JPH08103934A - Light-weight resin molding plate using inorganic hollow sphere and manufacture thereof, light-weight woody synthetic powder using the same sphere and manufacture thereof and light-weight woody synthetic plate using the same powder and manufacture thereof - Google Patents

Light-weight resin molding plate using inorganic hollow sphere and manufacture thereof, light-weight woody synthetic powder using the same sphere and manufacture thereof and light-weight woody synthetic plate using the same powder and manufacture thereof

Info

Publication number
JPH08103934A
JPH08103934A JP6241656A JP24165694A JPH08103934A JP H08103934 A JPH08103934 A JP H08103934A JP 6241656 A JP6241656 A JP 6241656A JP 24165694 A JP24165694 A JP 24165694A JP H08103934 A JPH08103934 A JP H08103934A
Authority
JP
Japan
Prior art keywords
inorganic hollow
lightweight
powder
synthetic
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6241656A
Other languages
Japanese (ja)
Other versions
JP3439267B2 (en
Inventor
Sadao Nishibori
貞夫 西堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIN Engineering Co Ltd
Original Assignee
EIN Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIN Engineering Co Ltd filed Critical EIN Engineering Co Ltd
Priority to JP24165694A priority Critical patent/JP3439267B2/en
Publication of JPH08103934A publication Critical patent/JPH08103934A/en
Application granted granted Critical
Publication of JP3439267B2 publication Critical patent/JP3439267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/905Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/87Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2511/00Use of natural products or their composites, not provided for in groups B29K2401/00 - B29K2509/00, as filler
    • B29K2511/14Wood, e.g. woodboard or fibreboard

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To obtain a light-weight woody synthetic plate having a thickness of a wide range from a thin plate having high density, small specific weight and light weight to a thick plate by applying inorganic hollow sphere having small true specific weight to thermoplastic resin molding material, and suppressing the failure rate of the sphere to the minimum limit. CONSTITUTION: 15-50wt.% inorganic hollow sphere is mixed with 50-85wt.% thermoplastic resin molding plate having 30 mesh or less, heated, incorporated, extruded to a molding die 10 by a uniaxial screw 71, and molded in a predetermined thickness. It is annealed by a molding part 21, a restricting force against the extruding force is applied to extruded textile 70 to enhance the density of the textile, thereby obtaining a light-weight resin molding material. A light-weight woody synthetic powder using an inorganic hollow sphere is set to 15wt.% or less of a contained water content, 35-80wt.% thermoplastic resin molding material is mixed with 10-55wt.% cellulose crushed material having a mean particle size of 20 mesh or less, gelatinized and kneaded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真比重が小さい無機質
中空球状体及び熱可塑性樹脂成形材を主たる成形素材と
して軽量化を図った軽量樹脂成形板及びその製造方法、
前記無機質中空球状体及びセルロース系の破砕物を主た
る成形素材とする軽量木質合成粉及びその製造方法、こ
の軽量木質合成粉を用いた軽量木質合成板、及びその製
造方法に関し、より詳しくは、押出成形による無機質中
空球状体を用いた軽量樹脂成形板及びその製造方法、前
記セルロース系の破砕物と無機質中空球状体と熱可塑性
樹脂成形材を押出機で混練して成形ダイより所定の肉厚
に成形して押し出すために用いて好適な軽量木質合成粉
及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a lightweight resin molded plate and a method for producing the same, which are made of an inorganic hollow spherical body having a small true specific gravity and a thermoplastic resin molded material as main molding materials.
A lightweight wooden synthetic powder and a method for producing the same, the inorganic hollow spheres and a cellulosic crushed material as a main molding material, a lightweight wooden synthetic plate using the lightweight wooden synthetic powder, and a method for producing the same, more specifically, extrusion. A lightweight resin molded plate using an inorganic hollow sphere by molding and a method for producing the same, the cellulose-based crushed material, the inorganic hollow sphere and a thermoplastic resin molding material are kneaded with an extruder to a predetermined wall thickness from a molding die. The present invention relates to a light weight synthetic wood powder suitable for molding and extrusion and a method for producing the same.

【0002】特に、無機質中空球状体は、近年、セメン
ト成形品、ロックウール天井材などの無機建材、FRP
などの樹脂部材、塗料等の軽量化、断熱保温、収縮防止
を図り、あるいは耐摩耗性、耐候性の向上を図る充填材
として脚光を浴びており、主としてガラスバルーン、シ
ラスバルーン等の中空ガラス球状体が多く使用されてい
る(この中空ガラス球状体の製法は特公昭36−125
77号公報、特公昭48−17645号公報、特公平4
−50264号公報を参照できる)。しかし、中空ガラ
ス球状体は他の材料と混合分散する過程で破損しやすい
という難点があり、できるだけ破損せずに他の材料に効
果的に混合分散する手段の開発が求められていた。
In particular, inorganic hollow spheres have recently been used for cement building products, inorganic building materials such as rock wool ceiling materials, and FRP.
It is in the spotlight as a filling material that aims to reduce the weight of resin members, paints, etc., heat insulation and insulation, and to prevent shrinkage, or to improve abrasion resistance and weather resistance. Hollow glass spheres such as glass balloons and shirasu balloons are mainly used. A lot of bodies are used (the manufacturing method of this hollow glass spherical body is Japanese Patent Publication No. 36-125).
77, Japanese Patent Publication No. 48-17645, Japanese Patent Publication No. 4
-50264). However, the hollow glass spheres have a drawback that they are easily damaged in the process of mixing and dispersing with other materials, and there has been a demand for development of means for effectively mixing and dispersing in other materials without causing damage.

【0003】さらに、前記セルロース系の破砕物および
熱可塑性樹脂成形材は、一方又は双方が、建築廃材料あ
るいは、自動車、家庭電気製品を始め、生活の多様化に
伴い、日用品など広範な用途に向けて多種類、かつ多量
に用いられ、多量に廃棄されており、これら各種熱可塑
性合成樹脂製品の廃材を再利用し、これに無機質中空球
状体を加えて軽量化した軽量樹脂成形板及び軽量木質合
成成形材としてリサイクルするための方法に関するもの
である。
Further, one or both of the cellulosic crushed material and the thermoplastic resin molding material are used in a wide range of applications such as construction waste materials, automobiles, household electric appliances, and daily necessities with the diversification of life. A wide variety of products are used in large quantities, and a large amount of them are discarded. Waste materials of these various thermoplastic synthetic resin products are reused, and inorganic hollow spheres are added to them to reduce the weight. The present invention relates to a method for recycling as a synthetic wood molding material.

【0004】従前から、この種の木粉類をベースとした
成形樹脂製品の開発は、耐水性、断熱性等を向上する目
的において、種々行われ、特に近年における地球環境の
保全の要請からする森林資源の確保の見地、及び木材コ
ストの高騰そして、木材製品に対する感覚的な根強い潜
在需要からして、セルロース系の破砕物および熱可塑性
樹脂成形材を押出機で混練して成形ダイで成形する木質
合成板の開発が要請されている。
Conventionally, the development of molded resin products based on this type of wood powder has been carried out in various ways for the purpose of improving water resistance, heat insulation, etc., and in particular, in response to the recent demand for preservation of the global environment. From the standpoint of securing forest resources, rising cost of wood, and perceptually strong potential demand for wood products, cellulosic crushed materials and thermoplastic resin molding materials are kneaded with an extruder and molded with a molding die. Development of a wood synthetic board is required.

【0005】しかしながら、従来この種の木質合成板の
押出成形においては、セルロース系の破砕物、たとえ
ば、木材を粉砕して得た木粉、籾穀、バカス、破砕チッ
プ材、パルプ材などセルロース系の破砕物を混入し成形
する際に前記セルロース系の破砕物の流動性や、セルロ
ース系破砕物例えば、木粉と樹脂素材の分散性など、木
粉の性質が押出成形時に与える影響が大きいものであっ
た。
However, in the conventional extrusion molding of this type of wood-based synthetic board, cellulosic crushed materials such as wood powder, rice grain, bacas, crushed chips and pulp materials obtained by crushing wood are used. The fluidity of the cellulosic crushed material when mixing and crushing the crushed material, and the crushed material of the cellulose type, such as the dispersibility of the wood powder and the resin material, has a great influence on the properties of the wood powder during extrusion. Met.

【0006】すなわち、これら木粉を始め、セルロース
系破砕物の流動時における摩擦抵抗が大きいことや、樹
脂素材との馴染みが悪いことが、成形された木質合成板
内の木粉の組織を粗密にし密度の不均一を生じさせる原
因となり、また、木粉と樹脂を押出機に充填加熱した場
合、混入木粉から多量の水蒸気ないしは木酸ガスが発生
することが、押出機内壁面の腐食、成形ダイ、成形型等
の損耗をもたらし、また成形された木質合成板自体の表
面の荒れ、気泡、巣等を生じさせる原因となり、押出成
形に種々の問題を生じさせるものであった。
[0006] That is, the fact that the frictional resistance of these wood powders and other cellulosic crushed materials during flow is large and that they are not well compatible with the resin material, the texture of the wood powders in the molded wood synthetic board is coarse and dense. If the wood powder and resin are filled and heated in the extruder, a large amount of steam or wood acid gas will be generated from the mixed wood powder, which may cause corrosion or molding of the inner wall of the extruder. This causes wear of a die, a molding die, and the like, and also causes roughening of the surface of the molded wooden synthetic board itself, bubbles, cavities, and the like, which causes various problems in extrusion molding.

【0007】セルロース系破砕物の内、木粉について
は、上述した建築廃材、又製材工程、木工工程の鋸屑な
どの廃材、その他の原料木材をインペラーミルやボール
ミルなどの粉砕機によって衝撃、剪断、摩擦などの作用
により粉砕して得られる木粉は、毛羽立っており、しか
も繊維状に細長い木粉が多数含まれていたり、樹脂素
材、溶剤、溶液に対する分散性が極端に悪く、また木粉
の保管の過程でも凝集を生じやすく、特に樹脂素材に混
入して木質合成板を成形する場合、凝集する欠点を有す
るものであった。そこで、この木粉の角張っている部
分、突き出している部分、繊毛状のヒゲ部分などを粉砕
用ボール間での摩擦による粉砕によって球形あるいは球
形類似の粒状に変形するなどして、比較的流動性や分散
性の良い木粉が成形されている。
Among the cellulose-based crushed materials, wood powder is impacted, sheared, and crushed by the above-mentioned construction waste materials, waste materials such as sawdust in the lumbering process and woodworking process, and other raw wood by a crusher such as an impeller mill or a ball mill. The wood powder obtained by crushing by an action such as rubbing is fluffy and contains many long and narrow fibrous wood powders, and the dispersibility in resin materials, solvents and solutions is extremely poor. Agglomeration is likely to occur even during the storage process, and particularly when mixed with a resin material to form a synthetic wood board, it has a drawback of agglomeration. Therefore, the angular portion, protruding portion, cilia-shaped beard portion, etc. of this wood powder are deformed into spherical or spherical-like particles by crushing due to friction between the crushing balls, so that they are relatively fluid. And wood powder with good dispersibility is molded.

【0008】さらに、前述したように流動性や分散性の
点で木粉自体の改良を図ることはさることながら、木質
合成板の成形時における木粉と熱可塑性樹脂成形材との
馴染みを良くし混練状態を良好に維持することは、木粉
に比して摩擦抵抗の小さい熱可塑性樹脂成形材により木
粉の摩擦抵抗を減じて均一で密度の高い木質合成板を成
形するために大きな要素となるものであった。
Further, as described above, the wood powder itself is improved in terms of fluidity and dispersibility, and at the same time, the wood powder and the thermoplastic resin molding material are well acclimated to each other during molding of the synthetic wood board. To maintain a good kneading and kneading state is a major factor for forming a uniform and dense wood composite board by reducing the friction resistance of wood powder with a thermoplastic resin molding material that has a smaller friction resistance than wood powder. It was something that

【0009】[0009]

【従来の技術】従来のシラスバルーンなどの中空軽量化
材を樹脂に混入した成形品は、高速度の対流混合を利用
した混合機を使用し、材料の分散を図っており、また、
木粉と樹脂を混合した木質合成板については、成形方法
においても、特公平3−59804及び特公平4−72
83号など種々の技術が開示されており、実用化される
に至っているが、木粉と樹脂及び中空軽量化材を混合し
た木質合成板については未だ実用的な手段が開発される
にはいたっていない。
2. Description of the Related Art Molded articles in which hollow lightweight materials such as conventional shirasu balloons are mixed with resin are dispersed by using a mixer utilizing high-speed convection mixing.
Regarding the wooden synthetic board in which the wood powder and the resin are mixed, Japanese Patent Publication No. 3-59804 and Japanese Patent Publication No.
Various techniques such as No. 83 have been disclosed and have been put to practical use, but a practical means has not yet been developed for a wood-based synthetic board in which wood powder, a resin, and a hollow lightweight material are mixed. Not in.

【0010】[0010]

【発明が解決しようとする課題】成形品の重量を軽くす
るなどの目的のために、真比重の小さい中空軽量化材を
樹脂に混合するとしても、アイリッヒミキサーなどにお
ける混合時、また、押出し成形時、前記無機質中空球状
体が大量に破損し、効率が悪いという欠点がある。
Even if a hollow weight-reducing material having a small true specific gravity is mixed with a resin for the purpose of reducing the weight of a molded product, it can be extruded at the time of mixing in an Eirich mixer or the like. There is a disadvantage that the above-mentioned inorganic hollow spheres are damaged in large quantity during molding, resulting in poor efficiency.

