JPH08104981A - Pvd device - Google Patents
Pvd deviceInfo
- Publication number
- JPH08104981A JPH08104981A JP26831394A JP26831394A JPH08104981A JP H08104981 A JPH08104981 A JP H08104981A JP 26831394 A JP26831394 A JP 26831394A JP 26831394 A JP26831394 A JP 26831394A JP H08104981 A JPH08104981 A JP H08104981A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- raw material
- vapor deposition
- melted
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/26—Vacuum evaporation by resistance or inductive heating of the source
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】本発明は、PVD装置および蒸着方法に関
するものである。[0001] The present invention relates to a PVD apparatus and a vapor deposition method.
【0002】[0002]
【従来の技術】従来より半導体装置などの分野でPVD
(蒸着,イオンプレーティング)による成膜が利用され
ている。一般には、水冷銅に耐火物をはめ込んだり敷い
たりしたるつぼをチャンバー内に配置し、るつぼ内の原
料を電子ビームで溶融,蒸発させて、これを基板に堆積
して膜を形成している。一方、金属の溶解技術として、
コールドクルーシブル(金属製の水冷るつぼ)を用い、
その内部で加熱対象を電磁力により浮揚して溶解するコ
ールドクルーシブル法が知られている(電気学会誌,11
4 巻 3号,1994年:156 頁以降)。2. Description of the Related Art PVD has been conventionally used in the field of semiconductor devices and the like.
Film formation by (vapor deposition, ion plating) is used. In general, a crucible in which a refractory is set or laid on water-cooled copper is placed in a chamber, the raw material in the crucible is melted and evaporated by an electron beam, and this is deposited on a substrate to form a film. On the other hand, as a metal melting technology,
Using a cold crucible (water-cooled crucible made of metal),
There is known a cold crucible method in which a heated object is levitated and melted by electromagnetic force inside (Journal of the Institute of Electrical Engineers of Japan, 11
Vol. 4, No. 3, 1994: pp. 156 et seq.).
【0003】[0003]
【発明が解決しようとする課題】しかし、従来のPVD
技術には以下のような欠点がある。 溶融された原料はるつぼ内面と接触しているため溶湯
に耐火物成分が混入し、形成された膜が不純物に汚染さ
れ易い。 電子ビームは約10-4torr以下の低圧でしか作動
せず、この条件を得るために排気手段を必要とする。通
常はチャンバー内を10-5torr以下にできる排気手
段が用いられる。However, the conventional PVD
The technology has the following drawbacks. Since the melted raw material is in contact with the inner surface of the crucible, refractory components are mixed in the molten metal, and the formed film is easily contaminated with impurities. The electron beam operates only at low pressures below about 10 -4 torr and requires evacuation means to achieve this condition. Usually, an evacuation means capable of controlling the inside of the chamber to 10 -5 torr or less is used.
【0004】膜厚の均一化を図るにはチャンバー内の
圧力を上げればよいが、電子ビームを使用する関係上、
この手段をとることができない。そのため、通常は基板
を自転,公転させており、基板の駆動手段を必要とす
る。 電子ビームは1点にエネルギーを集中するため、必然
的に溶湯表面に大きな温度分布を生じさせ、蒸発量も大
きくばらついてしまう。通常は電子ビームを溶湯上にス
キャンして蒸発量の均一化を図っているが、そのための
機構が必要となり、コスト高になる。To make the film thickness uniform, the pressure in the chamber may be raised. However, due to the use of the electron beam,
You cannot take this measure. Therefore, the substrate is usually rotated and revolved, and a driving means for the substrate is required. Since the electron beam concentrates energy at one point, it inevitably causes a large temperature distribution on the surface of the molten metal, and the amount of evaporation also largely varies. Normally, the electron beam is scanned over the molten metal to make the evaporation amount uniform, but a mechanism for this is required, which increases the cost.
