不都合もある。
[Prior Art] With the recent increase in the size of color cathode ray tubes and the improvement in luminance performance and focus performance, the voltage applied to the phosphor screen of the cathode ray tube, that is, the accelerating voltage of the electron beam has increased. For example, in the 21-inch class conventional color cathode ray tube, the high voltage applied to the phosphor screen was about 25 to 27 KV, but according to the recent 30-inch or more color cathode ray tube,
A high voltage of 30 to 34 KV is applied to the fluorescent screen. As a result, the outer surface of the face plate part of the color cathode-ray tube is charged, especially when the power of the TV set is turned on and off. As a result, the luminance performance of the color cathode ray tube is deteriorated. In addition, there is also a disadvantage that a discharge phenomenon occurs when a viewer approaches the outer surface of the charged face plate portion, and the viewer is uncomfortable.

第6図は陰極線管のフエース・プレート部の表面電位
の変化を示すグラフで、同図中の(L)は電源ONのとき
の表面電位の変化曲線であり、また(L1)は電源OFFの
ときの表面電位の変化曲線である。
Fig. 6 is a graph showing changes in the surface potential of the face plate portion of the cathode ray tube. (L) in the figure is a curve of the surface potential when the power is ON, and (L1) is the power OFF. 3 is a change curve of the surface potential at the time.

このような陰極線管のフエース・プレート部の外表面
のチヤージアツプ現象をなくするために、陰極線管のフ
エース・プレート部の外表面に平滑な透明導電膜を形成
してチヤージをアースへ逃がすようにした帯電防止処理
型陰極線管が近年使用されるようになつてきた。
In order to eliminate the charge-up phenomenon on the outer surface of the face plate portion of the cathode ray tube, a smooth transparent conductive film is formed on the outer surface of the face plate portion of the cathode ray tube so that the charge is released to the ground. Antistatic-treated cathode ray tubes have been used recently.

第5図は上記した帯電防止処理型陰極線管の帯電防止
の原理を説明する図であり、同図において、(6)はネ
ツク部で、電子銃(図示を省略)を内蔵している。
(7)は偏向ヨーク、(4)はフエース・プレート部、
(5)は高圧ボタンで、上記偏向ヨーク(7)はリード
線(7a)を介して偏向電源に、かつ電子銃はリード線
(6a)を介して駆動電源に、また高圧ボタン(5)はリ
ード線(5a)を介して高圧電源にそれぞれ接続されてい
る。
FIG. 5 is a diagram for explaining the principle of antistatic treatment of the above-described antistatic cathode ray tube. In FIG. 5, (6) is a neck portion, which has an electron gun (not shown) built therein.
(7) is a deflection yoke, (4) is a face plate part,
(5) is a high-voltage button, the deflection yoke (7) is a deflection power source via the lead wire (7a), the electron gun is a drive power source via the lead wire (6a), and the high-voltage button (5) is Each is connected to a high voltage power supply via a lead wire (5a).

上記構成の陰極線管において、ネツク部(6)に内蔵
した電子銃から発した電子線を偏向ヨーク(7)により
陰極線管の外部から電磁的に偏向する一方、高圧ボタン
()を介してフエース・プレート部(4)の内面に設け
られた蛍光面に高圧を印加する。これにより、上記電子
線を加速してそのエネルギーにより蛍光面を励起発光し
て光出力を取りだす。このフエース・プレート部(4)
の内面の蛍光面に印加する高圧の影響で、上述したよう
に、フエース・プレート部(4)の外表面の電位が変化
して、ゴミの付着などの弊害が生じる。
In the cathode ray tube having the above-mentioned structure, the deflection yoke (7) electromagnetically deflects the electron beam emitted from the electron gun built in the neck portion (6) from the outside of the cathode ray tube, and the face electrode through the high pressure button (). A high voltage is applied to the fluorescent surface provided on the inner surface of the plate portion (4). As a result, the electron beam is accelerated, and the energy thereof is used to excite and emit light on the phosphor screen to take out a light output. This face plate part (4)
As described above, the potential of the outer surface of the face plate portion (4) changes due to the influence of the high voltage applied to the fluorescent surface of the inner surface of the plate, and adverse effects such as adhesion of dust occur.

そこで、このような弊害をなくする対策として、第5
図に示すように、フエース・プレート部(4)の外表面
に平滑な透明導電膜(11)を形成し、この透明導電膜
(11)をアースに落すことにより、チヤージを常にアー
スへ逃がしてチヤージアツプを防いだのが帯電防止処理
型陰極線管()である。
Therefore, as a measure for eliminating such an adverse effect,
As shown in the figure, a smooth transparent conductive film (11) is formed on the outer surface of the face plate portion (4), and this transparent conductive film (11) is grounded so that the charge is always released to the ground. The antistatic treatment type cathode ray tube ( 3 ) prevented the charge gap.

ところで、この帯電防止処理型陰極線管()におい
て、上記フエース・プレート部(4)の外表面に形成し
た透明導電膜(11)をアースに落すには、第5図に示す
ように、フエース・プレート(4)の側壁部に巻付けた
金属製防爆バンド(8)と透明導電膜(11)との間を導
電性テープ(12)により導通させる。これにより、上記
金属製防爆バンド(8)は取り付け耳(9)に引つかけ
たアース線(10)によりアース(10A)に接合されてい
るので、透明導電膜(11)をアースに落すことは容易に
可能となる。
By the way, in this antistatic treatment type cathode ray tube ( 3 ), in order to drop the transparent conductive film (11) formed on the outer surface of the face plate portion (4) to the ground, as shown in FIG. A conductive tape (12) is provided between the metal explosion-proof band (8) wound around the side wall of the plate (4) and the transparent conductive film (11). As a result, the metal explosion-proof band (8) is joined to the ground (10A) by the ground wire (10) attached to the mounting ear (9), so that the transparent conductive film (11) should be dropped to the ground. Is easily possible.