【0011】また、従来の木質合成板の主な成形素材で
ある木粉の真比重は1.4、熱可塑性樹脂成形材の真比
重は0.9〜1.5程度(材質により異なる)であるの
で、これらの木粉と熱可塑性樹脂成形材とを混練して成
形した従来の木質合成板は、木粉と熱可塑性樹脂成形材
との混合割合及び熱可塑性樹脂成形材により異なるが、
比重が0.97〜1.48となり、一般の木材の板材
(例えば、ベニヤ板のような合板の比重は0.45〜
0.75)に比較して木質合成板の真比重が大きい、す
なわち従来の木質合成板は重いという問題点があった。
Further, the true specific gravity of wood powder, which is the main molding material of conventional wood-based synthetic boards, is 1.4, and the true specific gravity of thermoplastic resin molding materials is about 0.9 to 1.5 (depending on the material). Therefore, the conventional wood-based synthetic board formed by kneading the wood powder and the thermoplastic resin molding material is different depending on the mixing ratio of the wood powder and the thermoplastic resin molding material and the thermoplastic resin molding material,
The specific gravity is 0.97 to 1.48, and the general wood plate material (for example, plywood such as plywood has a specific gravity of 0.45 to 0.45).
0.75) has a problem that the true specific gravity of the wooden synthetic board is large, that is, the conventional wooden synthetic board is heavy.

【0012】ちなみに、熱可塑性樹脂成形材としてPP
(ポリプロピレン)の真比重は0.90〜0.91で、
硬質PVC(硬質塩化ビニル)の真比重は1.35〜
1.45であり、熱可塑性樹脂成形材の大部分は0.9
〜1.5程度の範囲にあるが、塩化ビニリデン(真比重
が1.68〜1.75)、フッ素樹脂(真比重が2.1
〜2.2)のように真比重の高い樹脂もある。一例とし
て、熱可塑性樹脂成形材PP25wt%と木粉75wt%を
混練して成形された木質合成板の比重は1.23程度に
なる。
Incidentally, PP is used as a thermoplastic resin molding material.
The true specific gravity of (polypropylene) is 0.90 to 0.91,
The true specific gravity of rigid PVC (hard vinyl chloride) is 1.35
1.45, and most of the thermoplastic resin molding materials are 0.9
Although it is in the range of about 1.5, vinylidene chloride (true specific gravity: 1.68 to 1.75), fluororesin (true specific gravity: 2.1
There is also a resin having a high true specific gravity such as ~ 2.2). As an example, the specific gravity of the wood synthetic board formed by kneading 25 wt% of the thermoplastic resin molding material and 75 wt% of wood powder is about 1.23.

【0013】本発明は叙上の問題点を解決するために開
発されたもので、熱可塑性樹脂成形材に真比重の小さい
無機質中空球状体を加え、この無機質中空球状体の破損
率を最小限に抑えるようにした軽量樹脂成形板及びその
製造方法、さらに、熱可塑性樹脂成形材が熱的、化学的
に安定した木粉粒に固定化された状態を定常的に維持し
得るようにして木粉と熱可塑性樹脂成形材と無機質中空
球状体との混合、分散状態を定常的に維持すべく、良好
なる流動性を与える軽量木質合成粉と、当該軽量木質合
成粉の製造方法を提供し、さらに前記軽量木質合成粉を
用いて、無機質中空球状体とを混合、分散して押出機へ
供給し押出成形時、木粉と樹脂と無機質中空球状体との
馴染みを良好に保ち、木粉周辺に、気泡、巣等の発生を
抑え、木粉間及び無機質中空球状体間との密度を均一で
高密度でしかも比重の小さい軽量な薄板から厚板の広範
囲に及ぶ肉厚を有する軽量木質合成板並びに当該軽量木
質合成板の製造方法を提供することを目的とする。
The present invention was developed in order to solve the above problems, and an inorganic hollow sphere having a small true specific gravity is added to a thermoplastic resin molding material to minimize the damage rate of the inorganic hollow sphere. And a method for producing the same, and a thermoplastic resin molding material capable of steadily maintaining the thermally and chemically stable state of being immobilized on wood powder particles. Mixing powder and thermoplastic resin molding material and inorganic hollow spheres, in order to constantly maintain the dispersed state, a lightweight wooden synthetic powder that gives good fluidity, and a method for producing the lightweight wooden synthetic powder, Further, by using the lightweight woody synthetic powder, the inorganic hollow spheres are mixed, dispersed and supplied to the extruder, and at the time of extrusion molding, the familiarity between the wood powder, the resin and the inorganic hollow spheres is maintained well, and the wood flour surroundings In addition, it suppresses the generation of bubbles, nests, etc. To provide a lightweight wood synthetic board having a wide range of thickness from a light weight thin plate to a thick board, which has a uniform density with a hollow hollow spherical body and has a small specific gravity, and a method for producing the lightweight wood synthetic board. With the goal.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の軽量樹脂成形板は、30メッシュ以下の熱
可塑性樹脂成形材50〜85wt%に無機質中空球状体1
5〜50wt%を混入し、加熱、練成し、1軸のスクリュ
ーをもって成形ダイへ押出して所定の肉厚に成形し、且
つ前記成形部で徐冷して押出し、且つ、この押出し生地
に押出し力に抗する抑制力を加えて押出し生地の密度を
高くして成ることを特徴とする。
In order to achieve the above object, the lightweight resin molding plate of the present invention comprises a thermoplastic resin molding material of 30 mesh or less in 50 to 85 wt% of an inorganic hollow spherical body 1.
5 to 50 wt% is mixed, heated and kneaded, extruded into a molding die with a single screw to form a predetermined thickness, and slowly cooled and extruded in the forming section, and extruded into this extruded dough. It is characterized in that it is formed by increasing the density of the extruded dough by adding a suppressing force against the force.

【0015】また、製造方法においては、30メッシュ
以下の好ましくは無機質中空球状体と略同等もしくはこ
れ以下の粒径の熱可塑性樹脂成形材50〜85wt%に無
機質中空球状体15〜50wt%を混入し、加熱、練成
し、1軸のスクリューをもって内壁面にフッ素樹脂のシ
ートを貼設又はフッ素樹脂をコーティングした成形ダイ
の成形部へ押出して所定の肉厚に押出し成形し、且つ前
記成形部で徐冷して押出し、且つ、この押出し生地に押
出し力に抗する抑制力を加えて押出し生地の密度を高く
したことを特徴とする。
In the manufacturing method, the inorganic hollow spheres are mixed in an amount of 50 to 85 wt% of the thermoplastic resin molding material having a particle size of 30 mesh or less, preferably substantially the same as or smaller than that of the inorganic hollow spheres. Then, heat and knead, stick a sheet of fluororesin on the inner wall surface with a single screw, or extrude into a molding portion of a molding die coated with fluororesin to extrude to a predetermined wall thickness, and the molding portion It is characterized by increasing the density of the extruded dough by gradually cooling with and extruding, and by applying a suppressing force against the extruding force to the extruded dough.

【0016】また、本発明の無機質中空球状体を用いた
軽量木質合成粉は、含有水分量を15wt%以内とし平均
粒径20メッシュ以下のセルロース系破砕物10〜55
wt%に対して熱可塑性樹脂成形材35〜80wt%を混
合、ゲル化混練し、冷却、粉砕し整粒して成る木質合成
粉に無機質中空球状体10〜45wt%を混合分散したこ
とを特徴とする。
The light weight synthetic wood powder using the inorganic hollow spheres of the present invention has a water content of 15 wt% or less and an average particle size of 20 mesh or less cellulosic crushed product 10-55.
Characteristic is that 10% to 45% by weight of inorganic hollow spheres are mixed and dispersed in a woody synthetic powder obtained by mixing 35% to 80% by weight of a thermoplastic resin molding material, gelling and kneading, cooling, crushing and sizing. And

【0017】上記木質合成粉の製造方法は、含有水分量
を15wt%以内とし平均粒径20メッシュ以下のセルロ
ース系破砕物10〜55wt%に対して熱可塑性樹脂成形
材35〜80wt%をともに攪拌衝撃翼により混合して、
摩擦熱によりゲル化混練し、冷却、粉砕し整粒して木質
合成粉を得る工程と、前記木質合成粉に無機質中空球状
体10〜45wt%を加え、混合、分散する工程を少なく
とも含むことを特徴とする。
In the above method for producing a woody synthetic powder, the content of water content is within 15 wt% and the thermoplastic resin molding material is agitated together with 10 to 55 wt% of the cellulosic crushed material having an average particle size of 20 mesh or less. Mix by impact wing,
At least including a step of kneading by gelling by frictional heat, cooling, pulverizing and sizing to obtain a woody synthetic powder, and a step of adding 10 to 45 wt% of inorganic hollow spheres to the woody synthetic powder, and mixing and dispersing. Characterize.

【0018】上記方法にあって、前記セルロース系破砕
物に、熱可塑性樹脂成形材を攪拌衝撃翼により混合し
て、摩擦熱によりゲル化混練し、冷却し、粉砕して無機
質中空球状体と略同等もしくはこれ以下の粒径に整粒す
る工程を経ることができ、この場合分散が良好となる。
In the above method, the crushed cellulosic material is mixed with a thermoplastic resin molding material by a stirring impact blade, gelled and kneaded by frictional heat, cooled, and pulverized to form an inorganic hollow spherical body. It is possible to go through the step of adjusting the particle size to the same or smaller, and in this case, the dispersion becomes good.

【0019】また、上記混合比は、前記セルロース系破
砕物と無機質中空球状体の合計を20〜65wt%、前記
熱可塑性樹脂成形材を35〜80wt%とすることができ
る。
Further, the above mixing ratio can be such that the total amount of the cellulosic crushed product and the inorganic hollow spheres is 20 to 65 wt% and the thermoplastic resin molding material is 35 to 80 wt%.

【0020】さらに、前記セルロース系破砕物と無機質
中空球状体の合計を20〜65wt%、前記熱可塑性樹脂
成形材を35〜80wt%とし、前記セルロース系破砕物
と無機質中空球状体を同一の重量割合とすることが分散
上好ましい。
Further, the total amount of the cellulosic crushed product and the inorganic hollow spheres is 20 to 65 wt%, the thermoplastic resin molding material is 35 to 80 wt%, and the cellulosic crushed product and the inorganic hollow sphere are the same weight. It is preferable to set the ratio in terms of dispersion.

【0021】また、同様の理由で前記熱可塑性樹脂成形
材が60メッシュ以下の好ましくは、微粉状とする。
For the same reason, the thermoplastic resin molding material is preferably 60 mesh or less, preferably in the form of fine powder.

【0022】さらに、本発明の軽量木質合成粉を用いた
軽量木質合成板は、含有水分量を15wt%以内とし平均
粒径20メッシュ以下のセルロース系破砕物10〜55
wt%に対して熱可塑性樹脂成形材35〜80wt%を混
合、ゲル化混練し、冷却、粉砕し整粒して成る木質合成
粉に無機質中空球状体10〜45wt%を混合、分散して
得た軽量木質合成粉を加熱、練成し、1軸のスクリュー
をもって成形ダイへ押出して成ることを特徴とする。
Further, the lightweight wooden synthetic board using the lightweight wooden synthetic powder of the present invention has a water content of 15 wt% or less and an average particle size of 20 mesh or less cellulosic crushed material 10-55.
Thermoplastic resin molding material 35 to 80 wt% is mixed with wt%, gelled, kneaded, cooled, pulverized and sized to obtain a wood synthetic powder mixed with inorganic hollow spheres 10 to 45 wt% and dispersed. It is characterized in that the lightweight synthetic wood powder is heated and kneaded and is extruded into a molding die with a single screw.

【0023】また、その製造方法にあっては、含有水分
量を15wt%以内とし平均粒径20メッシュ以下のセル
ロース系破砕物10〜55wt%に対して熱可塑性樹脂成
形材35〜80wt%をともに攪拌衝撃翼により混合し
て、摩擦熱によりゲル化混練し、冷却し、粉砕して整粒
形成した木質合成粉に無機質中空球状体10〜45wt%
を加え、混合、分散して得た軽量木質合成粉を加熱、練
成し、1軸のスクリューをもって成形ダイへ押出す工程
を少なくとも含むことを特徴とする。
Further, in the manufacturing method thereof, the content of water content is within 15 wt% and the thermoplastic resin molding material is added together with 35 to 80 wt% of the cellulosic crushed material having an average particle size of 20 mesh or less to 10 to 55 wt%. 10-45 wt% inorganic hollow spheres in wood-based synthetic powder that is mixed by a stirring impact blade, gelled by friction heat, kneaded, cooled, and crushed to form sized particles
Is added, mixed and dispersed to heat and knead the light weight synthetic wood powder, and the mixture is extruded into a molding die with a single screw.