【0005】[0005]
【課題を解決するための手段】本発明はこのような課題
を解消するためになされたもので、その要旨は前記コー
ルドクルーシブル法をPVD技術に適用したことにあ
る。即ち、本発明PVD装置は、冷却機構を具えるるつ
ぼと、るつぼの上部に位置する基板ホルダと、るつぼの
外周に設けられた誘導加熱装置とを具えることを特徴と
する。ここで、るつぼと基板の中間において、るつぼで
溶解されて発生した原料の蒸気をイオン化する高周波コ
イルを設けてイオンプレーティング装置として用いても
よい。また、上記の各装置において、雰囲気ガス導入機
構,真空引き機構および加圧機構のうち少なくとも一つ
を具えることで、種々の雰囲気,圧力に調整して成膜す
ることができる。なお、るつぼの構成には、その側壁と
底面が一体化されたものと、両者が独立しているものと
が考えられ、ここでは前者を浮揚型、後者を半浮揚型と
する。The present invention has been made in order to solve such a problem, and its gist is to apply the cold crucible method to PVD technology. That is, the PVD apparatus of the present invention is characterized by including a crucible having a cooling mechanism, a substrate holder located above the crucible, and an induction heating device provided on the outer periphery of the crucible. Here, a high frequency coil for ionizing the vapor of the raw material generated by melting in the crucible may be provided between the crucible and the substrate and used as an ion plating device. Further, in each of the above-mentioned devices, at least one of the atmosphere gas introduction mechanism, the vacuum evacuation mechanism, and the pressurization mechanism is provided, so that various atmospheres and pressures can be adjusted for film formation. It is considered that the crucible has a structure in which the side wall and the bottom surface are integrated and the crucible is independent of each other. Here, the former is a floating type and the latter is a semi-floating type.
【0006】そして、これらの装置を用いることによっ
て、原料溶湯をるつぼ内で浮揚または起立させて蒸着を
行うことができる。即ち、本発明蒸着方法は、原料をる
つぼ内で溶解し、発生する蒸気をるつぼの上部に設置し
た基板に堆積して成膜する蒸着方法であって、誘導加熱
で溶融した原料をるつぼ側壁と非接触として蒸着するこ
とを特徴とする。ここでの雰囲気圧力は、10-4tor
r以上1気圧未満でもよいし、1気圧以上でもよい。な
お、イオンプレーティングを行う場合は、発生した原料
蒸気をイオン化すればよい。[0006] By using these devices, the molten material can be levitated or erected in the crucible for vapor deposition. That is, the vapor deposition method of the present invention is a vapor deposition method in which a raw material is melted in a crucible and vapor generated is deposited on a substrate installed on the upper part of the crucible to form a film, and the raw material melted by induction heating is used as a crucible side wall. It is characterized in that vapor deposition is performed as non-contact. The atmospheric pressure here is 10 -4 torr.
It may be r or more and less than 1 atm, or 1 atm or more. When performing ion plating, the generated raw material vapor may be ionized.
【0007】[0007]
【作用】コールドクルーシブル法は金属を溶解する技術
なので、溶解条件に応じて金属蒸気を発生する。本発明
はこの蒸気を用いて成膜を行うものである。 (形成膜汚染の防止)るつぼの周囲に配置した誘導コイ
ルに交流電流(例えば、約1kHzの高周波)を印加す
ると交流磁界が発生し、るつぼとその内部の加熱対象
(蒸着原料)にうず電流が誘起される。ここで、両者に
は斥力が働くため、浮揚型では加熱対象はるつぼ内で浮
揚した状態に、半浮揚型では底面のみるつぼと接触し、
側壁とは非接触の起立状態になる。そして、誘起された
うず電流はジュール熱により加熱対象を溶解するのであ
る。従って、加熱対象はるつぼと非接触で又はごく僅か
な接触で溶解されるため、従来問題となったるつぼから
の汚染を抑制することができる。[Function] Since the cold crucible method is a technology for melting a metal, it produces a metal vapor according to the melting conditions. The present invention uses this steam to form a film. (Prevention of formation film contamination) When an alternating current (for example, a high frequency of about 1 kHz) is applied to the induction coil arranged around the crucible, an alternating magnetic field is generated, and an eddy current is generated in the crucible and the heating target (deposition material) inside the crucible. Induced. Here, since repulsive force acts on both, in the levitation type, the heating target is in a state of being levitated in the crucible, and in the semi-levitation type, it contacts the bottom crucible,
The standing state is not in contact with the side wall. Then, the induced eddy current melts the object to be heated by Joule heat. Therefore, the object to be heated is melted without contacting the crucible or with very slight contact, so that the contamination from the crucible, which has been a conventional problem, can be suppressed.