第6図中の曲線(M)および(M1)は、フエース・プ
レート部の外表面に平滑な透明導電膜(11)を形成した
帯電防止処理型陰極線管()の電源ON−OFF時のフエ
ース・プレート部の外表面の電位変化を示すものであ
り、従来よりも大幅にチヤージアツプが小さくなつてい
ることがわかる。
Curves (M) and (M1) in FIG. 6 are the ones when the power supply of the antistatic treatment type cathode ray tube ( 3 ) in which the smooth transparent conductive film (11) is formed on the outer surface of the face plate part is turned on and off. This shows the potential change on the outer surface of the face plate portion, and it can be seen that the charge gap is significantly smaller than before.

上記フエース・プレート(4)の表面に形成する平滑
な透明導電膜(11)は、ある程度の硬さと接着性を要求
されるので、一般にシリカ(SiO2)系の膜を形成する。
Since the smooth transparent conductive film (11) formed on the surface of the face plate (4) is required to have a certain degree of hardness and adhesiveness, a silica (SiO 2 ) based film is generally formed.

従来、このシリカ系の平滑な透明導電膜(11)を形成
する方法としては、官能基として−OH基、−OR基などを
有するSi(シリコン)アルコキシドのアルコール溶液を
陰極線管のフエース・プレート部(4)の外表面にスピ
ンコート法などで均一かつ平滑に塗布したのち、比較的
低温、たとえば100℃以下で焼付け処理をおこなう方法
がとられていた。
Conventionally, as a method of forming the smooth transparent conductive film (11) of silica type, an alcohol solution of Si (silicon) alkoxide having a functional group such as -OH group and -OR group is used for a face plate portion of a cathode ray tube. A method has been employed in which the outer surface of (4) is uniformly and evenly coated by a spin coating method or the like, and then baked at a relatively low temperature, for example, 100 ° C. or lower.

上記のような方法で形成された平滑な透明導電膜(1
1)は多孔質であるとともに、シラノール基(≡Si−O
H)を有しているので、空気中の水分を吸着して表面抵
抗を下げることができる。しかしながら、このような従
来の平滑な透明導電膜(11)は高温で焼付け処理をおこ
なうと、シラノール基の−OHが無くなるうえに、多孔質
中に取り込んでいる水分も無くなるので、表面抵抗値が
あがつてしまい、所定どおりの導電性が得られなくな
る。このため、低温焼付けが必須であり、膜の強度はあ
まり強くない。また、乾燥した環境下で長く使用する
と、多孔質中の水分がぬけてしまい、表面抵抗値も経時
的に上昇する。この多孔質中からいつたん水分がぬける
と、つぎに入り込むのが困難である。
A smooth transparent conductive film (1
1) is porous and has silanol groups (≡Si-O
Since it has H), it can adsorb moisture in the air and reduce the surface resistance. However, when such a conventional smooth transparent conductive film (11) is baked at a high temperature, the silanol group --OH disappears, and the moisture taken in the pores also disappears. As a result, the predetermined conductivity cannot be obtained. Therefore, low temperature baking is essential and the strength of the film is not very strong. Further, if it is used for a long time in a dry environment, the water content in the porosity will be lost, and the surface resistance value will increase with time. When water is removed from this porous medium, it is difficult to get into it.

以上のように、従来の平滑な透明導電膜(11)は、膜
強度および抵抗値の経時的な安定度の面で大きな欠点を
有していた。また、このような欠点を改善するために、
上記塗液中のアルコキシド構造にZr(ジルコニウム)な
どの金属原子を結合させて導電性を付与することもおこ
なわれていたが、大幅な改善を期待することができな
い。
As described above, the conventional smooth transparent conductive film (11) has major drawbacks in terms of film strength and stability of resistance value over time. Moreover, in order to improve such a defect,
Although it has been attempted to bond a metal atom such as Zr (zirconium) to the alkoxide structure in the coating solution to impart conductivity, it is not possible to expect a significant improvement.

これらの根本的な解決策として、上記Si(シリコン)
アルコキシドのアルコール溶液中に導電性フイラーとし
てSnO2(酸化ズス)やIn2O3(酸化インジウム)の微粒
子を混合分散させるとともに、半導体的性質を付与する
ために微量のP(リン)またはSb(アンチモン)を加え
た塗液を用いて陰極線管のフエース・プレート部(4)
の外表面に従来と同様に、スピンコート法などで均一か
つ平滑に塗布して比較的高い温度(たとえば、100℃〜2
00℃)で焼付け処理をおこなうことにより、膜強度を強
くし、かつ、どのような環境下でも抵抗値が経時的に変
化しない平滑な透明導電膜(11)を得ることができる。
As a fundamental solution to these problems, the above Si (silicon)
Fine particles of SnO 2 (oxide) or In 2 O 3 (indium oxide) are mixed and dispersed in an alcohol solution of alkoxide as a conductive filler, and a small amount of P (phosphorus) or Sb ( Face plate part (4) of the cathode ray tube using a coating liquid containing antimony)
As in the conventional method, apply it evenly and evenly on the outer surface of the spin coat method, etc.
By performing the baking treatment at (00 ° C.), the film strength can be increased and a smooth transparent conductive film (11) whose resistance value does not change with time under any environment can be obtained.