【0024】さらに、前記方法において、成形ダイへ押
出した押出し生地を徐冷し、且つ、この押出し生地に押
出し力に抗する抑制力を加えて押出し生地の密度を高く
する工程を経ることが無機質中空球状体の破損部分にお
ける圧密を促進するうえで望ましい。
Further, in the above-mentioned method, the extruded dough extruded to the forming die is gradually cooled, and a suppressing force against the extruding force is applied to the extruded dough to increase the density of the extruded dough. It is desirable for promoting compaction at the damaged part of the hollow sphere.

【0025】また、前記押出し生地を、内壁面にフッ素
樹脂のシートを貼設又はフッ素樹脂をコーティングした
成形ダイの成形部へ押出して押出し成形することが好ま
しい。
Further, it is preferable to extrude the extruded material by extruding the extruded material into a molding portion of a molding die having a fluororesin sheet attached to the inner wall surface or coated with the fluororesin.

【0026】さらに、前記スクリューの基部から先端へ
のスクリュー溝部の深さの変化を浅くして、例えば、基
部で10mmから先端部において7mm程度のものとして、
前記無機質中空球状体の破損率を低下させることができ
る。
Further, the depth of the screw groove portion from the base to the tip of the screw is shallowly changed, for example, from 10 mm at the base to about 7 mm at the tip.
The breakage rate of the inorganic hollow spheres can be reduced.

【0027】また、前記成形ダイへの押出しは、成形ダ
イの成形部の成形室の高さと同等以下の高さを有する方
形の射出口を形成し、且つ、この射出口に向けて徐々に
狭く断面変化するよう形成した押出ダイにより行うこと
ができる。
Further, the extrusion into the molding die forms a rectangular injection port having a height equal to or lower than the height of the molding chamber of the molding portion of the molding die, and gradually narrows toward this injection port. It can be performed by an extrusion die formed so as to change the cross section.

【0028】無機質中空球状体は、殻構造を持ったほぼ
球状に近い無機質の中空体であり、シラス、真珠岩、黒
曜岩等の天然原料から製造されたシラスバルーン、パー
ライト、フライアッシュバルーン等があり、あるいはホ
ウケイ酸ソーダ、アルミナ等の人工原料から製造された
ガラスバルーン、アルミナバブル等がある。軽量木質合
成板の軽量化を図る点でガラス質のシラスバルーンまた
はガラスバルーン、耐圧性を考慮すれば、ガラスバルー
ンが好ましく、粒径は、(U.S.)100メッシュ以
下好ましくは、140メッシュ以下である。
The inorganic hollow spherical body is an inorganic hollow body having a shell structure and having a substantially spherical shape, and is made of natural materials such as shirasu, pearlite, obsidian, etc., shirasu balloon, pearlite, fly ash balloon and the like. Or glass balloons and alumina bubbles manufactured from artificial raw materials such as sodium borosilicate and alumina. In consideration of pressure resistance, a glassy shirasu balloon or a glass balloon in terms of reducing the weight of a lightweight wooden synthetic board, a glass balloon is preferable, and a particle size is (US) 100 mesh or less, preferably 140 mesh. It is the following.

【0029】熱可塑性樹脂成形材は、廃棄された各種の
樹脂成形品から回収し熱可塑性樹脂成形材として素材化
した、半硬質又は軟質塩化ビニル又はPVC(ポリ塩化
ビニル)、PET(ポリエステル)、PP(ポリプロピ
レン)、PC(ポリカーボネート)、PE(ポリエチレ
ン)、PTO等の樹脂の一種又はこれらの数種の混合し
たものを用いることができる。
The thermoplastic resin molding material is a semi-rigid or soft vinyl chloride or PVC (polyvinyl chloride), PET (polyester), recovered from various discarded resin moldings and used as a material for the thermoplastic resin molding material. One of resins such as PP (polypropylene), PC (polycarbonate), PE (polyethylene), and PTO, or a mixture of several kinds thereof can be used.

【0030】また、熱可塑性樹脂成形材は、熱可塑性合
成樹脂製品の廃材から得られた回収熱可塑性樹脂成形材
を再利用したもの、あるいはバージンの熱可塑性樹脂を
投入し、あるいはバージンの熱可塑性樹脂と前記回収熱
可塑性樹脂成形材をそれぞれ適宜量、例えば50%ずつ
混合したもの用いることもできる。
As the thermoplastic resin molding material, recycled thermoplastic resin molding material obtained from waste material of thermoplastic synthetic resin product is reused, or virgin thermoplastic resin is added, or virgin thermoplastic resin is used. It is also possible to use a mixture of the resin and the recovered thermoplastic resin molding material in appropriate amounts, for example, 50% each.

【0031】なお、熱可塑性樹脂成形材は30メッシュ
以下のパウダー状とし、無機質中空球状体を熱可塑性樹
脂成形材に良好に分散するという点で、60メッシュ以
下であることが好ましい。
The thermoplastic resin molding material is preferably powder of 30 mesh or less, and 60 mesh or less from the viewpoint that the inorganic hollow spheres are well dispersed in the thermoplastic resin molding material.

【0032】[0032]

【作用】本発明の無機質中空球状体を用いた軽量樹脂成
形板の製造方法においては、30メッシュ以下好ましく
は無機質中空球状体と略同等もしくはこれ以下の粒径の
熱可塑性樹脂成形材50〜85wt%に無機質中空球状体
15〜50wt%を混合し押出機へ投入すると、無機質中
空球状体と熱可塑性樹脂成形材は1軸のスクリューをも
って成形ダイへ押出す過程で、スクリュー溝に沿って輸
送されながら加熱され漸次溶融して混練されて押出し生
地となる。1軸のスクリューをもって成形ダイへ押出す
ので、多軸のスクリューとは異なり無機質中空球状体に
加わるスクリューの剪断力は小さく、しかも前記1軸の
スクリューをスクリュー溝の深さの基部から先端への絞
り変化を少なくしたので、このスクリュー溝に沿って輸
送される押出し生地内の無機質中空球状体に加わる圧力
は極端に増加しない。したがって、通常の1軸のスクリ
ューに比して無機質中空球状体の破損率が低下する。
In the method for producing a lightweight resin molded plate using the inorganic hollow spheres of the present invention, a thermoplastic resin molding material having a particle size of 30 mesh or less, preferably about the same as or smaller than the inorganic hollow spheres, is used. % Inorganic hollow spheres 15 to 50 wt% are mixed and put into an extruder, the inorganic hollow spheres and the thermoplastic resin molding material are transported along the screw groove in the process of being extruded to the molding die with a single screw. While being heated, it is gradually melted and kneaded to form an extruded dough. Since it is extruded into the molding die with a single screw, the shearing force of the screw applied to the inorganic hollow spherical body is small unlike the multi-screw screw, and the single screw is moved from the base of the depth of the screw groove to the tip. Due to the reduced throttling, the pressure exerted on the inorganic hollow spheres in the extruded dough transported along this screw groove does not increase extremely. Therefore, the breakage rate of the inorganic hollow spheres is lower than that of a normal single screw.

【0033】しかも、30メッシュ以下の粒径の熱可塑
性樹脂成形材に無機質中空球状体を混合すると無機質中
空球状体が熱可塑性樹脂成形材内に良く分散した状態で
混練され、特に、無機質中空球状体と略同等もしくはこ
れ以下の粒径の熱可塑性樹脂成形材に無機質中空球状体
を混入することにより、熱可塑性樹脂成形材が各無機質
中空球状体間に満遍なく侵入し、より一層良好な分散状
態で混合されるので、押出機内で良好な混練状態を保ち
ながら押し出される。
Moreover, when the inorganic hollow spheres are mixed with the thermoplastic resin molding material having a particle size of 30 mesh or less, the inorganic hollow spheres are kneaded in a state in which they are well dispersed in the thermoplastic resin molding material. By mixing inorganic hollow spheres into a thermoplastic resin molding material having a particle size approximately equal to or smaller than that of the body, the thermoplastic resin molding material penetrates evenly between the inorganic hollow spheres, resulting in a better dispersed state. Since it is mixed with, it is extruded while maintaining a good kneading state in the extruder.

【0034】次いで、押出し生地は押出ダイを経て成形
ダイへ押し出される。押出ダイは成形ダイの成形部の成
形室の高さと同等以下の高さを有する方形の射出口を形
成し且つこの射出口に向けて徐々に狭く断面変化するよ
う形成しているので、この押出ダイで目詰まりが生じる
ことはなく、むしろ射出口から多量の押出し生地が吐出
されるため、押出し生地内の無機質中空球状体にかかる
圧力を極端に高くすることがなく無機質中空球状体の破
損率を低下することに寄与する。
Next, the extruded material is extruded into a forming die through an extrusion die. Since the extrusion die has a rectangular injection port having a height equal to or less than the height of the molding chamber of the molding section of the molding die and is formed so as to gradually change its cross section toward this injection port, There is no clogging in the die, and rather a large amount of extruded dough is discharged from the injection port, so the pressure applied to the inorganic hollow spheres in the extruded dough does not become extremely high and the damage rate of the inorganic hollow spheres is high. Contribute to lowering.

【0035】押出し生地は、内面に摩擦抵抗の小さいフ
ッ素樹脂のシートを貼設又はフッ素樹脂をコーティング
した成形ダイの成形部へ押出され、押出し生地内の無機
質中空球状体は大きな抵抗を受けることなく円滑に流動
し、均一で高密度の混練状態を保ちながら成形ダイで徐
令され成形板が押し出される。また、押出し成形時のス
クリューの剪断力により一部の無機質中空球状体が破損
したとしても、前記成形板に対して押出し力に抗する抑
制力を加えているので、成形ダイ内の押出し生地に抑制
力が加わるため、破損した無機質中空球状体から洩れた
気体による気泡、巣等の発生を防ぐことができ、均一で
高密度で軽量な無機質中空球状体を用いた軽量樹脂成形
板が成形される。
The extruded material is extruded to the molding portion of a molding die having a fluororesin sheet having a small frictional resistance attached to the inner surface or coated with the fluororesin, and the inorganic hollow spherical body in the extruded material does not receive a large resistance. While smoothly flowing and maintaining a uniform and high-density kneaded state, the molded plate is gradually extruded by a molding die and extruded. Further, even if some of the inorganic hollow spherical body is damaged by the shearing force of the screw at the time of extrusion molding, since the suppressing force against the extrusion force is added to the molding plate, the extrusion dough in the molding die is Since the suppression force is applied, it is possible to prevent the generation of bubbles, cavities, etc. due to the gas leaking from the damaged inorganic hollow spherical body, and a lightweight resin molded plate using a uniform, high-density and lightweight inorganic hollow spherical body is formed. It

【0036】本発明の無機質中空球状体を用いた軽量木
質合成粉の製造方法においては、木粉の粒径を熱可塑性
樹脂成形材とのなじみを良好とし、ゲル化混練及び成形
押し出し時における木粉の摩擦抵抗を減じ成形機の損
耗、毀損の防止を図るため、平均粒径20メッシュ以下
とする顆粒ないし粉末状とし、ゲル化混練及び成形時に
おける木酸ガスを揮散し、水蒸気あるいは気泡発生を減
少し、表面の肌荒れを防止する意図からその含有水分量
を15wt%以内、好ましくは11wt%以内、理想的には
8wt%の範囲内とするものである。
In the method for producing a light weight synthetic wood powder using the inorganic hollow spheres of the present invention, the grain size of the wood powder is made to be well compatible with the thermoplastic resin molding material, and the wood is used at the time of gel kneading and molding extrusion. In order to reduce the frictional resistance of the powder and prevent the wear and damage of the molding machine, make granules or powders with an average particle size of 20 mesh or less, volatilize the wood acid gas during gelation kneading and molding, and generate steam or bubbles. In order to reduce the surface roughness and prevent the surface from being roughened, the water content is within 15 wt%, preferably within 11 wt%, and ideally within 8 wt%.

【0037】セルロース系破砕物は、攪拌衝撃翼により
破砕、且つ、攪拌衝撃翼及び原料自体の摩擦熱により乾
燥され、また熱可塑性樹脂成形材は、攪拌衝撃翼により
前記セルロース系破砕物と混練され、原料自体の摩擦熱
により混合分散に際しても凝集したりせずに混練されゲ
ル化し、ついで攪拌衝撃翼の回転を低速にして前記原材
料中の熱可塑性樹脂成形材の凝固点すなわち融点近傍
(融点+10°C)まで冷却されながら造粒され造粒木
粉を得る。
The cellulosic crushed material is crushed by the stirring impact blade and dried by frictional heat of the stirring impact blade and the raw material itself, and the thermoplastic resin molding material is kneaded with the cellulose crushed material by the stirring impact blade. When the raw materials themselves are mixed and dispersed by frictional heat, they are kneaded and gelled without agglomeration, and then the stirring impact blades are rotated at a low speed to near the freezing point, that is, the melting point (melting point + 10 °) of the thermoplastic resin molding material in the raw material. It is granulated while being cooled to C) to obtain granulated wood flour.

【0038】さらに、前記造粒木粉は、例えば無機質中
空球状体と略同等もしくはこれ以下のスクリーンを有す
るカッターミル等の粉砕機から成る整粒手段により、無
機質中空球状体と略同等もしくはこれ以下の粒径に整粒
されて木質合成粉を得る。次いで、この木質合成粉に無
機質中空球状体10〜45wt%を加え、混合、分散し、
無機質中空球状体を用いた軽量木質合成粉を得る。
Further, the granulated wood powder is approximately equal to or less than the inorganic hollow spheres by a sizing means comprising a crusher such as a cutter mill having a screen approximately equal to or less than the inorganic hollow spheres. The wood-based synthetic powder is obtained by adjusting the particle size to. Next, 10 to 45 wt% of inorganic hollow spheres are added to this synthetic wood powder, mixed and dispersed,
A lightweight woody synthetic powder using an inorganic hollow sphere is obtained.