【0008】(溶湯の攪拌による成分の均一化)前述し
たるつぼ内面と加熱対象に働く斥力は、原料溶解後も作
用し続ける。うず電流は原料の電気抵抗が大きいほど表
面に集中する性質があるため、この斥力は溶湯の表面付
近で強く作用する。即ち、原料溶湯内では表面から中心
に向かう力として働き、溶湯内を攪拌することになる。
従って、複数成分の原料を用いた場合、この攪拌により
成分の均一化を図ることができる。また、原理的に溶湯
の全表面をほぼ均一に加熱するため、発生蒸気を均一に
分散し易く、電子ビームを用いた蒸着におけるスキャン
機構を必要としない。(Uniformization of components by stirring molten metal) The repulsive force acting on the inner surface of the crucible and the object to be heated continues to act even after the raw materials are melted. Since the eddy current has the property of concentrating on the surface as the electric resistance of the raw material increases, this repulsive force acts strongly near the surface of the molten metal. That is, in the raw material molten metal, it acts as a force from the surface toward the center and agitates the molten metal.
Therefore, when a raw material of a plurality of components is used, the components can be made uniform by this stirring. In addition, since the entire surface of the molten metal is heated substantially uniformly in principle, it is easy to uniformly disperse the generated vapor, and a scanning mechanism for vapor deposition using an electron beam is not required.
【0009】(10-4torr以上の圧力下における成
膜)さらに、電磁誘導による溶解なので、雰囲気を低圧
にする必要がない。このことは電子ビーム法と決定的に
異なる。チャンバー内の圧力を大きくすると蒸気粒子の
平均自由行程が短くなって散乱する結果、基板上の膜厚
分布が小さくなることが知られているが、電子ビームを
用いた蒸着の場合、チャンバー内の圧力を高めることは
できない。一方、コールドクルーシブル法を用いた本発
明による蒸着では、真空中はもちろん、10-4torr
以上、特に大気圧以上でも成膜することができる。従っ
て、排気手段を用いなくとも蒸着を行うことができ、膜
厚の均一化を図ることができる。蒸着時における圧力や
雰囲気と必要な機構との関係を表1に示す。(Film formation under a pressure of 10 -4 torr or more) Furthermore, since it is melted by electromagnetic induction, it is not necessary to reduce the atmosphere pressure. This is decisively different from the electron beam method. It is known that when the pressure in the chamber is increased, the mean free path of vapor particles is shortened and scattered, and as a result, the film thickness distribution on the substrate is reduced, but in the case of vapor deposition using an electron beam, The pressure cannot be increased. On the other hand, in the vapor deposition according to the present invention using the cold crucible method, not only in the vacuum but also at 10 −4 torr.
As described above, it is possible to form a film even at atmospheric pressure or higher. Therefore, vapor deposition can be performed without using an exhaust means, and the film thickness can be made uniform. Table 1 shows the relationship between the pressure and atmosphere during vapor deposition and the necessary mechanism.
【0010】[0010]
【表1】 [Table 1]
【0011】[0011]
【実施例】以下、本発明の実施例を説明する。 (実施例1)まず、半浮揚型のPVD装置について説明
する。同図に示すように、蒸着原料Mを入れるるつぼ1
と、その外周に配置された誘導コイル2を具え、るつぼ
1の上部に基板ホルダ3が設けられている。るつぼ1は
筒状の側壁1Aと、これとは独立した底面1Bを具えるもの
である。一般には水冷銅に耐火物を取り付けたもので構
成することが好適であるが、基本的にはうず電流が発生
する導体が用いられていればよい。るつぼの底部は溶湯
を支持する部分で、形成される膜の汚染を抑制するた
め、原料Mと同じ材質、または反応しない材質で構成す
ることが好ましい。一方、基板ホルダ3は蒸着膜が形成
される基板Sを保持するもので、るつぼの開口面と平行
に基板Sを装着できるよう配置されている。Embodiments of the present invention will be described below. (Embodiment 1) First, a semi-floating type PVD apparatus will be described. As shown in the figure, a crucible 1 for containing a vapor deposition material M
And the induction coil 2 arranged on the outer periphery thereof, and the substrate holder 3 is provided on the upper part of the crucible 1. The crucible 1 has a cylindrical side wall 1A and a bottom surface 1B independent of the side wall 1A. In general, it is preferable that the refractory is attached to water-cooled copper, but basically, a conductor that generates an eddy current may be used. The bottom of the crucible is a portion that supports the molten metal, and it is preferable that the crucible is made of the same material as the raw material M or a material that does not react with the raw material M in order to suppress contamination of the formed film. On the other hand, the substrate holder 3 holds the substrate S on which the vapor deposition film is formed, and is arranged so that the substrate S can be mounted parallel to the opening surface of the crucible.