上記のように、Si(シリコン)アルコキシドのアルコ
ール溶液に導電性フイラーを分散させたSiO2(シリカ)
系の膜の場合、上述したような利点を有するものの、特
性上、以下に述べるような大きな問題を有していること
が判明した。
As described above, SiO 2 (silica) obtained by dispersing a conductive filler in an alcohol solution of Si (silicon) alkoxide.
It has been found that the film of the system has the above-mentioned advantages, but has the following major problems in terms of characteristics.

すなわち、Si(シリコン)アクコキシドのアルコール
溶液にSnO2(酸化スズ)の微粒子を全液重量に対して1.
5重量%加えた塗液を用いて陰極線管のフエース・プレ
ート部(4)の外表面にスピンコート法で塗布したの
ち、150℃で30分間焼付け処理をおこなつた帯電防止処
理型陰極線管を製作した。そして、この帯電防止処理型
陰極線管について種々の実験をおこなつたところ表面抵
抗値は5×106Ω・cm、膜強度も鉛筆硬度で9H以上で、
かつ乾燥条件下における表面抵抗値もまつたく変化せ
ず、テレビセツトの電源ON−OFF時のチヤージアツプも
第6図の(M)および(M1)で示す特性とほぼ近似のも
のが得られた。しかし、テレビセツトの動作状態で平滑
な透明導電膜(11)の表面に、手の甲などを動かしなが
ら触れると、微妙な振動感が手につたわつてくることが
判明した。このような振動感は、チヤージアツプのごと
き衝撃で無いものの、従来の陰極線管ではまつたく生じ
ない導電性フイラー分散型シリカ(SiO2)系膜の特有の
問題であり、人によつては非常に違和感を感じる。
That is, fine particles of SnO 2 (tin oxide) were added to the alcohol solution of Si (silicon) accoxide to 1.
An antistatic cathode ray tube was prepared by applying 5% by weight of the coating liquid to the outer surface of the face plate part (4) of the cathode ray tube by spin coating and baking it at 150 ° C for 30 minutes. I made it. And various experiments were conducted on this antistatic cathode ray tube, the surface resistance value was 5 × 10 6 Ω · cm, and the film strength was 9H or more in pencil hardness.
In addition, the surface resistance value under dry conditions did not fluctuate, and the charge cap when the TV set was turned on and off was similar to the characteristics shown in (M) and (M1) of FIG. However, it was found that when the surface of the transparent conductive film (11), which is smooth in the operating state of the television set, is touched while moving the back of the hand or the like, a slight vibration feeling is felt in the hand. Such a feeling of vibration is not a shock such as a charger, but is a problem peculiar to the conductive filler-dispersed silica (SiO 2 ) -based film that does not flicker in the conventional cathode ray tube. Feel something is wrong.

このような振動感の原因について種々な検討をおこな
つた結果、導電性フイラー粒子を分散させたSi(シリコ
ン)アルコキシドのアルコール溶液をスピンコート法な
どの湿式プロセスにて塗布する際に、導電性フイラー粒
子の量が多くなると、乾燥時に急激に各粒子を凝集し
て、微視的に見ると、第4図で示すように、導電性フイ
ラー粒子(2)がSiO2(シリア)の母体(1)の中で鎖
状の網目構造をつくつてしまうことがわかつた。このよ
うな状態の平滑な透明導電膜(11)は、巨視的に見る
と、チヤージはアースに逃げるのでチヤージアツプによ
る問題を生じないが、微視的に見るとテレビセツトの電
源をONしたのちに、十分に時間が経つても平滑な透明導
電膜(11)表面での電位分布が網目状に不均一となり、
手の甲などを動かしながら、その表面に触れた場合、あ
たかも手の甲がふるえているかのような振動感を生じる
ものである。
As a result of various studies on the cause of such a feeling of vibration, when applying an alcohol solution of Si (silicon) alkoxide in which conductive filler particles are dispersed by a wet process such as spin coating, When the amount of filler particles increases, the particles abruptly agglomerate during drying, and when viewed microscopically, as shown in FIG. 4, the conductive filler particles (2) are composed of SiO 2 (Syria) matrix ( It was found in 1) that a chain-like network structure was formed. In a macroscopic view, the smooth transparent conductive film (11) in such a state does not cause problems due to charge jumps because the charge escapes to the ground, but microscopically, after turning on the power of the TV set, , The potential distribution on the smooth transparent conductive film (11) surface becomes non-uniform in a mesh shape even after sufficient time passes,
If you touch the surface of the back of your hand while moving it, you will feel a vibration as if your back were shaking.

また、上述したスピンコート法などによる塗液の塗布
は、陰極線管のフエース・プレート部(4)の側壁を金
属バンドで締めつける防爆処理を終了したのちにおこな
われていた。
Further, the application of the coating liquid by the above-mentioned spin coating method or the like was performed after the explosion-proof treatment of fastening the side wall of the face plate portion (4) of the cathode ray tube with a metal band was completed.

第7図(A)は従来の陰極線管の概略製造工程図であ
り、同図において、(20)はパネルマスク組立工程、
(21)はパネルマスク・ペアベーク工程、(22)は塗着
・AL工程、(23)はパネル・ベーク工程、(24)はフリ
ツト封止工程、(25)はガン封止工程、(26)は排気工
程、(27)はシーズニングエージング工程、(28)は特
性試験工程、(29)は防爆処理工程、(30)は出荷工程
であり、これら各工程(20)〜(30)を上記の記載順に
実行することで陰極線管を製造する。
FIG. 7A is a schematic manufacturing process drawing of a conventional cathode ray tube. In FIG. 7, (20) is a panel mask assembling process,
(21) panel mask / pair bake process, (22) coating / AL process, (23) panel bake process, (24) frit sealing process, (25) gun sealing process, (26) Is an exhaust process, (27) is a seasoning aging process, (28) is a characteristic test process, (29) is an explosion-proof treatment process, and (30) is a shipping process. Each of these processes (20) to (30) is described above. A cathode ray tube is manufactured by carrying out in the order described.