【0039】以上のようにしていわゆる熱可塑性樹脂成
形材が熱的、化学的に安定した木粉粒に固定化された状
態を定常的に維持し得るようにしてセルロース系破砕物
と熱可塑性樹脂成形材との混合、分散状態を定常的に維
持すべく、良好なる流動性を与える木質合成粉が形成さ
れ、且つ冷却による凝縮、縮小作用とも相まって、化学
的な反応とか接着によらない木質合成粉が形成されるの
で、押し出し成形時、押出し生地内のセルロース系破砕
物の摩擦抵抗を減じることになる。しかもこの木質合成
粉の平均粒径が無機質中空球状体と略同等もしくはこれ
以下の粒径に整粒して成るので、この木質合成粉と無機
質中空球状体とは良く混合分散する。
As described above, the so-called thermoplastic resin molding material can be constantly maintained in a state of being fixed to thermally and chemically stable wood powder particles, so that the cellulosic crushed product and the thermoplastic resin can be maintained. A woody synthetic powder that gives good fluidity is formed in order to constantly maintain a mixed and dispersed state with a molding material, and combined with cooling condensation and contraction, woody synthesis that does not rely on chemical reactions or adhesion. Since powder is formed, the friction resistance of the cellulosic crushed material in the extruded material is reduced during extrusion. Moreover, since the average particle size of the synthetic wood powder is adjusted to be equal to or smaller than that of the inorganic hollow spheres, the synthetic wood powder and the inorganic hollow spheres are well mixed and dispersed.

【0040】以上の本発明の無機質中空球状体を用いた
軽量木質合成粉を前述した本発明の軽量樹脂成形板の製
造方法と同様の押出機に投入すると、セルロース系破砕
物と無機質中空球状体と熱可塑性樹脂成形材が良く分散
した状態で混練され、良好な混練状態を保ちながら押し
出され、均一で高密度で且つ軽量な軽量木質合成板が成
形される。
When the light weight synthetic wood powder using the above-mentioned inorganic hollow spheres of the present invention is introduced into the same extruder as in the method for producing the light weight resin molded plate of the present invention described above, the cellulosic crushed product and the inorganic hollow spheres are introduced. And the thermoplastic resin molding material are kneaded in a well-dispersed state, and extruded while maintaining a good kneading state, and a uniform, high-density and lightweight lightweight wooden synthetic board is molded.

【0041】セルロース系破砕物と無機質中空球状体の
合計を20〜65wt%、前記熱可塑性樹脂成形材を35
〜80wt%とし、前記セルロース系破砕物と無機質中空
球状体を同一の重量割合とした軽量木質合成粉は、熱可
塑性樹脂成形材に対するセルロース系破砕物と無機質中
空球状体との混合割合のバランスが良いため、セルロー
ス系破砕物と無機質中空球状体と熱可塑性樹脂成形材と
の分散状態が良好である。
The total amount of the cellulosic crushed product and the inorganic hollow spheres is 20 to 65 wt%, and the thermoplastic resin molding material is 35
The weight ratio of the cellulose crushed material to the inorganic hollow spheres is 80% by weight, and the lightweight woody synthetic powder has the same weight ratio of the cellulose crushed material to the inorganic hollow spheres. Since it is good, the dispersed state of the cellulosic crushed material, the inorganic hollow sphere and the thermoplastic resin molding material is good.

【0042】上記と同様の理由で、60メッシュ以下の
好ましくは微粉状とした熱可塑性樹脂成形材を用いて得
た軽量木質合成粉は、熱可塑性樹脂成形材や木粉粒が各
無機質中空球状体間に満遍なく侵入しセルロース系破砕
物及び無機質中空球状体が熱可塑性樹脂成形材内に良く
混合分散する。
For the same reason as described above, a lightweight woody synthetic powder obtained by using a thermoplastic resin molding material of 60 mesh or less, preferably in the form of fine powder, is a thermoplastic resin molding material or a wood powder grain of each inorganic hollow sphere. Intrudes evenly between the bodies, and the cellulosic crushed material and the inorganic hollow spheres are well mixed and dispersed in the thermoplastic resin molding material.

【0043】また、本発明の軽量木質合成粉を用いて押
出し成形時、1軸のスクリューの剪断力により軽量木質
合成粉内の一部の無機質中空球状体が破損したとして
も、前述した本発明の軽量樹脂成形板と同様、押出し生
地に対して押出し力に抗する抑制力を加えているので、
破損した無機質中空球状体から洩れた気体による気泡、
巣等の発生を防ぐことができ、また、内面にフッ素樹脂
のシートを貼設又はフッ素樹脂をコーティングした成形
ダイの成形部へ押出し生地を押出して成形するので、押
出し生地内のセルロース系破砕物及び無機質中空球状体
は大きな抵抗を受けることなく円滑に流動し、均一で高
密度の混練状態を保ちながら押し出され、均一で高密度
で且つ軽量な軽量木質合成板が成形される。
Further, even when some of the inorganic hollow spheres in the lightweight wooden synthetic powder are damaged by the shearing force of the uniaxial screw during the extrusion molding using the lightweight wooden synthetic powder of the present invention, the above-mentioned present invention is used. Like the lightweight resin molded plate of, since the suppression force against the extrusion force is added to the extruded fabric,
Gas bubbles leaking from the damaged inorganic hollow spheres,
It is possible to prevent the formation of cavities, etc. Also, because the extruded dough is extruded and molded into the molding part of the molding die with a fluororesin sheet attached to the inner surface or coated with fluororesin, the cellulosic crushed material in the extruded dough Also, the inorganic hollow spheres smoothly flow without receiving a large resistance and are extruded while maintaining a uniform and high-density kneading state, and a uniform, high-density and lightweight lightweight wooden synthetic board is formed.

【0044】[0044]

【実施例】実施例について図面を参照して説明する。An embodiment will be described with reference to the drawings.

【0045】軽量樹脂成形板の製造実施例 下表の製造例による軽量樹脂成形板を製造した。Manufacturing Example of Light-weight Resin Molded Plate A light-weight resin molded plate according to the manufacturing example shown in the table below was manufactured.

【0046】[0046]

【表1】 [Table 1]

【0047】上記製造例の装置構成について説明する
と、最初に、 熱可塑性樹脂成形材と無機質中空球状体
は、一定容積の容器内に両者を供給して10rpm以下の
超低速回転で、混合分散するか、平鍋回転式の混合機を
用いて原料の乾燥状態を維持して分散混合しておく。
Explaining the apparatus constitution of the above-mentioned manufacturing example, first, the thermoplastic resin molding material and the inorganic hollow spherical body are mixed and dispersed at a super low speed rotation of 10 rpm or less by supplying both into a container having a constant volume. Alternatively, use a pan-type rotary mixer to maintain the dry state of the raw materials for dispersion mixing.

【0048】ここでは、熱可塑性樹脂成形材とガラスバ
ルーンが良好に分散混合され、熱可塑性樹脂成形材とガ
ラスバルーンが集合したもので、熱可塑性樹脂成形材間
及びガラスバルーンとの密着性がなく、したがって、後
述する後工程の押出機70でより一層効率良く混練され
得る良好な材料となる。なお、前記ガラスバルーン自体
は流動性の良いものである。
Here, the thermoplastic resin molding material and the glass balloon are satisfactorily dispersed and mixed, and the thermoplastic resin molding material and the glass balloon are aggregated, and there is no adhesiveness between the thermoplastic resin molding material and the glass balloon. Therefore, it becomes a good material which can be more efficiently kneaded in the later-described extruder 70. The glass balloon itself has a good fluidity.

【0049】図3において、70は単軸押出機である
が、一般に押出機は通常スクリュー形であり、単軸押出
機と多軸押出機があり、この変形又はこれらが組み合わ
せた構造を持つものがあるが、本発明には無機質中空球
状体を破壊しないように単軸押出機を使用する。
In FIG. 3, 70 is a single-screw extruder, but in general, the extruder is usually a screw type, and there are a single-screw extruder and a multi-screw extruder, which have a modification or a structure in which these are combined. However, in the present invention, a single-screw extruder is used so as not to break the inorganic hollow spheres.

【0050】図3において、71はスクリューで、一般
のスクリューは基部から先端に向けて押出機70内の原
材料を加圧するようスクリュー溝の絞り変化を大きくし
ているが、本発明のスクリュー71はスクリュー溝の絞
り変化を小さくして原材料内の無機質中空球状体への破
壊力を低下せしめている。ちなみに、一般のスクリュー
溝の深さは基部で10mm、先端では1〜2mmに形成され
ているが、本発明のスクリュー71はスクリュー溝の深
さを基部で10mm、先端で7〜8mmに形成している。
In FIG. 3, reference numeral 71 denotes a screw, and a general screw has a large change in the drawing of the screw groove so as to pressurize the raw material in the extruder 70 from the base portion to the tip. By reducing the change in screw groove drawing, the breaking force of the inorganic hollow spheres in the raw material is reduced. By the way, the depth of the general screw groove is 10 mm at the base and 1-2 mm at the tip, but the screw 71 of the present invention forms the depth of the screw groove at 10 mm at the base and 7-8 mm at the tip. ing.

【0051】前記スクリュー71はギヤ減速機72を介
して図示せざるモータによって駆動され、バレル74内
で回転する。前述のように分散混合された無機質中空球
状体であるガラスバルーンと熱可塑性樹脂成形材である
PPをホッパ73から投入するとガラスバルーンとPP
が、回転するスクリュー71で混練されながらスクリュ
ー71の前方へ押出される。バレル74の外面にはバン
ドヒータ75を設けており、このバンドヒータ75によ
りバレル74内のガラスバルーンとPPが加熱されスク
リュー71の溝に沿って前方へ輸送されながら漸次溶融
しガラスバルーンとPPが練成される。そしてスクリー
ン76及びアダプタ17を経てアダプタ17の押出ダイ
19から成形ダイ10へ押出し生地79として押出され
る。
The screw 71 is driven by a motor (not shown) via a gear reducer 72 and rotates in the barrel 74. When the glass balloons, which are inorganic hollow spheres dispersed and mixed as described above, and PP, which is a thermoplastic resin molding material, are charged from the hopper 73, the glass balloons and PP
Are extruded forward of the screw 71 while being kneaded by the rotating screw 71. A band heater 75 is provided on the outer surface of the barrel 74. The band heater 75 heats the glass balloon and PP in the barrel 74, and the glass balloon and PP are gradually melted while being transported forward along the groove of the screw 71, and the glass balloon and PP are gradually melted. Be trained. Then, through the screen 76 and the adapter 17, the material is extruded from the extrusion die 19 of the adapter 17 to the molding die 10 as the extrusion material 79.

【0052】〔押出ダイ〕図4において、17はアダプ
タで、押出機70で練成された押出し生地79を流入す
る流入口18と押出し生地79を後述する成形ダイ10
へ吐出する押出ダイ19とを備えている。さらに、アダ
プタ17の先端に断面矩形状を成す突部を設けている。
前記押出ダイ19は前記突部の先端に約8mmの肉厚を形
成するように幅50mm、高さ12mmの細長の矩形状を成
し(図8及び図9)、前記流入口18はアダプタ17の
後端面に直径50mmの円形を成し、この流入口18から
前記押出ダイ19に向けて徐々に断面変形する連通孔を
形成している。なお、流入口18は押出機70の断面円
形の吐出口と同じ大きさに形成し、一方、押出ダイ19
の矩形の幅は流入口18の直径と同じ寸法に形成し、高
さは後述する成形ダイ10の成形室22の高さと同じ寸
法に形成することが好ましい。
[Extrusion Die] In FIG. 4, reference numeral 17 denotes an adapter, which has an inflow port 18 into which an extrusion material 79 kneaded by an extruder 70 flows and an extrusion material 79 which will be described later.
And an extrusion die 19 for discharging to. Further, a protrusion having a rectangular cross section is provided at the tip of the adapter 17.
The extrusion die 19 has an elongated rectangular shape with a width of 50 mm and a height of 12 mm so as to form a wall thickness of about 8 mm at the tip of the protrusion (FIGS. 8 and 9), and the inflow port 18 has an adapter 17 The rear end face has a circular shape with a diameter of 50 mm, and a communication hole is formed from this inflow port 18 toward the extrusion die 19 where the cross-section is gradually deformed. The inflow port 18 is formed in the same size as the discharge port having a circular cross section of the extruder 70, while the extrusion die 19 is formed.
The width of the rectangle is preferably formed to have the same size as the diameter of the inflow port 18, and the height is preferably formed to have the same size as the height of the molding chamber 22 of the molding die 10 described later.

【0053】なお、アダプタ17は押出機70の大きさ
に応じて種々の大きさに形成でき、例えば、流入口18
の直径を150mmである場合は押出ダイ19の矩形の幅
を150mm、高さを成形室22の高さと同じ12mmとす
ることができる。
The adapter 17 can be formed in various sizes according to the size of the extruder 70. For example, the inlet 18
When the diameter is 150 mm, the width of the rectangle of the extrusion die 19 can be 150 mm, and the height can be 12 mm, which is the same as the height of the molding chamber 22.