【0012】このような装置において、誘導コイル2に
高周波電流を印加すると、交流磁界が発生し、るつぼ1
と原料Mにうず電流が誘起される。このとき、底面1Bに
は誘導コイル2からの交流磁界がほとんど及ばないため
原料Mは底面1Bで支持されているが、側壁1Aと原料Mと
の間は電磁力により反発し合うため、原料Mは側壁1Aと
非接触の状態となり、起立した状態で溶解される。溶解
された原料Mは、上部の液相部M1と、下部でるつぼ底面
に接する固相部M2に別れる。そして、溶解により発生し
た原料蒸気がホルダ3にセットされた基板Sに到達する
ことで膜が形成されるのである。本例の場合、原料Mは
浮揚してるつぼと完全な非接触となるわけではないが、
底面1Bと接触する原料は固相部M2であり、原料の蒸発が
起こる液相部M1への不純物の混入は極めて少ないと考え
られる。なお、基板側にバイアス電圧を印加してもよ
く、前記表1で示したように、雰囲気によって真空引き
機構や加圧機構をもうけてもよい。なお、表1におい
て、圧力が760Torr以上の雰囲気で「(真空引き)」
を記載しているのは、一端空気を抜くためなどに用いる
からである。このような半浮揚型の装置は、原料を浮揚
するほどのエネルギーを必要としないため、エネルギー
効率の点で優れる。In such a device, when a high frequency current is applied to the induction coil 2, an alternating magnetic field is generated and the crucible 1
And an eddy current is induced in the raw material M. At this time, since the AC magnetic field from the induction coil 2 hardly reaches the bottom surface 1B, the raw material M is supported by the bottom surface 1B. However, since the side wall 1A and the raw material M repel each other by an electromagnetic force, the raw material M is supported. Is not in contact with the side wall 1A and is melted in an upright state. The dissolved raw material M is separated into an upper liquid phase portion M1 and a lower solid phase portion M2 which is in contact with the bottom surface of the crucible. Then, the raw material vapor generated by the melting reaches the substrate S set in the holder 3 to form a film. In the case of this example, the raw material M does not float and is not in complete contact with the crucible,
The raw material that comes into contact with the bottom surface 1B is the solid phase portion M2, and it is considered that the mixing of impurities into the liquid phase portion M1 where evaporation of the raw material occurs is extremely small. A bias voltage may be applied to the substrate side, and as shown in Table 1 above, a vacuuming mechanism or a pressurizing mechanism may be provided depending on the atmosphere. In Table 1, "(vacuum)" is set in an atmosphere with a pressure of 760 Torr or more.
Is used because it is used for removing air once. Such a semi-floating device does not require enough energy to levitate the raw material, and is therefore excellent in energy efficiency.
【0013】(実施例2)次に、浮揚型のイオンプレー
ティング装置について説明する。基本的な構成は前記実
施例1と同様であるが、るつぼ5の構成と、基板Sとる
つぼ5の間に高周波コイル8を設けた点が異なる。本例
のるつぼ5は側壁と底面が一体化されており、蒸着時、
原料Mはるつぼ内で完全に浮揚される。るつぼ5の材質
は前記実施例1と同様である。また、図示していない
が、側壁から底面にかけてに軸方向のスリットを複数設
けてるつぼを分割してもよい。この分割数が多い方がよ
り大きい浮揚力と溶湯安定性を得ることができる。そし
て、スリット幅が広いと浮揚力は大きいが溶湯の安定性
が低下する傾向がある。(Second Embodiment) Next, a levitation type ion plating apparatus will be described. The basic configuration is the same as that of the first embodiment, but the configuration of the crucible 5 is different from that of the crucible 5 in that a high-frequency coil 8 is provided between the crucible 5 and the substrate S. In the crucible 5 of this example, the side wall and the bottom surface are integrated,
The raw material M is completely levitated in the crucible. The material of the crucible 5 is the same as that of the first embodiment. Although not shown, the crucible having a plurality of axial slits may be divided from the side wall to the bottom surface. The larger the number of divisions, the larger the levitation force and the stability of the molten metal can be obtained. When the slit width is wide, the levitation force is large, but the stability of the molten metal tends to decrease.