また、第7図(B)は従来の帯電防止処理型陰極線管
の概略製造工程図であり、同図で明らかなように、従来
の帯電防止処理型陰極線管の製造の場合は、上記第7図
(A)で示した従来の陰極線管の製造工程のうち、防爆
処理工程(29)と出荷工程(30)との間に新たに帯電防
止処理工程(31)を追加するものである。この帯電防止
処理工程(31)はスピンコート法などによる塗液の塗布
工程(31A)と焼付け処理工程(31B)との2工程からな
る。その他の工程は第7図(A)と同一であるため、同
一の符号を付して、それらの説明を省略する。
Further, FIG. 7 (B) is a schematic manufacturing process diagram of a conventional antistatic treatment type cathode ray tube. As is apparent from the figure, in the case of manufacturing a conventional antistatic treatment type cathode ray tube, Among the conventional cathode ray tube manufacturing processes shown in FIG. 1A, an antistatic treatment process (31) is newly added between the explosion-proof treatment process (29) and the shipping process (30). The antistatic treatment step (31) includes two steps, a coating liquid application step (31A) by a spin coating method and a baking treatment step (31B). Since other steps are the same as those in FIG. 7A, the same reference numerals are given and the description thereof is omitted.

[発明が解決しようとする課題] 以上のように、従来の平滑な透明導電膜を有する帯電
防止処理型陰極線管によれば、導電膜の強度向上や表面
抵抗値の経時変化の防止のために導電性フイラー粒子を
添加した場合、スピンコート法などの湿式プロセスで膜
塗布をおこなつたとき、導電性フイラー粒子がSiO2(シ
リカ)の母体中に鎖状の網目構造を形成し、その結果、
テレビセツトのON動作中に手の甲などを動かしながら、
透明導電膜の表面に触れると、手の甲がふえるような振
動感、違和感を生じる問題を有していた。
[Problems to be Solved by the Invention] As described above, according to the conventional antistatic cathode ray tube having the smooth transparent conductive film, in order to improve the strength of the conductive film and prevent the surface resistance value from changing with time. When the conductive filler particles are added and the film is applied by a wet process such as spin coating, the conductive filler particles form a chain network structure in the matrix of SiO2 (silica), and as a result,
While moving the back of the hand etc. while the TV set is ON,
When touching the surface of the transparent conductive film, there is a problem that the back of the hand feels like vibration and a feeling of strangeness.

また、上記した従来の帯電防止処理型陰極線管の製造
方法による場合は、製造工程面および膜の性能面におい
て、つぎのような2つの問題点を有していた。
Further, in the case of the above-described conventional method for manufacturing an antistatic-type cathode ray tube, there are the following two problems in terms of manufacturing process and film performance.

すなわち、製造工程面での問題として、塗膜の焼付け
処理用に炉に新設する必要があることである。つまり、
焼付け条件として150℃で30分間の保持を考えると、製
造ラインのキヤパシテイや製造しようとする陰極線管の
サイズによつて多少異なるが、連続処理炉の場合、50〜
100mの炉長を要し、製造ラインにこのような炉を付加す
ることはスペース的にも非常に不利である。
That is, as a problem in the manufacturing process, it is necessary to newly install the furnace for the baking treatment of the coating film. That is,
Considering holding at 150 ° C for 30 minutes as a baking condition, it will be slightly different depending on the capacity of the production line and the size of the cathode ray tube to be produced.
It requires a furnace length of 100 m, and adding such a furnace to the production line is very disadvantageous in terms of space.

また、膜の性能面での問題として、完成した陰極線管
に塗膜を形成して焼付け処理をおこなう場合、陰極線管
の信頼性や寿命などの点からみて焼付け温度は200℃以
下にしなければならないことである。従来の帯電防止処
理型陰極線管の場合、透明導電膜の膜強度は十分に満足
のいくレベルでない。SiO2(シリカ)系の透明導電膜の
場合、焼付け温度が高くなるほど膜強度は向上し、350
℃以上で焼付け処理すれば、ほぼガラスなみの強度とな
る。しかしながら、上述したような制約条件により膜強
度的に十分なものではなかつた。さらに、いつたん完成
した陰極線管を再度熱処理することによるエネルギロス
も大きいものであつた。
Also, as a problem in terms of film performance, when a coating film is formed on a completed cathode ray tube and baking is performed, the baking temperature must be 200 ° C or less in terms of reliability and life of the cathode ray tube. That is. In the case of the conventional antistatic cathode ray tube, the film strength of the transparent conductive film is not at a sufficiently satisfactory level. In the case of a SiO 2 (silica) -based transparent conductive film, the higher the baking temperature, the higher the film strength.
If baked at a temperature of ℃ or above, it will be almost as strong as glass. However, the film strength was not sufficient due to the above-mentioned constraints. Furthermore, the energy loss due to the heat treatment of the completed cathode ray tube was great.

この発明は上記したような問題点を解消するためにな
されたもので、テレビセットの動作中にフェース・プレ
ート部の表面を手の甲などを動かしながら触れても、振
動感や違和感などをほとんど感じることのない帯電防止
処理型陰極線管を得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and even if the user touches the surface of the face plate portion while moving the back of the hand while the television set is operating, the user can almost feel the feeling of vibration and discomfort. The purpose is to obtain an antistatic treatment type cathode ray tube.