【0054】前記アダプタ17の後端は該アダプタ17
の外周に嵌着した取付具28を介して押出機70のスク
リーン76を備えたスクリーン部16の先端面にボルト
などの取付具で連結してアダプタ17の流入口18と押
出機70のスクリーン部16の出口とを連通し、一方、
成形ダイ10の後端面の略中央位置に断面矩形状の凹部
を形成し、この凹部にアダプタ17の先端の断面矩形状
の突部を装着して押出ダイ19と成形ダイ10の導入孔
12を連通する。
The rear end of the adapter 17 is the adapter 17
Via a fitting 28 fitted to the outer periphery of the extruder 70, and connected to the tip end surface of the screen portion 16 provided with the screen 76 of the extruder 70 with a fitting such as a bolt and the inlet port 18 of the adapter 17 and the screen portion of the extruder 70. Communicating with 16 outlets, while
A recess having a rectangular cross section is formed at a substantially central position on the rear end surface of the molding die 10, and a projection having a rectangular cross section at the tip of the adapter 17 is mounted in the recess to connect the extrusion die 19 and the introduction hole 12 of the molding die 10. Communicate.

【0055】なお、前記アダプタ17の連通孔の周壁内
には加熱手段たるヒータ14aを埋設している。
A heater 14a as a heating means is embedded in the peripheral wall of the communication hole of the adapter 17.

【0056】押出機70のスクリーン部16の出口より
押し出された押出し生地79は、アダプタ17の流入口
18から流入し、ヒータ14aで加熱保温されながら連
通孔を経て押出ダイ19から成形ダイ10の導入孔12
内へ流動する。流入口18から押出ダイ19への連通孔
の断面変化は比較的急激に狭くなっているが、この断面
変化は高さ方向の変化のみであるので、押出し生地79
の流動状態は複雑ではなく良好である。しかも、前記押
出ダイ19は通常の一般的なダイとは異なり、射出口が
大きいため多量の押出し生地79を吐出し、且つ圧密を
促進可能な形状に形成されているので、通常のダイで生
じていたようなダイの目詰まりが生じない。したがっ
て、ダイを通過する押出し生地79内のガラスバルーン
に対して極端に大きな圧力がかかることを防ぐことにな
り、ガラスバルーンの破損率の低下になる。
The extruded dough 79 extruded from the exit of the screen portion 16 of the extruder 70 flows in from the inflow port 18 of the adapter 17 and is heated and kept warm by the heater 14a while passing through the communication hole and extruded from the extrusion die 19 to the molding die 10. Introduction hole 12
Flows inward. The cross-section change of the communication hole from the inflow port 18 to the extrusion die 19 narrows relatively rapidly, but since this cross-section change is only the change in the height direction, the extrusion material 79
The flow condition of is not complicated and is good. In addition, unlike the general die, the extrusion die 19 has a large injection port and is formed in a shape capable of discharging a large amount of the extrusion material 79 and promoting the compaction. The die does not become clogged. Therefore, it is possible to prevent an extremely large pressure from being applied to the glass balloon in the extruded material 79 passing through the die, and the breakage rate of the glass balloon is reduced.

【0057】図4において、10は成形ダイで、いわゆ
るTダイ式の成形ダイに類似の形状を成しており、押出
機70の断面方形の押出ダイ19から吐出された押出し
生地79を加熱保温して押出し生地79の流動性を維持
しながら押出す導入部11と、導入部11から押出され
た押出し生地79を幅広で所定の肉厚の板状に成形する
成形室22を有する成形部21から成る。
In FIG. 4, reference numeral 10 denotes a forming die, which has a shape similar to that of a so-called T-die type forming die, and heats and heats the extruded dough 79 discharged from the extrusion die 19 having a rectangular cross section of the extruder 70. And a forming part 21 having an introducing part 11 for extruding the extruded dough 79 while maintaining the fluidity of the extruded dough 79, and a forming chamber 22 for forming the extruded dough 79 extruded from the introducing part 11 into a wide plate having a predetermined wall thickness. Consists of.

【0058】前記導入部11は、導入孔12および導入
室13を備え、導入孔12は押出ダイ19から幅910
mm、高さ12mmの細長の矩形状の断面を成す成形室22
の入口へと急激に断面変形している。押出ダイ19から
成形室22の入口までの距離(導入部11の押出し方向
の距離)は約200mmである。
The introducing part 11 has an introducing hole 12 and an introducing chamber 13, and the introducing hole 12 extends from the extrusion die 19 to a width 910.
forming chamber 22 having a slender rectangular cross section with a height of 12 mm and a height of 12 mm
The cross section is rapidly deformed to the entrance of. The distance from the extrusion die 19 to the inlet of the molding chamber 22 (distance in the extrusion direction of the introduction part 11) is about 200 mm.

【0059】前記導入孔12は、縦断面を断面楕円形に
膨出形成され、前記押出ダイ19とほぼ同等もしくは若
干大きく形成し、横断面の形状は図5に示すように成形
ダイ10の幅方向に湾曲しており、その両端が成形室2
2の入口の矩形状の断面の長手方向の両端に及んで、い
わゆるコート・ハンガー型に形成されており、この導入
孔12の長手方向の略中央位置で押出機70の押出ダイ
19に連通している。また、前記導入孔12から成形室
22の入口までの間は、縦断面が成形室22の入口の高
さと同等に形成した導入室13で連通している。
The introduction hole 12 is bulged to have an elliptical cross section in vertical section and is formed to be substantially the same size as or slightly larger than the extrusion die 19, and the shape of the cross section is the width of the molding die 10 as shown in FIG. Is curved in the direction of the molding chamber 2
It is formed into a so-called coat-hanger type over the both ends in the longitudinal direction of the rectangular cross section of the inlet of 2, and communicates with the extrusion die 19 of the extruder 70 at a substantially central position of the introduction hole 12 in the longitudinal direction. ing. Further, from the introduction hole 12 to the inlet of the molding chamber 22, there is communicated with the introduction chamber 13 whose longitudinal section is formed to have the same height as the inlet of the molding chamber 22.

【0060】14はヒータで、電熱ヒータ等の加熱手段
で前記導入孔12と導入室13の周壁外周に設けてもよ
いが、実施例では、加熱効果に優れているという点で、
前記周壁内に設けられ、導入孔12及び導入室13内を
流動する押出し生地79を加熱保温し、押出し生地79
の流動性を維持する。
Reference numeral 14 denotes a heater, which may be provided on the outer circumference of the peripheral wall of the introduction hole 12 and the introduction chamber 13 by a heating means such as an electric heater, but in the embodiment, the heating effect is excellent.
The extruded dough 79, which is provided in the peripheral wall and flows in the introduction hole 12 and the introduction chamber 13, is heated and kept warm to extrude the extruded dough 79.
Maintain the liquidity of.

【0061】成形ダイ10の幅方向の縦断面で幅910
mm、高さ12mmの細長の矩形状の断面を成し、成形室2
2の入口からダイ出口23までの距離(成形部21の押
出し方向の距離)は500mmである。
The width of the molding die 10 in the longitudinal direction is 910.
mm, height 12 mm, forming an elongated rectangular section, forming chamber 2
The distance from the inlet 2 to the die outlet 23 (distance in the extrusion direction of the molding part 21) is 500 mm.

【0062】前記成形室22の上下左右の四方の内壁面
は厚さ0.25mmのフッ素樹脂でなるシート24を貼設
している。この他に、成形室22の上下左右の四方の内
壁面にフッ素樹脂を直接表面コーティングすることもで
きるが、交換が容易でありフッ素樹脂のコーティング加
工が容易で耐久性に富むという点で、フッ素樹脂のシー
ト24を貼設することが特に好ましい。
Sheets 24 made of fluororesin having a thickness of 0.25 mm are attached to the inner wall surfaces of the upper, lower, left and right sides of the molding chamber 22. In addition to this, the fluorine resin can be directly surface-coated on the four inner wall surfaces of the molding chamber 22 in the upper, lower, left, and right directions, but it is easy to replace the fluorine resin, and the fluorine resin coating process is easy and highly durable. It is particularly preferable to attach the resin sheet 24.

【0063】また、25は冷却管で、成形ダイ10の成
形部11を冷却する冷却手段の一例を示すもので、成形
室22の上下の成形ダイ10内に成形部21の押出し方
向に適当な間隔毎に挿通して配管し、この冷却管25に
常温の水又は70〜80℃程度までの水あるいは油等の
冷却媒体たる冷却液を供給して成形室22内の押出し生
地79を冷却する。
A cooling pipe 25 is an example of cooling means for cooling the molding portion 11 of the molding die 10, and is suitable for the extrusion direction of the molding portion 21 in the molding dies 10 above and below the molding chamber 22. The extruded dough 79 in the molding chamber 22 is cooled by supplying water to the cooling pipe 25 as a cooling medium such as water at room temperature or water up to about 70 to 80 ° C. or oil to the cooling pipe 25, which is inserted at intervals. .

【0064】15は案内板で、図5に示すように、平面
で短辺約200mm、長辺約850mm、高さ約100mmの
左右対称の台形形状を成す厚さ7mmの板であり、この案
内板15の全外表面に0.1〜0.5mm厚のテフロン等
のフッ素樹脂でなるシートを貼設したものである。な
お、案内板15の外表面にフッ素樹脂を直接コーティン
グしても良い。
Reference numeral 15 is a guide plate, as shown in FIG. 5, which is a symmetrical trapezoidal plate having a short side of about 200 mm, a long side of about 850 mm and a height of about 100 mm and a thickness of 7 mm. A sheet made of fluororesin such as Teflon having a thickness of 0.1 to 0.5 mm is attached to the entire outer surface of the plate 15. The outer surface of the guide plate 15 may be directly coated with fluororesin.

【0065】この案内板15を高さ12mm、幅910mm
を成す前記導入孔12内に、該導入孔12の幅方向で両
端に25mmづつの間隔を有するよう略中央に位置させ、
さらに案内板15の後端縁を導入孔12の後端壁面に略
平行間隔を有するように位置させ、この案内板15を成
形ダイ10に4個のボルト27で導入孔12の下面に固
定する。したがって案内板15の上面と導入孔12の上
面との間に5mmの隙間が形成される。
This guide plate 15 is 12 mm high and 910 mm wide.
In the introduction hole 12 forming the
Further, the rear end edge of the guide plate 15 is positioned so as to be substantially parallel to the rear end wall surface of the introduction hole 12, and the guide plate 15 is fixed to the lower surface of the introduction hole 12 on the molding die 10 with four bolts 27. . Therefore, a gap of 5 mm is formed between the upper surface of the guide plate 15 and the upper surface of the introduction hole 12.

【0066】なお、案内板15は、その板厚を導入孔1
2の高さに応じて導入孔12の高さの70%以下の寸法
に形成し、案内板15の幅は導入孔12の幅の約70〜
95%の長さを有するよう形成することが好ましい。
The guide plate 15 has the same thickness as that of the introduction hole 1.
The size of the guide plate 15 is 70% or less of the height of the introduction hole 12 according to the height of the guide hole 15.
It is preferably formed to have a length of 95%.

【0067】また、案内板15は、案内板15の上下面
に導入孔12の上下面と同程度の隙間を設けるよう導入
孔12の高さ方向の略中央に位置させることもできる。
本実施例の案内板15を導入孔12の高さ方向の略中央
に位置させるとすれば、高さ方向で上下に2.5mmづつ
の隙間を成すよう導入孔12の高さ方向の略中央に位置
させ、この案内板15を成形ダイ10に4個の段付きピ
ンで螺着、固定する。
Further, the guide plate 15 can be positioned substantially at the center in the height direction of the introduction hole 12 so that the upper and lower surfaces of the guide plate 15 are provided with a gap similar to the upper and lower surfaces of the introduction hole 12.
If the guide plate 15 of the present embodiment is positioned approximately at the center of the introduction hole 12 in the height direction, the introduction hole 12 is formed so as to have a gap of 2.5 mm vertically in the height direction. The guide plate 15 is screwed and fixed to the molding die 10 with four stepped pins.