【0014】このような装置において誘導コイル6に高
周波電流を印加すると、るつぼ内面と原料Mの双方にう
ず電流が発生する。このとき、るつぼ内面に流れるうず
電流と原料Mに流れるうず電流は逆方向に流れるため、
これらのうず電流間に生じる電磁力の反発によって原料
Mは浮揚され、さらに原料Mのもつ固有抵抗によりジュ
ール熱を生じて加熱,溶解されるのである。溶解された
原料からは蒸気が発生するが、基板Sに達する途中で、
高周波コイル8の作用により励起され、イオン化されて
から基板Sに到達する。このように、本例によれば原料
Mはるつぼ5と完全に非接触となり、成膜の汚染を防止
することができる。本例の場合、適宜目的に応じたガス
を導入することで、基板上に蒸着原料との化合物を成膜
することも可能である。その場合、表1に示すたよう
に、ガス導入機構、真空引き機構または加圧機構を適宜
設ければよい。また、基板側にバイアス電圧を印加して
もよい。さらに、高周波の代わりに直流バイアスを用い
ることも原理的に可能である。When a high frequency current is applied to the induction coil 6 in such an apparatus, an eddy current is generated on both the inner surface of the crucible and the raw material M. At this time, since the eddy current flowing through the inner surface of the crucible and the eddy current flowing through the raw material M flow in opposite directions,
The raw material M is levitated by the repulsion of the electromagnetic force generated between these eddy currents, and further the Joule heat is generated by the specific resistance of the raw material M to be heated and melted. Although steam is generated from the melted raw material, while reaching the substrate S,
It is excited by the action of the high-frequency coil 8 and reaches the substrate S after being ionized. As described above, according to this example, the raw material M is completely out of contact with the crucible 5, and the contamination of the film formation can be prevented. In the case of this example, it is also possible to form a compound with the vapor deposition material on the substrate by appropriately introducing a gas according to the purpose. In that case, as shown in Table 1, a gas introducing mechanism, a vacuuming mechanism, or a pressurizing mechanism may be provided as appropriate. Also, a bias voltage may be applied to the substrate side. Furthermore, it is possible in principle to use a DC bias instead of a high frequency.
【0015】(試験例)図1の装置を用いて蒸着を行っ
てみた。主な条件は次の通りである。 原料材質:Fe 原料重量:9kg(初期) スカルの外径:127mm 基板材質:SUS304 溶湯温度:約1550℃ 雰囲気 :大気 基板と溶湯間距離:約150mm 電力 :150kw 周波数 :9.9kHz この条件で2分間成膜し、平均成膜速度2nm/sec
を得た。成膜中、溶湯はるつぼの底面にのみ接触し、側
壁には接触していなかった。そして、得られた膜を評価
したところ、一部に酸化がみられるものの、汚染の一種
である異常な介在物は存在しなかった。これらのことよ
り、本発明によれば大気中でも汚染のない成膜が十分可
能であることが確認された。(Test Example) Vapor deposition was performed using the apparatus shown in FIG. The main conditions are as follows. Raw material: Fe Raw material weight: 9 kg (initial) Skull outer diameter: 127 mm Substrate material: SUS304 Molten metal temperature: Approx. 1550 ° C Atmosphere: Air Distance between substrate and molten metal: Approx. 150 mm Electric power: 150 kW Frequency: 9.9 kHz Under these conditions 2 Film formation for 2 minutes, average film formation speed 2 nm / sec
I got During the film formation, the molten metal contacted only the bottom surface of the crucible and not the side wall. When the obtained film was evaluated, oxidation was partially observed, but there was no abnormal inclusion which was a kind of contamination. From these, it was confirmed that the present invention is capable of sufficiently forming a film without pollution even in the air.