[課題を解決するための手段] この発明に係る帯電防止処理型陰極線管は、官能基と
して−OH基、−OR基を有するシリコンアルコキシドのア
ルコール溶液に導電性フイラーを分散させた塗液をフェ
ース・プレート部の外表面に塗布し、焼付け処理するこ
とによって、該フェース・プレート部に平滑な透明導電
膜を形成した帯電防止処理型陰極線管において、 上記焼付け処理後のフェース・プレート部の外表面の
表面抵抗値Rsを、 5.0×109Ω・cm<Rs≦1.0×1011Ω・cm の範囲に設定したことを特徴としている。
[Means for Solving the Problems] The antistatic-type cathode-ray tube according to the present invention is a coating liquid in which a conductive filler is dispersed in an alcohol solution of a silicon alkoxide having a —OH group or a —OR group as a functional group. An antistatic cathode ray tube in which a smooth transparent conductive film is formed on the face plate portion by applying it to the outer surface of the plate portion and baking the outer surface of the face plate portion after the above baking treatment. The surface resistance value Rs of is set in the range of 5.0 × 10 9 Ω · cm <Rs ≦ 1.0 × 10 11 Ω · cm.

[作用] この発明によれば、フエース・プレート部の外表面に
形成された平滑な透明導電膜の焼付け処理工程後の表面
抵抗値Rsを、5.0×109Ω・cm<Rs≦1.0×1011Ω・cmの
範囲に設定することにより、SiO2(シリカ)の母体中に
分散させる導電性フイラー粒子の量がコントロールさ
れ、その結果として、導電性フイラー粒子が非常に均一
に分散されてフエース・プレートの外表面の電位分布を
均一に保てるため、テレビセツト動作中に陰極線管のフ
エース・プレート部を、手の甲などを動かしながら触れ
ても、振動感をほとんど感じることがない。
[Operation] According to the present invention, the surface resistance value Rs of the smooth transparent conductive film formed on the outer surface of the face plate portion after the baking process is 5.0 × 10 9 Ω · cm <Rs ≦ 1.0 × 10 By setting it in the range of 11 Ω · cm, the amount of conductive filler particles dispersed in the SiO2 (silica) matrix is controlled, and as a result, the conductive filler particles are very evenly dispersed and Since the potential distribution on the outer surface of the plate can be kept uniform, even if the face plate portion of the cathode ray tube is touched while moving the back of the hand during operation of the television set, there is almost no feeling of vibration.

[発明の実施例] 以下、この発明の一実施例を図面にもとづいて説明す
る。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による帯電防止処理型陰
極線管における透明導電膜の拡大構造を示す図であり、
同図において、(1)はSiO2(シリカ)の母体で、官能
基として−OH基、−OR基などを有するSi(シリコン)ア
ルコキシドのアルコール溶液にSnO2(酸化スズ)の微粒
子やIn2O3(酸化インジウム)の微粒子からなる導電性
フイラーを混合分散させたものである。(2)は母体
(1)中の導電性フイラー粒子である。
FIG. 1 is a diagram showing an enlarged structure of a transparent conductive film in an antistatic cathode ray tube according to an embodiment of the present invention.
In the figure, (1) is a matrix of SiO 2 (silica), fine particles of SnO 2 (tin oxide) and In 2 are added to an alcohol solution of Si (silicon) alkoxide having a —OH group, a —OR group, etc. as a functional group. A conductive filler composed of fine particles of O 3 (indium oxide) is mixed and dispersed. (2) is the conductive filler particles in the matrix (1).

上記したSiO2(シリカ)系の塗液をスピンコート法な
どの湿式プロセスで、陰極線管のフエース・プレート部
(4)に塗布し乾燥したのち、焼付け処理をおこなうこ
とにより、第5図の(11)で示すような平滑な透明電極
膜を形成する。この場合、上記の焼付け処理後の表面抵
抗値(Rs)を、5.0×107Ω・cm≦Rs≦1.0×1011Ω・cm
に設定する。
The SiO 2 (silica) -based coating liquid described above is applied to the face plate portion (4) of the cathode ray tube by a wet process such as a spin coating method, dried, and then baked to give () in FIG. A smooth transparent electrode film as shown in 11) is formed. In this case, the surface resistance value (Rs) after the above baking treatment is 5.0 × 10 7 Ω ・ cm ≤ Rs ≤ 1.0 × 10 11 Ω ・ cm
Set to.

つぎに、第1図で示すような構造の透明導電膜(11)
を有する導電防止処理型陰極線管について、本願発明者
がおこなつた実験およびその結果について説明する。
Next, the transparent conductive film (11) having the structure shown in FIG.
An experiment conducted by the inventors of the present application and a result of the anti-conduction type cathode ray tube having the above will be described.

上述したごとく、Si(シリコン)アルコキシドのアル
コール溶液に分散させるSnO2(酸化スズ)になどの導電
性フイラー粒子の量が多くなると、スピンコート法など
の湿式プロセスで塗液を塗布した場合、乾燥時に上記導
電性フイラー粒子が急激に凝集して、第4図で示すよう
な鎖状の網目構造を生じ好ましくない。このため、実験
的にSi(シリコン)アルコキドのアルコール溶液中の導
電性フイラー粒子の量を種々変化させた塗液を使用して
帯電防止処理型陰極線管を試作し、この試作した帯電防
止処理型陰極線管を実際にテレビセツトに実装し動作さ
せて、振動感の評価テストをおこなつた。
As mentioned above, when the amount of conductive filler particles such as SnO 2 (tin oxide) dispersed in the alcohol solution of Si (silicon) alkoxide becomes large, when the coating liquid is applied by a wet process such as spin coating, it is dried. At times, the conductive filler particles rapidly aggregate to form a chain-like network structure as shown in FIG. 4, which is not preferable. For this reason, we experimentally produced an antistatic cathode ray tube using a coating liquid in which the amount of conductive filler particles in an alcohol solution of Si (silicon) alkoxide was changed variously. The cathode ray tube was actually mounted on a TV set and operated, and a vibration sensation evaluation test was performed.