【0068】押出し生地79は導入部11で加熱保温さ
れて流動性を維持され良好な混練状態を保ちながら、案
内板15を設けた場合には、該案内板により導入部11
内で、原料によっては、押出し生地79が押し出し方向
で、中央部と端部で異なる線膨張をして分子配向を異に
することを防ぎ、線膨張の均質化を図り、分子配向を制
御して、成形部21の成形室22内へ均等に拡散され、
均一な密度で押出される。成形室22の内壁面は摩擦係
数が小さいフッ素樹脂のシート24を貼設又はフッ素樹
脂をコーティングされているので、この内壁面を通過す
る押出し生地79内のガラスバルーンは大きな抵抗を受
けることなく円滑に流動し、均一で高密度の混練状態を
保ちながら押出される。この成形室22内を押出される
過程で押出し生地79が常温ないし60℃から90℃の
水または油などの冷却媒体により徐冷・冷却され成形板
29が成形される。フッ素樹脂は金属に比べ熱伝導係数
が低いので、押出し生地79は徐冷され、冷却による歪
みが少なくなり、歪みの少ない均一で高密度の製品とし
ての成形板29である軽量木質合成板が成形される。
When the extruded dough 79 is heated and kept warm in the introduction part 11 to maintain fluidity and maintains a good kneading state, when the guide plate 15 is provided, the extruded dough 79 is introduced by the guide plate 11.
In the inside, depending on the raw material, the extruded dough 79 prevents different linear orientations of the central portion and the end portion by differentiating the molecular orientation in the extruding direction, and aims to homogenize the linear expansion and control the molecular orientation. And is evenly diffused into the molding chamber 22 of the molding unit 21,
Extruded with a uniform density. Since the inner wall surface of the molding chamber 22 is provided with a fluororesin sheet 24 having a small friction coefficient or is coated with the fluororesin, the glass balloon in the extruded material 79 passing through the inner wall surface is smoothly subjected to no great resistance. And is extruded while maintaining a uniform and high-density kneading state. In the process of being extruded in the forming chamber 22, the extruded dough 79 is gradually cooled and cooled with a cooling medium such as water or oil at room temperature to 60 ° C. to 90 ° C. to form the forming plate 29. Since the fluororesin has a lower coefficient of thermal conductivity than metal, the extruded material 79 is gradually cooled, and the distortion caused by cooling is reduced, so that a lightweight wooden synthetic board, which is a molded board 29 as a uniform and high-density product with less distortion, is formed. To be done.

【0069】図6及び図7において、3本の自在ピンチ
ローラ31bの軸の両端を軸承する軸受34aをそれぞ
れ、軸受固定フレーム36に固定し、固定ピンチローラ
31aを各軸に設けた歯車116と、この歯車116に
噛合する歯車117で連動し、3本の固定ピンチローラ
31aのうち1本の固定ピンチローラ31aの軸にパウ
ダブレーキ115の入力軸を連結する。パウダブレーキ
115は、いわゆる電磁ブレーキであり、摩擦トルクを
電気的に微妙に調整できるものである。
In FIGS. 6 and 7, bearings 34a that support both ends of the shafts of the three free pinch rollers 31b are fixed to the bearing fixing frame 36, and the fixed pinch rollers 31a and the gears 116 provided on the respective shafts. The gear 117 meshing with the gear 116 is interlocked to connect the input shaft of the powder brake 115 to the shaft of one fixed pinch roller 31a among the three fixed pinch rollers 31a. The powder brake 115 is a so-called electromagnetic brake, and can electrically finely adjust the friction torque.

【0070】さらに、軸受固定フレーム36にフレーム
114を立設し、このフレーム114の壁面にガイド溝
を備えたブロック状のガイド体119を2本をそれぞ
れ、該119の軸線方向を上下方向に向けて略平行に設
け、各3本の自在ピンチローラ31bの軸の両端を軸承
する軸受34bを前記ガイド体119のガイド溝に沿っ
て上下動自在に設け、前記軸受34bをそれぞれ、フレ
ーム114の上面に設けた3本のエアシリンダ118の
ロッドの先端に連結する。
Further, a frame 114 is erected on the bearing fixing frame 36, two block-shaped guide bodies 119 each having a guide groove are provided on the wall surface of the frame 114, and the axial direction of the 119 is oriented vertically. Bearings 34b, which are provided substantially parallel to each other and support both ends of the shafts of the three free pinch rollers 31b, are vertically movable along the guide grooves of the guide body 119, and the bearings 34b are respectively provided on the upper surface of the frame 114. Are connected to the tips of the rods of the three air cylinders 118 provided in the.

【0071】したがって、シリンダ118の作動によ
り、3本の自在ピンチローラ31bをそれぞれ、成形板
29を介して固定ピンチローラ31aに加圧し、3本の
固定ピンチローラ31aの内1本の固定ピンチローラ3
1aの軸はパウダブレーキ115により回転を抑制さ
れ、この固定ピンチローラ31aの軸に設けた歯車11
6が他の2本の固定ピンチローラ31a,31aの軸に
設けた歯車116,116に歯車117,117を介し
て噛合しているので、3本の固定ピンチローラ31aに
はパウダブレーキ115の摩擦トルクによる同一の回転
抑制力が作用する。
Therefore, by operating the cylinder 118, each of the three free pinch rollers 31b is pressed against the fixed pinch roller 31a via the forming plate 29, and one of the three fixed pinch rollers 31a is fixed pinch roller 31a. Three
The rotation of the shaft 1a is suppressed by the powder brake 115, and the gear 11 provided on the shaft of the fixed pinch roller 31a.
6 meshes with the gears 116, 116 provided on the shafts of the other two fixed pinch rollers 31a, 31a via the gears 117, 117, so that the friction of the powder brake 115 with the three fixed pinch rollers 31a. The same rotation suppression force by the torque acts.

【0072】ちなみに、パウダブレーキ115により固
定ピンチローラ31aの回転を抑制する摩擦トルクは、
成形する成形板29の板厚により調整する。
By the way, the friction torque for suppressing the rotation of the fixed pinch roller 31a by the powder brake 115 is
It is adjusted according to the thickness of the forming plate 29 to be formed.

【0073】したがって、パウダブレーキ115の摩擦
トルクは成形板29の押出し力に対する抑制力と成り、
成形ダイ10の導入部11内の押出し生地79をより一
層高密度で均一な状態にし、この均一で高密度の押出し
生地79は押出機70による押出し生地79の押出し力
により前記ブレーキ手段30aの抑制力に抗して前進
し、成形室22内で冷却され成形板29が成形される。
この成形板29はパウダブレーキ115の抑制力に抗し
て前記固定ピンチローラ31a及び自在ピンチローラ3
1bを回転させながら前進する。
Therefore, the friction torque of the powder brake 115 becomes a restraining force against the pushing force of the molding plate 29,
The extruded dough 79 in the introduction portion 11 of the molding die 10 is made even more dense and uniform, and the extruded dough 79 having a uniform and high density is restrained by the braking means 30a by the extruding force of the extruded dough 79 by the extruder 70. It moves forward against the force and is cooled in the forming chamber 22 to form the forming plate 29.
The molding plate 29 resists the restraining force of the powder brake 115 and the fixed pinch roller 31a and the free pinch roller 3 are provided.
Move forward while rotating 1b.

【0074】前記抑制力は成形板29を介して成形部2
1及び導入部11内の押出し生地79に、押出機により
加えられる成形室22内の押出し生地79の押出し力に
対して抗力を与えることにより、前述したような成形板
29に抑制力を加えない場合と比べると、成形室22内
の押出し生地79の全体がより一層密度が均一で高密度
になる。ちなみに、表1に示すように、ガラスバルーン
の破損率が約30%であったが、ガラスバルーンが破損
しても成形板29に抑制力を加えていることにより押出
し生地79の密度が高くなるので、破損したガラスバル
ーンから漏れた気体による気泡、巣等を生じることを防
止する。したがって、多量の無機質中空球状体を含んだ
より一層均一高密度で軽量な軽量樹脂成形板が成形され
る。
The restraining force is applied to the forming part 2 via the forming plate 29.
1 does not exert a restraining force on the molding plate 29 as described above by giving a resistance to the extrusion dough 79 in the introduction part 11 and the extrusion force of the extrusion dough 79 in the molding chamber 22 applied by the extruder. Compared with the case, the entire extruded material 79 in the molding chamber 22 has a more uniform density and a higher density. By the way, as shown in Table 1, the breakage rate of the glass balloon was about 30%, but even if the glass balloon was broken, the density of the extruded dough 79 was increased by applying the restraining force to the molding plate 29. Therefore, it is possible to prevent bubbles, nests, and the like caused by the gas leaked from the damaged glass balloon. Therefore, a lightweight resin molded plate containing a large amount of inorganic hollow spheres and having a more uniform and high density and a light weight can be molded.

【0075】この後、前記製品としての成形板29であ
る軽量樹脂成形板をカッター、シャーリング、鋸盤等の
切断機で所望の長さで切断する。薄肉の成形板29であ
ればカッターなどの切断機を使用し、12mmなどの厚肉
の成形板29であればシャーリング、鋸盤等の切断機で
切断する。
After that, the light-weight resin molded plate which is the molded plate 29 as the product is cut to a desired length by a cutting machine such as a cutter, a shearing machine or a saw. A cutting machine such as a cutter is used for the thin molded plate 29, and a shearing machine or a saw machine is used for the thick molded plate 29 of 12 mm or the like.

【0076】以上の製品としての成形板29である軽量
樹脂成形板 W:910mm、H:12mmを鋸盤により1
820mm毎に切断し、重量12.5kgの略全体が薄い
ベージュ色の軽量樹脂成形板を得た。この軽量樹脂成形
板は、ガラスバルーンの破損率が30%で、軽量樹脂成
形板の比重は約0.63である。
A lightweight resin molding plate W: 910 mm, H: 12 mm, which is the molding plate 29 as the above product, is 1
It was cut every 820 mm to obtain a beige light-weight resin molded plate having a weight of 12.5 kg and being almost entirely thin. In this lightweight resin molded plate, the glass balloon has a breakage rate of 30%, and the lightweight resin molded plate has a specific gravity of about 0.63.

【0077】ちなみに熱可塑性樹脂成形材のPPを10
0%で成形した樹脂成形板の比重は約0.9で、樹脂成
形板 W:910mm、H:12mm、L:1820mmの重
量は17.9kgとなり、本発明の軽量樹脂成形板は軽
いものである。
By the way, if the PP of the thermoplastic resin molding material is 10
The specific gravity of the resin molded plate molded with 0% is about 0.9, and the weight of the resin molded plate W: 910 mm, H: 12 mm, L: 1820 mm is 17.9 kg, and the lightweight resin molded plate of the present invention is light. is there.

【0078】ちなみに、計算式;軽量樹脂成形板の比重
(ρA) =M/V=M/[(βM/ρp)+(γM/ρg)] =(ρp×ρg)/(β×ρg+γ×ρp) ただし、M=軽量樹脂成形板の重量 V=軽量樹脂成形板の体積 β=熱可塑性樹脂成形材の重量割合wt% γ=無機質中空球状体の重量割合wt% ρp=熱可塑性樹脂成形材の真比重 ρg=無機質中空球状体の真比重 上記の計算式は無機質中空球状体が全く破損しない場合
です。
Incidentally, the calculation formula; specific gravity of light-weight resin molded plate (ρA) = M / V = M / [(βM / ρp) + (γM / ρg)] = (ρp × ρg) / (β × ρg + γ × ρp ) However, M = weight of the light weight resin molding plate V = volume of the light weight resin molding plate β = weight ratio of the thermoplastic resin molding wt% γ = weight ratio of the inorganic hollow spheres wt% ρp = of the thermoplastic resin molding material True Specific Gravity ρg = True Specific Gravity of Inorganic Hollow Spherical Body The above calculation formula is for the case where the inorganic hollow sphere is not damaged at all.

【0079】30%の無機質中空球状体が破損した場合
の軽量樹脂成形板の比重は、 計算式;ρA=M/V=M/[(βM/ρp)+(γM×
0.7/ρg)] =(ρp×ρg)/(β×ρg+γ×ρp×0.7) 実施例の軽量樹脂成形板の比重(ρA)は、 PPのβ=55wt% ;ガラスバルーンのγ=45wt% PPのρp=0.9 ;ガラスバルーンのρg=0.32 であるので、 ρA=(ρp×ρg)/(β×ρg+γ×ρp×0.7) =0.9×0.32/(0.55×0.32+0.45
×0.9×0.7) ≒0.63 したがって、W:910mm、H:12mm、L:1820
mmの軽量樹脂成形板の重量(M)は、 M=91×1.2×182×0.63=12520
(g)≒12.5(kg) なお、成形ダイ10の高さを20〜30mmに、あるいは
2〜3mmに変えることによって、種々の肉厚の軽量樹脂
成形板を形成することができ、成形される軽量樹脂成形
板の肉厚は上記の実施例に限定されない。
The specific gravity of the lightweight resin molded plate when 30% of the inorganic hollow spheres are broken is calculated by the following formula: ρA = M / V = M / [(βM / ρp) + (γM ×
0.7 / ρg)] = (ρp × ρg) / (β × ρg + γ × ρp × 0.7) The specific gravity (ρA) of the lightweight resin molded plate of the example is β of PP = 55 wt%; γ of the glass balloon = 45 wt% PP ρp = 0.9; glass balloon ρg = 0.32, so ρA = (ρp × ρg) / (β × ρg + γ × ρp × 0.7) = 0.9 × 0.32 /(0.55×0.32+0.45
X 0.9 x 0.7) ≈ 0.63 Therefore, W: 910 mm, H: 12 mm, L: 1820
The weight (M) of the lightweight resin molded plate of mm is: M = 91 × 1.2 × 182 × 0.63 = 12520
(G) ≈ 12.5 (kg) By changing the height of the molding die 10 to 20 to 30 mm, or to 2 to 3 mm, it is possible to form lightweight resin molded plates of various thicknesses, The thickness of the formed lightweight resin molded plate is not limited to the above-mentioned embodiment.