【0016】[0016]
【発明の効果】以上説明したように、本発明により蒸着
原料をるつぼ内で浮揚または起立させた状態で溶解する
ことができる。そのため、原料とるつぼとの接触を最小
限に抑え、蒸着される膜の汚染を抑制することができ
る。また、原料が攪拌されることにより、成分の均質化
を図ることができ、得られる膜の均質化を図ることがで
きる。さらに、低圧力でなくとも蒸着ができるため、排
気手段を必要としない。特に大気中でも蒸着ができるた
め、装置の簡略化に伴うコスト低減や、膜厚の均一化が
可能となる。そして、原料を浮揚して溶解できるため、
耐火物の耐熱温度(約1700℃)を越える高融点の金
属も蒸着材料に用いることができる。As described above, according to the present invention, the vapor deposition material can be dissolved in the crucible in a state of being floated or raised. Therefore, contact between the raw material and the crucible can be minimized, and contamination of the deposited film can be suppressed. Further, by stirring the raw material, the components can be homogenized, and the obtained film can be homogenized. Further, since the vapor deposition can be performed even at a low pressure, no exhaust means is needed. In particular, since vapor deposition can be performed even in the atmosphere, cost reduction due to simplification of the device and uniformization of film thickness can be achieved. And because the raw material can be floated and melted,
A metal having a high melting point exceeding the heat resistant temperature of the refractory (about 1700 ° C.) can also be used as the vapor deposition material.
【図1】半浮揚型の本発明PVD装置の概略図である。FIG. 1 is a schematic view of a semi-floating PVD device of the present invention.
【図2】浮揚型の本発明イオンプレーティング装置の概
略図である。FIG. 2 is a schematic view of a floating type ion plating apparatus of the present invention.
1 るつぼ 1A 側壁 1B 底面 2 誘導コイル 3 基板ホルダ 5 るつぼ 6 誘導コイル 7 基板ホルダ 8 高周波コイル M 原料 M1 液相部 M2 固相部 S 基板 1 Crucible 1A Sidewall 1B Bottom 2 Induction coil 3 Substrate holder 5 Crucible 6 Induction coil 7 Substrate holder 8 High frequency coil M Raw material M1 Liquid phase part M2 Solid phase part S Substrate
Claims (8)
けられた誘導加熱装置とを具えることを特徴とするPV
D装置。1. A PV comprising a crucible having a cooling mechanism, a substrate holder located above the crucible, and an induction heating device provided on the outer periphery of the crucible.
D device.
間において、るつぼで溶解されて発生した原料の蒸気を
イオン化する高周波コイルと、 るつぼの外周に設けられた誘導加熱装置とを具えること
を特徴とするイオンプレーティング装置。2. A crucible having a cooling mechanism, a substrate holder located above the crucible, a high frequency coil for ionizing the vapor of the raw material generated by melting in the crucible in the middle of the crucible and the substrate, and an outer periphery of the crucible. An ion plating device comprising: an induction heating device provided.
び加圧機構のうち少なくとも一つを具えることを特徴と
する請求項1記載のPVD装置。3. The PVD apparatus according to claim 1, further comprising at least one of an atmosphere gas introduction mechanism, a vacuum evacuation mechanism and a pressurization mechanism.
び加圧機構のうち少なくとも一つを具えることを特徴と
する請求項2記載のイオンプレーティング装置。4. The ion plating apparatus according to claim 2, comprising at least one of an atmosphere gas introducing mechanism, a vacuuming mechanism and a pressurizing mechanism.
をるつぼの上部に設置した基板に堆積して成膜する蒸着
方法であって、 誘導加熱で溶融した原料をるつぼ側壁と非接触とし、 10-4torr以上1気圧未満の雰囲気で成膜すること
を特徴とする蒸着方法。5. A vapor deposition method in which a raw material is melted in a crucible and vapor generated is deposited on a substrate placed on the upper part of the crucible to form a film, wherein the raw material melted by induction heating is brought into non-contact with the side wall of the crucible. A vapor deposition method comprising forming a film in an atmosphere of 10 −4 torr or more and less than 1 atm.
をるつぼの上部に設置した基板に堆積して成膜する蒸着
方法であって、 誘導加熱で溶融した原料をるつぼ側壁と非接触とし、 1気圧以上の雰囲気で成膜することを特徴とする蒸着方
法。6. A vapor deposition method in which a raw material is melted in a crucible and the generated vapor is deposited on a substrate placed on the upper part of the crucible to form a film, wherein the raw material melted by induction heating is brought into non-contact with the side wall of the crucible. A vapor deposition method characterized by forming a film in an atmosphere of 1 atm or more.