第2図は上記振動感の評価テストの結果を示す図であ
り、導電性フイラー粒子の添加量と焼付け処理後の平滑
な透明導電膜の表面抵抗値との間には相関が有るので、
第2図においては、導電性フイラー粒子の添加量を焼付
け処理後の平滑な透明導電膜の表面抵抗値として表わ
す。また、振動感は同図のように、0から5までの6段
階の評価とし、振動感0は全く感じないレベルであり、
振動感5は非常に強く感じるレベルである。この実装評
価の結果、振動感が2.5以下であれば、実用上ほとんど
問題がないことが判明した。この場合の焼付け処理後の
平滑な透明導電膜の表面抵抗値は5.0×107Ω・cmであつ
た。この平滑な透明導電膜の微視的に見ると、第1図
(A)で示すように、導電性フイラー粒子(2)がSiO2
(シリカ)の母体(1)中に均一に分散されており、鎖
状の網目構造はほとんど無い。さらに、導電性フイラー
粒子(2)の添加量を減少させてゆくと、表面抵抗値が
1×1011Ω・cmで振動感はほぼ0となる。しかし、これ
以上に導電性フイラー粒子(2)の添加量を減少させる
と、第1図(B)で示すように、SiO2(シリカ)の母体
(1)中の導電性フイラー粒子(2)の存在がまばらと
なり、表面抵抗値のフエース・プレート上の場所ごとの
ぼらつきや個々の製品ごとのばらつきの両方ともが大き
くなり、帯電防止処理効果上も好ましくない。
FIG. 2 is a diagram showing the results of the above-described vibration sensation evaluation test. Since there is a correlation between the amount of conductive filler particles added and the surface resistance of the smooth transparent conductive film after baking,
In FIG. 2, the added amount of the conductive filler particles is shown as the surface resistance value of the smooth transparent conductive film after the baking treatment. Further, as shown in the same figure, the vibration feeling is evaluated in 6 levels from 0 to 5, and the vibration feeling 0 is a level that is not felt at all.
The vibration sensation 5 is a level at which the user feels very strong. As a result of this mounting evaluation, it was found that if the vibration feeling was 2.5 or less, there was practically no problem. In this case, the surface resistance of the smooth transparent conductive film after baking was 5.0 × 10 7 Ω · cm. From a microscopic view of this smooth transparent conductive film, as shown in FIG. 1 (A), the conductive filler particles (2) have SiO 2
It is uniformly dispersed in the matrix (1) of (silica), and there is almost no chain network structure. Further, when the amount of the conductive filler particles (2) is decreased, the surface resistance value becomes 1 × 10 11 Ω · cm and the vibration feeling becomes almost zero. However, when the added amount of the conductive filler particles (2) is further reduced, as shown in FIG. 1 (B), the conductive filler particles (2) in the matrix (1) of SiO 2 (silica) are added. Are sparsely present, and the surface resistance value becomes uneven both at each place on the face plate and each product, which is not preferable in terms of the antistatic treatment effect.

以上の実験結果から、Si(シリコン)アルコキシドル
のアルコール溶液中に導電性フイラー粒子を分散させた
塗液をスピンコート法などの湿式プロセスで陰極線管の
フエースプレート部に塗布し乾燥したのち、焼付け処理
をおこなつて平滑な透明導電膜を形成する帯電防止処理
型陰極線管において、焼付け処理後の表面抵抗値(Rs)
を、 5.0×107Ω・cm≦Rs≦1.0×1011Ω・cm の範囲にコントロースすることで、全ての特性に非常に
好ましいことがわかつた。
Based on the above experimental results, a coating solution in which conductive filler particles are dispersed in an alcohol solution of Si (silicon) alkoxydol is applied to the face plate part of the cathode ray tube by a wet process such as spin coating, dried, and then baked. Surface resistance value (Rs) after baking in an antistatic cathode ray tube that is treated to form a smooth transparent conductive film
It has been found that by controlling the value of P in the range of 5.0 × 10 7 Ω · cm ≦ Rs ≦ 1.0 × 10 11 Ω · cm, it is very preferable for all properties.

第3図はこの発明ににかかる帯電防止処理型陰極線管
の概略製造工程図であり、同図において、第7図(B)
で示す従来の製造工程図と相違する点は、防爆処理工程
(29)と出荷工程(30)との間に帯電防止処理工程(3
1)を設けずに、帯電防止処理工程のうちの塗液の塗布
工程(31A)のみを、陰極線管の製造工程固有の熱処理
工程の1つであるパネル・ベーク工程(23)の前段に設
定して、このパネル・ベーク工程(23)で帯電防止処理
工程のうちの焼付け処理工程を兼ねるようにしたことで
ある。その他の工程は第7図(B)と同一であるため、
同一の符号を付して、それらの説明を省略する。
FIG. 3 is a schematic manufacturing process drawing of the antistatic treatment type cathode ray tube according to the present invention. In FIG.
The difference with the conventional manufacturing process diagram shown in is that the antistatic treatment process (3) is provided between the explosion-proof treatment process (29) and the shipping process (30).
1) is not provided, and only the coating liquid application step (31A) of the antistatic treatment step is set before the panel baking step (23) which is one of the heat treatment steps unique to the cathode ray tube manufacturing process. The panel baking process (23) also serves as the baking process of the antistatic process. Since other steps are the same as those in FIG. 7 (B),
The same reference numerals are given and their description is omitted.