【0080】軽量木質合成粉の製造手段 〔流動混合混練手段〕図1において、80は原材料を混
合・混練し、冷却し、粉砕して「造粒木粉」を形成する
流動混合混練手段で、本実施例おいて、便宜上「ミキサ
ー」という。
Means for producing lightweight woody synthetic powder [Fluid mixing and kneading means] In FIG. 1, 80 is a fluid mixing and kneading means for mixing and kneading raw materials, cooling and crushing to form "granulated wood powder", In this embodiment, it is referred to as a "mixer" for convenience.

【0081】81はミキサー本体で、上面開口を有する
円筒形を成し容量が300リットルのケーシングであ
り、前記開口はミキサー本体81内に原材料を投入する
投入口94で、この投入口94を開閉自在な上蓋82で
被蓋する。上蓋82には、ミキサー本体81内で木粉か
ら発生した多量の水蒸気ないしは木酸ガスを排出するガ
ス排出管95を連通している。さらに、ミキサー本体8
1の底面付近の外周面に1ヶ所の排出口88を設け、こ
の排出口88を被蓋する蓋89をシリンダ91のロッド
先端に設け、シリンダ91の作動により前記排出口88
を開閉自在に設けている。93は排出ダクトで、前記排
出口88に連通している。
Reference numeral 81 denotes a mixer main body, which is a cylindrical casing having an upper surface opening and a capacity of 300 liters. The opening is an input port 94 for inputting raw materials into the mixer main body 81, and this input port 94 is opened and closed. Cover with the free upper lid 82. A gas discharge pipe 95 for discharging a large amount of steam or wood acid gas generated from wood powder in the mixer body 81 is connected to the upper lid 82. Furthermore, the mixer body 8
A discharge port 88 is provided on the outer peripheral surface near the bottom surface of No. 1 and a lid 89 for covering the discharge port 88 is provided at the rod tip of the cylinder 91.
Is openable and closable. A discharge duct 93 communicates with the discharge port 88.

【0082】さらに、ミキサー本体81の底面の中心に
は図示せざるモータ37KW(DC)の回転駆動手段によ
り820rpm/maxで高速回転する軸83をミキサー本体
81内の上方に向けて軸承し、この軸83に下から上方
へ順にスクレイパー84、撹拌衝撃翼85,86,87
を装着し、軸83の先端から締付ナット92で締め付け
ている。なお、前記各撹拌衝撃翼85,86,87の形
状は特に限定されないが、本実施例では軸83を中心に
対称を成す2枚羽根である。図1のように3個の撹拌衝
撃翼を重ねた場合は全部で6枚の羽根で成り、これら6
枚の羽根は平面で360度を6等分した等分角(60
度)を成すように互いに交叉した状態で重ねている。な
お、複数個の撹拌衝撃翼を設けた場合、撹拌衝撃翼の合
計の羽根数で360度を等分した角度で互いに交叉して
重ねることは原材料を効率良く混練する点で好ましい。
Further, at the center of the bottom surface of the mixer main body 81, a shaft 83 which rotates at a high speed of 820 rpm / max is rotatably supported by the rotation driving means of a motor 37KW (DC) (not shown) upward in the mixer main body 81. A scraper 84, stirring impact blades 85, 86, 87 in order from bottom to top on the shaft 83
Is mounted and tightened with a tightening nut 92 from the tip of the shaft 83. The shape of each of the stirring impact blades 85, 86, 87 is not particularly limited, but in the present embodiment, it is two blades symmetrical about the axis 83. When three stirring impellers are stacked as shown in Fig. 1, it consists of a total of six blades.
Each of the blades is a plane with an equal angle (60
Are overlapped with each other so as to form a degree). When a plurality of stirring impact blades are provided, it is preferable that the raw materials be efficiently kneaded in such a manner that they are overlapped with each other at an angle that is equal to 360 degrees, which is the total number of stirring impact blades.

【0083】なお、前記スクレイパー84はミキサー本
体81の底面を僅かに摺接して回転し、ミキサー本体8
1内で混練された原材料をミキサー本体81の底面に残
留しないよう掻き出し、且つ原材料を循環するものであ
る。
The scraper 84 is rotated by slightly sliding the bottom surface of the mixer body 81 into contact with the mixer body 8.
The raw material kneaded in 1 is scraped out so as not to remain on the bottom surface of the mixer body 81, and the raw material is circulated.

【0084】前記上蓋82を開放して投入口94から投
入する原材料は、セルロース系の破砕物である木粉、無
機質中空球状体、熱可塑性樹脂成形材、尿素、炭酸カル
シウム、酸化チタン、顔料等の添加物で成る。
Raw materials which are opened from the upper lid 82 and are introduced through the introduction port 94 include wood powder which is a cellulosic crushed product, inorganic hollow spheres, thermoplastic resin molding materials, urea, calcium carbonate, titanium oxide, pigments and the like. Consisting of additives.

【0085】また、前記炭酸カルシウムは、本発明の木
質合成板に良好な寸法安定性をもたらし、温度変化に伴
う膨張収縮を著しく少なくすることに寄与するもので、
押出加工における成形品の変形を防止し、且つそれ自体
安価である。
Further, the calcium carbonate brings good dimensional stability to the woody synthetic board of the present invention and contributes to remarkably reducing expansion and contraction due to temperature change.
It prevents deformation of the molded product during extrusion and is inexpensive per se.

【0086】また、前記酸化チタンは、流動性、溶液中
における分散性が良好であり、本発明の木質合成板に対
して温度変化に伴う膨張収縮を著しく少なくすることに
寄与する。
Further, the titanium oxide is excellent in fluidity and dispersibility in a solution, and contributes to remarkably reducing expansion and contraction due to temperature change in the woody synthetic board of the present invention.

【0087】熱可塑性樹脂成形材は、前述実施例と同様
に半硬質又は軟質塩化ビニル又はPVC(ポリ塩化ビニ
ル)、PET(ポリエステル)、PP(ポリプロピレ
ン)、PC(ポリカーボネート)、PE(ポリエチレ
ン)、PTO等の樹脂の一種又はこれらの数種の混合し
たものを用いることができる。
The thermoplastic resin molding material is a semi-hard or soft vinyl chloride or PVC (polyvinyl chloride), PET (polyester), PP (polypropylene), PC (polycarbonate), PE (polyethylene), as in the above-mentioned examples. One kind of resin such as PTO or a mixture of several kinds of these can be used.

【0088】また、同様に、熱可塑性合成樹脂製品の廃
材から得られた回収熱可塑性樹脂成形材を再利用したも
の、あるいはバージンの熱可塑性樹脂を投入し、あるい
はバージンの熱可塑性樹脂と前記回収熱可塑性樹脂成形
材を適宜の混合比で混合したものを用いることもでき
る。
Similarly, a recycled thermoplastic resin molding material obtained from a waste material of a thermoplastic synthetic resin product is reused, or a virgin thermoplastic resin is added, or a virgin thermoplastic resin and the above recovery are collected. It is also possible to use a mixture of thermoplastic resin molding materials at an appropriate mixing ratio.

【0089】なお、前記熱可塑性樹脂成形材はペレット
状でよいが、無機質中空球状体が熱可塑性樹脂成形材に
良好に分散するという点で、60メッシュ以下の微粉で
あることが好ましい。
The thermoplastic resin molding material may be in the form of pellets, but from the viewpoint that the inorganic hollow spheres are well dispersed in the thermoplastic resin molding material, fine powder of 60 mesh or less is preferable.

【0090】〔整粒手段〕この整粒手段は、前記流動混
合混練手段で形成された「造粒木粉」を、粒径10mm以
下に整粒し、「木質合成粉」を形成するものである。
[Grain sizing means] This sizing means is a means for sizing the "granulated wood powder" formed by the fluid mixing and kneading means to a particle size of 10 mm or less to form a "wood synthetic powder". is there.

【0091】図2において、120は前述した造粒木粉
を整粒する整粒手段であり、本実施例では「カッタミ
ル」を用いている。
In FIG. 2, reference numeral 120 denotes a sizing means for sizing the above-mentioned granulated wood powder, and a "cutter mill" is used in this embodiment.

【0092】121はカッタミル本体で、上面開口を有
する円筒形を成すケーシングであり、前記開口を開閉自
在な蓋122で被蓋する。前記蓋122はカッタミル本
体121内に造粒木粉を投入する投入口123を備えて
いる。
Reference numeral 121 denotes a cutter mill main body, which is a cylindrical casing having an upper surface opening, and the opening is covered with a lid 122 which can be freely opened and closed. The lid 122 is provided with a charging port 123 for charging the granulated wood powder in the cutter mill body 121.

【0093】また、前記カッタミル本体121内にはカ
ッタミル本体121の底面に軸承されて図示せざる回転
駆動手段で水平方向に回転するカッタ支持体124を設
け、このカッタ支持体124の外周に上下方向に長い回
転刃125を3枚を設け、これらの3枚の回転刃125
はカッタ支持体124の回転方向で120度の等角度を
成すように配設し、3枚の回転刃125の刃先は同一の
回転軌跡上に位置している。さらに、前記3枚の回転刃
125の刃先の回転軌跡に対して僅かな隙間を介して二
の固定刃126を回転刃125の刃先の回転軌跡の略対
称位置にカッタミル本体121に固定し、二の固定刃1
26とカッタ支持体124と回転刃125とでカッタミ
ル本体121内を二分し、投入室127と整粒室128
を形成する。前記蓋122の投入口123は前記投入室
127に連通する。なお、二の固定刃126と回転刃1
25との隙間は造粒木粉を所望の大きさに整粒できるよ
う自在に調整できる。また、整粒室128は前記二の固
定刃126間を回転刃125の回転軌跡の周囲を囲むよ
うにスクリーン129で仕切っている。なお、スクリー
ン129は、本実施例では無機質中空球状体と略同等も
しくはこれ以下の粒径に整粒された「木質合成粉」であ
る整粒物が通過できるメッシュで形成している。また、
整粒室128のカッタミル本体121の下端にはカッタ
ミル120で前記整粒物を排出する排出口131を設け
ている。
In the cutter mill body 121, there is provided a cutter support body 124 which is supported on the bottom surface of the cutter mill body 121 and rotates in the horizontal direction by a rotation driving means (not shown). 3 long blades 125 are installed on the
Are arranged so as to form an equal angle of 120 degrees in the rotation direction of the cutter support body 124, and the blade tips of the three rotary blades 125 are located on the same rotation locus. Further, the second fixed blade 126 is fixed to the cutter mill main body 121 at a position substantially symmetrical to the rotational locus of the blade tip of the rotary blade 125 with a slight gap with respect to the rotational trajectory of the blade tip of the three rotary blades 125. Fixed blade 1
26, the cutter support member 124, and the rotary blade 125 divide the inside of the cutter mill main body 121 into two parts, and a charging chamber 127 and a sizing chamber 128.
To form. The charging port 123 of the lid 122 communicates with the charging chamber 127. The second fixed blade 126 and the rotary blade 1
The gap with 25 can be freely adjusted so that the granulated wood powder can be sized to a desired size. Further, the sizing chamber 128 is partitioned by a screen 129 between the two fixed blades 126 so as to surround the circumference of the rotation locus of the rotary blade 125. In this embodiment, the screen 129 is formed of a mesh through which a sized product which is a “wood synthetic powder” having a size substantially equal to or smaller than that of the inorganic hollow sphere can pass. Also,
At the lower end of the cutter mill body 121 of the sieving chamber 128, a discharge port 131 for discharging the sized product by the cutter mill 120 is provided.

【0094】以上のカッタミル120において、蓋12
2の投入口123から前述した造粒木粉を投入し、図示
せざる回転駆動手段でカッタ支持体124を回転する
と、造粒木粉はカッタ支持体124の回転刃125と固
定刃126間で無機質中空球状体と略同等もしくはこれ
以下の粒径に粉砕され「木質合成粉」が形成され、いわ
ゆる熱可塑性樹脂成形材が熱的、化学的に安定した木粉
粒に固定化された状態を定常的に維持し得るようにして
木粉と熱可塑性樹脂成形材との混合、分散状態を定常的
に維持すべく、良好なる流動性を与える木質合成粉が形
成され、且つ冷却による凝縮、縮小作用とも相まって、
化学的な反応とか接着によらない木質合成粉が形成さ
れ、整粒室128のスクリーン129のメッシュを通過
して排出口131より排出され無機質中空球状体と混
合、分散されて次工程の押出機70へ送られる。
In the above cutter mill 120, the lid 12
When the above-described granulated wood powder is charged from the second charging port 123 and the cutter support 124 is rotated by a rotation driving means (not shown), the granulated wood powder is transferred between the rotary blade 125 and the fixed blade 126 of the cutter support 124. A state in which a so-called thermoplastic resin molding material is fixed to a thermally and chemically stable wood powder grain by crushing to a particle size of about the same as or smaller than that of an inorganic hollow sphere, and a "wood synthetic powder" is formed. To maintain the mixing and dispersion state of the wood powder and the thermoplastic resin molding material so that it can be maintained constantly, a synthetic wood powder that gives good fluidity is formed, and it is condensed and reduced by cooling. Coupled with the action,
A synthetic wood powder that is not formed by chemical reaction or adhesion is formed, passes through the mesh of the screen 129 of the sizing chamber 128, is discharged from the discharge port 131, is mixed and dispersed with the inorganic hollow spheres, and is the extruder of the next step. Sent to 70.