せ、この蒸気をイオン化し、これをるつぼの上部に設置
した基板に堆積して成膜する蒸着方法であって、 誘導加熱で溶融した原料をるつぼ側壁と非接触とし、 10-4torr以上1気圧未満の雰囲気で成膜すること
を特徴とする蒸着方法。7. A vapor deposition method in which a raw material is melted in a crucible to generate steam, the steam is ionized, and the steam is deposited on a substrate placed on the upper part of the crucible to form a film, which is melted by induction heating. A vapor deposition method, characterized in that the above-mentioned raw material is brought into non-contact with the side wall of the crucible and is formed in an atmosphere of 10 -4 torr or more and less than 1 atm.
せ、この蒸気をイオン化し、これをるつぼの上部に設置
した基板に堆積して成膜する蒸着方法であって、 誘導加熱で溶融した原料をるつぼ側壁と非接触とし、 1気圧以上の雰囲気で成膜することを特徴とする蒸着方
法。8. A vapor deposition method in which a raw material is melted in a crucible to generate steam, the steam is ionized, and the steam is deposited on a substrate placed on the upper part of the crucible to form a film, which is melted by induction heating. A vapor deposition method, characterized in that the formed raw material is brought into non-contact with the side wall of the crucible and is formed in an atmosphere of 1 atm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26831394A JPH08104981A (en) | 1994-10-05 | 1994-10-05 | Pvd device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26831394A JPH08104981A (en) | 1994-10-05 | 1994-10-05 | Pvd device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08104981A true JPH08104981A (en) | 1996-04-23 |
Family
ID=17456805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26831394A Pending JPH08104981A (en) | 1994-10-05 | 1994-10-05 | Pvd device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08104981A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1020059C2 (en) * | 2002-02-21 | 2003-08-25 | Corus Technology B V | Method and device for coating a substrate. |
WO2004024977A1 (en) * | 2002-09-11 | 2004-03-25 | Nikko Materials Co., Ltd. | Iron silicide sputtering target and method for production thereof |
WO2006128532A1 (en) * | 2005-05-31 | 2006-12-07 | Corus Technology Bv | Apparatus and method for coating a substrate |
JP2008515133A (en) * | 2004-08-23 | 2008-05-08 | コラス、テクノロジー、ベスローテン、フェンノートシャップ | Apparatus and method for levitating a quantity of conductive material |
US7973267B2 (en) * | 2004-08-23 | 2011-07-05 | Tata Steel Nederland Technology Bv | Apparatus and method for levitation of an amount of conductive material |
WO2012091390A3 (en) * | 2010-12-27 | 2012-08-23 | Posco | Dry coating apparatus |
JP2012214835A (en) * | 2011-03-31 | 2012-11-08 | Hitachi High-Technologies Corp | Vapor deposition apparatus |
KR101359218B1 (en) * | 2011-12-27 | 2014-02-06 | 주식회사 포스코 | Apparatus for floating and heating materials |
KR101375842B1 (en) * | 2011-06-02 | 2014-03-17 | 엘아이지에이디피 주식회사 | Crucible Apparatus, Method for Controlling Crucible Apparatus, Film Thickness Measurement Apparatus, and Film Deposition Equipment with the Same |
KR101489360B1 (en) * | 2013-11-20 | 2015-02-06 | 엘아이지에이디피 주식회사 | Crucible Apparatus |
-
1994
- 1994-10-05 JP JP26831394A patent/JPH08104981A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7323229B2 (en) | 2002-02-21 | 2008-01-29 | Corus Technology Bv | Method and device for coating a substrate |
WO2003071000A1 (en) * | 2002-02-21 | 2003-08-28 | Corus Technology Bv | Method and device for coating a substrate |
NL1020059C2 (en) * | 2002-02-21 | 2003-08-25 | Corus Technology B V | Method and device for coating a substrate. |
JP2005523381A (en) * | 2002-02-21 | 2005-08-04 | コラス・テクノロジー・ベー・ブイ | Method and apparatus for coating a substrate |
US7972583B2 (en) | 2002-09-11 | 2011-07-05 | Jx Nippon Mining & Metals Corporation | Iron silicide sputtering target and method for production thereof |