なお、帯電防止処理工程のうちの焼付け処理工程を兼
ねる熱処理工程としては、上記のパネル・ベーク工程
(23)以外に、フリツト封止工程(24)、排気工程(2
6)であつてもよい。これら各工程は、いずれも380℃〜
450℃の非常に高い温度で処理をおこなう熱処理工程で
あるから、これら工程(24),(28)の前段に、第3図
の仮想線で示すように、塗液の塗布工程(31A)を設定
して、この工程(24),(26)で上記帯電防止処理工程
のうちの焼付け処理工程を兼ねることも可能である。
In addition to the panel baking process (23) described above, the heat treatment process that also serves as the baking process of the antistatic treatment process includes the frit sealing process (24) and the exhaust process (2).
It may be 6). Each of these steps is from 380 ℃
Since this is a heat treatment process in which treatment is carried out at an extremely high temperature of 450 ° C., as shown by the phantom line in FIG. 3, the coating liquid application process (31A) is performed before these processes (24) and (28). It is possible to set and set these steps (24) and (26) to also serve as the baking processing step of the antistatic processing steps.

また、パネルマスク・ペアベーク工程(21)も処理温
度が高くて帯電防止処理工程の焼付け処理工程を兼ねる
ことが可能であるけれども、このパネルマスク・ペアベ
ーク工程(21)はその直後に化学処理工程の塗着・AL工
程(22)があつて、アルカリや酸で透明導電膜(11)が
おかされやすいとともに、材料のハンドリング工程も多
くて透明導電膜(11)に傷をつけやすいので、好ましく
ない。
Also, the panel mask / pair bake step (21) has a high processing temperature and can also serve as the baking processing step of the antistatic processing step. However, this panel mask / pair bake step (21) immediately follows the chemical processing step. This is not preferable because the transparent conductive film (11) is likely to be damaged by alkali or acid in the coating / AL process (22) and the transparent conductive film (11) is easily scratched due to many material handling processes. .

さらに、上記ガス封止工程(25)と排気工程(26)と
は連続した工程であるから、上記塗液の塗布工程(31
A)を第3図の仮想線で示すように、上記ガン封止工程
(25)の前段に設定して、排気工程(26)で帯電防止処
理工程の焼付け処理をおこなわせてもよい。
Furthermore, since the gas sealing step (25) and the exhaust step (26) are continuous steps, the coating liquid application step (31)
As shown by the phantom line in FIG. 3, A) may be set in the preceding stage of the gun sealing step (25) so that the baking process of the antistatic treatment step is performed in the exhaust step (26).

なお、上記実施例では、塗液としてSi(シリコン)ア
ルコキシドのアルコール溶液にSnO2(酸化スズ)やIn2O
3(酸化インジウム)などの導電性フイラー粒子を分散
させたものを使用したが、上記のアルコキシド構造にZr
(ジルコニウム)などの他の金属原子を結合させた同様
の塗液を使用した場合にも、上記と同様の効果を奏す
る。
Incidentally, in the above-mentioned examples, SnO 2 (tin oxide) or In 2 O was added to the alcohol solution of Si (silicon) alkoxide as the coating liquid.
We used a dispersion of conductive filler particles such as 3 (indium oxide).
Even when the same coating liquid in which other metal atom such as (zirconium) is bonded is used, the same effect as above can be obtained.