WO2004024977A1 (en) * | 2002-09-11 | 2004-03-25 | Nikko Materials Co., Ltd. | Iron silicide sputtering target and method for production thereof |
US8173093B2 (en) | 2002-09-11 | 2012-05-08 | Jx Nippon Mining & Metals Corporation | Iron silicide sputtering target and method for production thereof |
KR100689597B1 (en) * | 2002-09-11 | 2007-03-02 | 닛코킨조쿠 가부시키가이샤 | Iron silicide sputtering target and method for production thereof |
JP2008515133A (en) * | 2004-08-23 | 2008-05-08 | コラス、テクノロジー、ベスローテン、フェンノートシャップ | Apparatus and method for levitating a quantity of conductive material |
US7973267B2 (en) * | 2004-08-23 | 2011-07-05 | Tata Steel Nederland Technology Bv | Apparatus and method for levitation of an amount of conductive material |
AU2006254452B2 (en) * | 2005-05-31 | 2010-11-18 | Tata Steel Nederland Technology B.V. | Apparatus and method for coating a substrate |
WO2006128532A1 (en) * | 2005-05-31 | 2006-12-07 | Corus Technology Bv | Apparatus and method for coating a substrate |
US8435352B2 (en) | 2005-05-31 | 2013-05-07 | Tata Steel Nederland Technology Bv | Apparatus and method for coating a substrate |
TWI461553B (en) * | 2005-05-31 | 2014-11-21 | Tata Steel Nederland Technology Bv | Apparatus and method for coating a substrate |
WO2012091390A3 (en) * | 2010-12-27 | 2012-08-23 | Posco | Dry coating apparatus |
US9732423B2 (en) | 2010-12-27 | 2017-08-15 | Posco | Dry coating apparatus |
JP2012214835A (en) * | 2011-03-31 | 2012-11-08 | Hitachi High-Technologies Corp | Vapor deposition apparatus |
KR101375842B1 (en) * | 2011-06-02 | 2014-03-17 | 엘아이지에이디피 주식회사 | Crucible Apparatus, Method for Controlling Crucible Apparatus, Film Thickness Measurement Apparatus, and Film Deposition Equipment with the Same |
KR101359218B1 (en) * | 2011-12-27 | 2014-02-06 | 주식회사 포스코 | Apparatus for floating and heating materials |
KR101489360B1 (en) * | 2013-11-20 | 2015-02-06 | 엘아이지에이디피 주식회사 | Crucible Apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0039406B1 (en) | Process for plasma oxidizing substrates | |
Takikawa et al. | DLC thin film preparation by cathodic arc deposition with a super droplet-free system | |
US4384918A (en) | Method and apparatus for dry etching and electrostatic chucking device used therein | |
US8662010B2 (en) | Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method | |
JPH08104981A (en) | Pvd device | |
KR980011810A (en) | Silicon Carbide Compounds Useful for Plasma Reactors | |
KR20050039709A (en) | Induction heating devices and methods for controllably heating an article | |
JPH10270423A (en) | Etching device | |
JPH06326181A (en) | Apparatus and method for cooling semiconductor wafer | |
TW516074B (en) | Improved coil for sputter deposition | |
US7025863B2 (en) | Vacuum system with separable work piece support | |
JPH05174963A (en) | Float melting device | |
JPH04279044A (en) | Sample-retention device | |
JPH0116765B2 (en) | ||
JP3173693B2 (en) | Plasma processing apparatus and method | |
US4565711A (en) | Method of and apparatus for the coating of quartz crucibles with protective layers | |
KR20070121838A (en) | Sputtering system | |
TW438898B (en) | Film growth method and film growth apparatus capable of forming magnesium oxide film with increased film growth speed | |
JP3050732B2 (en) | Plasma processing equipment | |
US3243493A (en) | Method and apparatus for induction melting | |
TW585931B (en) | Plasma film deposition apparatus capable of stably depositing a variety of materials having a variety of characteristics | |
JPH09118977A (en) | Method for building up thin film | |
JP3647653B2 (en) | Cluster generator | |
JP2000164563A (en) | Plasma processing device | |
JPH03177020A (en) | Etching device |