[発明の効果] 以上のように、この発明によれば、SiO2(シリカ)の
母体中に分散される導電性フイラー粒子の量を一定の範
囲に設定することで、導電性フイラー粒子を均一に分散
させることが可能となり、テレビセツトの動作中にフエ
ース・プレート部の表面を、手の甲などを動かしながら
触れても、振動感、違和感などを感じることがない。ま
た、透明導電膜の強度も強く、かつ表面抵抗値も安定し
た高品質の帯電防止処理型陰極線管を得ることができ
る。
[Advantages of the Invention] As described above, according to the present invention, the conductive filler particles are uniformly dispersed by setting the amount of the conductive filler particles dispersed in the matrix of SiO 2 (silica) within a certain range. Therefore, even if the surface of the face plate is touched while moving the back of the hand while the TV set is in operation, there is no feeling of vibration or discomfort. Further, it is possible to obtain a high quality antistatic cathode ray tube in which the strength of the transparent conductive film is high and the surface resistance value is stable.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の一実施例による帯電防止処理型陰
極線管における透明導電膜の拡大構造を示す図、第2図
は表面抵抗値とフエース・プレート部の外表面を触わつ
た時の振動感との評価テストの結果を示す図、第3図は
この発明の帯電防止処理型陰極線管の概略製造工程図、
第4図は従来の帯電防止処理型陰極線管における透明導
電膜の拡大構造を示す図、第5図は帯電防止処理型陰極
線管の帯電防止原理を説明する図、第6図は陰極線のフ
エース・プレート部の外表面の電位変化を示すグラフ、
第7図(A)および(B)は従来の陰極線管および帯電
防止処理型陰極線管の概略構造工程図である。 (1)……SiO2(シリカ)の母体、(2)……導電性フ
イラーの粒子、()……帯電防止処理型陰極線管、
(4)……フエース・プレート部、(111)……平滑な
透導電膜、(23)……パネル・ベーク工程、(24)……
フリツト封止工程、(25)……ガン封止工程、(26)…
…排気工程、(29)……防爆処理工程、(31A)……塗
液の塗布工程。 なお、図中の同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an enlarged structure of a transparent conductive film in an antistatic cathode ray tube according to an embodiment of the present invention, and FIG. 2 is a diagram showing the surface resistance value and the outer surface of the face plate portion when touched. The figure which shows the result of the evaluation test with a feeling of vibration, FIG. 3 is a schematic manufacturing process drawing of the antistatic-treatment type cathode ray tube of this invention,
FIG. 4 is a diagram showing an enlarged structure of a transparent conductive film in a conventional antistatic treatment type cathode ray tube, FIG. 5 is a diagram for explaining the antistatic principle of the antistatic treatment type cathode ray tube, and FIG. 6 is a cathode ray face. A graph showing the potential change on the outer surface of the plate part,
7 (A) and 7 (B) are schematic structural process diagrams of a conventional cathode ray tube and an antistatic treatment type cathode ray tube. (1) …… Mixed body of SiO 2 (silica), (2) …… Particles of conductive filler, ( 3 ) …… Antistatic treatment type cathode ray tube,
(4) …… face plate part, (111) …… smooth transparent conductive film, (23) …… panel baking process, (24) ……
Frit sealing process, (25) …… Gun sealing process, (26)…
… Exhaust process, (29) …… Explosion proof process, (31A) …… Coating liquid application process. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】官能基として−OH基、−OR基を有するシリ
コンアルコキシドのアルコール溶液に導電性フィラーを
分散させた塗液ををフェース・プレート部の外表面に塗
布し、焼付け処理をすることによって、該フェース・プ
レート部に平滑な透明導電膜を形成した帯電防止処理型
陰極線管において、 上記焼付け処理後のフェース・プレート部の外表面の表
面抵抗値RSを、 5.0×109Ω・cm<RS≦1.0×1011Ω・cm の範囲に設定したことを特徴とする帯電防止処理型陰極
線管。
1. A baking treatment is performed by applying a coating liquid, in which a conductive filler is dispersed in an alcohol solution of a silicon alkoxide having a —OH group or a —OR group as a functional group, to the outer surface of a face plate portion. In the antistatic treatment type cathode ray tube in which a smooth transparent conductive film is formed on the face plate portion, the surface resistance value R S of the outer surface of the face plate portion after the baking treatment is 5.0 × 10 9 Ω An antistatic cathode ray tube characterized by being set in the range of cm <R S ≦ 1.0 × 10 11 Ω · cm.
JP63247662A 1988-09-29 1988-09-29 Antistatic type cathode ray tube Expired - Lifetime JPH0810580B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63247662A JPH0810580B2 (en) 1988-09-29 1988-09-29 Antistatic type cathode ray tube
KR1019890012648A KR920000328B1 (en) 1988-09-29 1989-09-01 Method for manufacturing anti-static cathode ray tubes
US07/405,969 US5002799A (en) 1988-09-29 1989-09-12 Method for manufacturing anti-static cathode ray tubes
GB8921574A GB2224596B (en) 1988-09-29 1989-09-25 Method for manufacturing anti-static cathode ray tubes
DE3932343A DE3932343C2 (en) 1988-09-29 1989-09-28 Process for the production of antistatically treated cathode ray tubes
KR1019910018350A KR920004631B1 (en) 1988-09-29 1991-10-18 Method manufacturing crt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247662A JPH0810580B2 (en) 1988-09-29 1988-09-29 Antistatic type cathode ray tube

Publications (2)

Publication Number Publication Date
JPH0294223A JPH0294223A (en) 1990-04-05
JPH0810580B2 true JPH0810580B2 (en) 1996-01-31

Family

ID=17166803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247662A Expired - Lifetime JPH0810580B2 (en) 1988-09-29 1988-09-29 Antistatic type cathode ray tube

Country Status (1)

Country Link
JP (1) JPH0810580B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124331A (en) * 1986-11-13 1988-05-27 Asahi Glass Co Ltd Manufacture of cathode ray tube having glare-proof effect and electrification-proof effect
JPH088080B2 (en) * 1986-12-24 1996-01-29 株式会社東芝 Cathode ray tube and method of manufacturing cathode ray tube

Also Published As

Publication number Publication date
JPH0294223A (en) 1990-04-05

Similar Documents

Publication Publication Date Title
WO2000019479A1 (en) Method of manufacturing plasma display and substrate structure
JPH0440824B2 (en)
US3791546A (en) Cathode-ray tube having conductive internal coating comprised of iron oxide and graphite
US3898509A (en) Cathode-ray tube having lithium silicate glare-reducing coating with reduced light transmission and method of fabrication
KR920000328B1 (en) Method for manufacturing anti-static cathode ray tubes
JPH0810580B2 (en) Antistatic type cathode ray tube
KR20050017594A (en) Image display apparatus
US5698258A (en) Method of producing a cathode-ray tube including first and second transparent layers of high and low refractive indices formed on a face plate to thereby lower electromagnetic wave emission and reduce external light reflection
KR100732572B1 (en) Phosphor screen with metal back, method of forming the same and image display unit
JP2003303539A (en) Electron emission source and its manufacturing method
EP0972297B1 (en) Method of manufacturing a coating on a display window and a display device comprising a display window provided with a coating
KR920004631B1 (en) Method manufacturing crt
JP3590219B2 (en) Color cathode ray tube
JPH05205660A (en) Cathode-ray tube and manufacture of cathode- ray tube
JP2004186163A (en) Plasma display panel and manufacturing method of substrate structure
US2751515A (en) Cathode-ray tube
JPH06103928A (en) Cathode-ray tube and its charge and antireflection film forming method
JP3822757B2 (en) Field emission device and display device using the same
JP3663171B2 (en) FED panel and manufacturing method thereof
KR101127266B1 (en) Method for manufacturing plasma display panel
JPH05182604A (en) Cathode-ray tube
JPH0719078Y2 (en) Thin cathode ray tube
JPH0922668A (en) Cathode-ray tube
JP2751833B2 (en) Manufacturing method of cathode ray tube
JPH08279341A (en) Electrification preventive low reflection type cathode-ray tube and its manufacture