【0095】軽量木質合成粉の製造実施例 本実施例では、原材料の主な成形素材は、セルロース系
破砕物である木粉と無機質中空球状体である中空を成す
ガラスバルーンと熱可塑性樹脂成形材のPPで成る。
Production Example of Lightweight Woody Synthetic Powder In this example, the main molding materials of the raw materials are wood powder which is a cellulosic crushed material, hollow glass balloon which is an inorganic hollow spherical body, and thermoplastic resin molding material. It consists of PP.

【0096】原材料の27wt%は平均粒径20メッシュ
以下で真比重が1.4で嵩比重が0.2の木粉を13kg
(このときの木粉は水分を約4wt%含む)および木酸ガ
スの中和剤となるアンモニア、フェノール、メラミン等
の尿素の40%濃度の水溶液を0.3kg(木粉に対する
尿素の割合は1wt%である)、炭酸カルシウム3kgで成
り、原材料の28wt%は平均粒径(U.S.)140メ
ッシュ(105μ)以下で真比重が0.32で嵩比重が
0.16〜0.24のガラスバルーン(住友スリーエム
社製S32)17kgで成り、原材料の45wt%は熱可塑
性樹脂成形材のPP(ポリプロピレン)を27kgで成
る。
27 wt% of the raw material has an average particle size of 20 mesh or less, a true specific gravity of 1.4, and a bulk specific gravity of 0.2 13 kg of wood flour.
(At this time, the wood powder contains about 4 wt% of water) and 0.3 kg of a 40% concentration aqueous solution of urea such as ammonia, phenol, melamine, etc., which is a neutralizing agent for wood acid gas (the ratio of urea to wood powder is 1 wt%) and 3 kg of calcium carbonate. 28 wt% of the raw material has an average particle size (U.S.) of 140 mesh (105 μ) or less, a true specific gravity of 0.32 and a bulk specific gravity of 0.16 to 0.24. Glass balloon (S32 manufactured by Sumitomo 3M) of 17 kg, and 45 wt% of the raw material is 27 kg of PP (polypropylene) which is a thermoplastic resin molding material.

【0097】なお、前記木粉の平均粒径とは、当該木粉
の累積重量パーセント分布の50重量パーセントの粒子
径を意味し、前記ガラスバルーンの平均粒径とは、14
0メッシュ(105μ)の篩で残留率3wt%以下の粒子
径を意味する。
The average particle size of the wood flour means a particle size of 50 weight percent of the cumulative weight percent distribution of the wood flour, and the average particle size of the glass balloon is 14
It means a particle size with a residual rate of 3 wt% or less on a 0 mesh (105μ) sieve.

【0098】前述した流動混合混練手段であるミキサー
80で混練する工程を以下に詳しく説明する。
The step of kneading with the mixer 80, which is the fluid mixing and kneading means described above, will be described in detail below.

【0099】(1)撹拌衝撃翼85,86,87およびス
クレイパー84を高速回転し、上蓋82を開放して投入
口94から木粉13.5kgを投入し、前記尿素0.3kg
を少量づつ添加する。
(1) The stirring impact blades 85, 86, 87 and the scraper 84 are rotated at a high speed, the upper lid 82 is opened, and 13.5 kg of wood powder is charged through the charging port 94, and 0.3 kg of the urea is added.
Is added little by little.

【0100】(2)約1分後、5〜10wt%の炭酸カルシ
ウム3kgを添加し、10〜20分程度混練する。炭酸カ
ルシウムを添加すると原材料の比重が重くなるので、高
速回転する撹拌衝撃翼による剪断力が高くなるため剪断
力による摩擦熱の発生が向上し、ミキサー80内の温度
は180〜190℃になり乾燥され原材料の水分を1wt
%以下、好ましくは0.3wt%以下に減少させる。ちな
みに、本実施例では前記木粉を投入してから17分09
秒後にミキサー本体81内の温度は、190℃で、原材
料の水分が0.1wt%であった。なお、木粉は撹拌衝撃
翼85,86,87の高速回転により破砕され、このと
き木粉から発生した多量の水蒸気ないしは木酸ガスは上
蓋82に設けたガス排出管95より排出される。
(2) After about 1 minute, 3 kg of calcium carbonate of 5 to 10 wt% is added and kneaded for about 10 to 20 minutes. When calcium carbonate is added, the specific gravity of the raw material becomes heavier, so the shearing force of the stirring impeller rotating at a high speed is increased, so that the generation of frictional heat due to the shearing force is improved, and the temperature in the mixer 80 becomes 180 to 190 ° C. Moisture of raw material is 1wt
% Or less, preferably 0.3 wt% or less. By the way, in this embodiment, 17 minutes after the wood flour was added, 09
After a second, the temperature in the mixer body 81 was 190 ° C., and the raw material water content was 0.1 wt%. The wood powder is crushed by the high-speed rotation of the stirring impact blades 85, 86, 87, and a large amount of steam or wood acid gas generated from the wood powder at this time is discharged from a gas discharge pipe 95 provided on the upper lid 82.

【0101】(3)次いで、熱可塑性樹脂成形材のPP
(ポリプロピレン)27kgをミキサー本体81内に投入
し、5〜8分間混練する(本実施例では約8分間混練し
た)。なお、熱可塑性樹脂成形材の形態は、本実施例で
は直径3mm程度の大きさの粒状から成るペレットを使用
している。
(3) Next, PP of thermoplastic resin molding material
27 kg of (polypropylene) is put into the mixer main body 81 and kneaded for 5 to 8 minutes (kneading for about 8 minutes in this embodiment). The thermoplastic resin molding material used in the present embodiment is a granular pellet having a diameter of about 3 mm.

【0102】なお、熱可塑性樹脂成形材のPPの融点は
165℃であり、この工程におけるミキサー本体80内
の温度は186℃であった。
The melting point of PP of the thermoplastic resin molding material was 165 ° C., and the temperature in the mixer main body 80 in this step was 186 ° C.

【0103】この工程で、原材料内の木粉によりPPは
大きな塊とはならず、混合分散に際しても凝集したりせ
ずに粘土状にゲル化する。この工程で、上記の粘土状に
ゲル化したものは直径約10〜100mmの塊状の混練材
料となった。
In this step, PP does not become a large lump due to the wood powder in the raw material, and does not aggregate even when mixed and dispersed, and gels into a clay form. In this step, the clay-like gelled material became a lump-shaped kneading material having a diameter of about 10 to 100 mm.

【0104】(4) 前記モータを低速にし原材料内の熱
可塑性樹脂成形材の融点より10℃程度高い温度にまで
下がると、ミキサー80内のゲル化混練された材料は冷
却され、撹拌衝撃翼で粉砕され、直径約25mm以下の大
きさの塊に造粒される。
(4) When the motor is operated at a low speed and the temperature is lowered to about 10 ° C. higher than the melting point of the thermoplastic resin molding material in the raw material, the gelled and kneaded material in the mixer 80 is cooled and the stirring impact blades are used. It is crushed and granulated into a lump having a diameter of about 25 mm or less.

【0105】この造粒された塊は、個々の木粉がその木
粉単体の表面全体に熱可塑性樹脂を付着した状態に形成
される。
The granulated lumps are formed in a state where the individual wood flour has the thermoplastic resin attached to the entire surface of the individual wood flour.

【0106】(5)シリンダ91を作動して蓋89を後退
して排出口88を開放する。ミキサー本体81内のゲル
化し造粒された原材料は排出口88から排出ダクト93
を経て、次工程へ排出される。原材料を投入してから排
出するまでの全工程は27分54秒で処理された。
(5) The cylinder 91 is operated to retract the lid 89 and open the discharge port 88. The gelled and granulated raw material in the mixer body 81 is discharged from the discharge port 88 to the discharge duct 93.
And then discharged to the next step. The entire process from the input of raw materials to the discharge of raw materials was processed in 27 minutes 54 seconds.

【0107】他の製造例として以下に示す。Another manufacturing example will be shown below.

【0108】原材料としては、原材料の32wt%は平均
粒径20メッシュ以下で嵩比重が0.2の木粉を11.
5kgおよび尿素の40%濃度の水溶液を0.3kg、5〜
20wt%の酸化チタンを3kgで成り、原材料の32wt%
は平均粒径140メッシュ以下で真比重が0.32で嵩
比重が0.16〜0.24の中空を成すガラスバルーン
を14.5kgで成り、残りの36wt%は熱可塑性樹脂成
形材のPC(ポリカーボネート)を16kgで成る。この
原材料を上記のミキサー80で混練する場合、前述実施
例と同様の工程を行ない、木粉をミキサー本体81内へ
投入してから17分30秒後、159℃で、PCを投入
し約26分14秒後、223℃でゲル化し、このゲル化
の直後、モータを低速にし1分後に冷却造粒された冷却
された造粒木粉を排出した。
As the raw material, 32 wt% of the raw material was wood powder having an average particle size of 20 mesh or less and a bulk specific gravity of 0.2.
5 kg and 0.3 kg of a 40% urea aqueous solution,
20wt% titanium oxide consists of 3kg, 32wt% of raw material
Is 14.5 kg of hollow glass balloons having an average particle size of 140 mesh or less, a true specific gravity of 0.32, and a bulk specific gravity of 0.16 to 0.24, and the remaining 36 wt% is PC of a thermoplastic resin molding material. It consists of 16 kg (polycarbonate). When this raw material is kneaded in the mixer 80, the same steps as those in the above-described embodiment are performed, and 17 minutes and 30 seconds after the wood powder is charged into the mixer main body 81, the PC is charged at 159 ° C. for about 26 minutes. After 14 minutes, gelation was carried out at 223 ° C. Immediately after the gelation, the motor was operated at a low speed and 1 minute later, the cooled granulated wood flour was discharged.

【0109】(6)整粒 前記冷却造粒手段で形成された造粒木粉は、さらにカッ
タミルを使用して無機質中空球状体と略同等もしくはこ
れ以下の粒径に整粒し、「木質合成粉」を形成する。
(6) Grain sizing The granulated wood powder formed by the cooling granulation means is further sized by a cutter mill to a particle size substantially equal to or smaller than that of the inorganic hollow spheres, "Powder" is formed.

【0110】造粒木粉はカッタ支持体124の回転刃1
25と固定刃126間で約0.1〜8mmの木質合成粉に
切断され「木質合成粉」が形成され、整粒室128のス
クリーン129のメッシュを通過して排出口131より
排出される。
The granulated wood powder is the rotary blade 1 of the cutter support member 124.
25 to the fixed blade 126 is cut into wood synthetic powder of about 0.1 to 8 mm to form “wood synthetic powder”, which passes through the mesh of the screen 129 of the sizing chamber 128 and is discharged from the discharge port 131.

【0111】(7) 前記木質合成粉と無機質中空球状体
は、前述実施例と同様、平鍋回転式の混合機などを用い
て木質合成粉の乾燥状態を維持して分散混合され、軽量
木質合成粉が得られる。
(7) The wood synthetic powder and the inorganic hollow spheres are dispersed and mixed in the same manner as in the above-mentioned embodiment by using a mixer such as a pan to maintain the dry state of the wood synthetic powder, and a lightweight wood synthetic powder is obtained. A powder is obtained.

【0112】軽量木質合成粉を用いた軽量木質合成板の
製造実施例 押出機は、前述実施例と同様に、スクリュー溝の絞り変
化を小さくして原材料内の無機質中空球状体への破壊力
を低下せしめたスクリュー71を備えた1軸の押出機7
0である。また、同様に押出機により加えられる成形室
22内の押出し生地79の押出し力に対して抗力を与え
る方法を採用している。
Manufacturing Example of Lightweight Woody Synthetic Plate Using Lightweight Woody Synthetic Powder The extruder is similar to the above-mentioned embodiment in that the change in the screw groove is reduced to reduce the destructive force to the inorganic hollow spheres in the raw material. Single-screw extruder 7 with screw 71 lowered
0. Further, similarly, a method of applying a resistance to the extrusion force of the extrusion material 79 in the molding chamber 22 applied by the extruder is adopted.

【0113】[0113]

【表2】 [Table 2]

【0114】以上の製品としての成形板29である軽量
木質合成板 W:910mm、H:12mmを鋸盤により1
820mm毎に切断し、重量15.3kgのベージュ色の
軽量木質合成板を得た。この軽量木質合成板は、ガラス
バルーンの破損率が30%であったが、軽量木質合成板
の比重は約0.77である。
[0114] A lightweight wooden synthetic board W: 910 mm, H: 12 mm, which is the molded board 29 as the above product, is 1
By cutting every 820 mm, a beige lightweight wooden synthetic board with a weight of 15.3 kg was obtained. In this lightweight wooden synthetic board, the glass balloon had a breakage rate of 30%, but the specific weight of the lightweight wooden synthetic board was about 0.77.

【0115】計算式;軽量木質合成板の比重(ρB) =M/V=M/[(αM/ρt)+(βM/ρp)+(γ
M/ρg)] =(ρt×ρp×ρg)/(α×ρp×ρg+β×ρt×ρg
+γ×ρt×ρp) ただし、M=軽量木質合成板の重量 V=軽量木質合成板の体積 α=セルロース系破砕物の重量割合wt% β=熱可塑性樹脂成形材の重量割合wt% γ=無機質中空球状体の重量割合wt% ρt=セルロース系破砕物の真比重 ρp=熱可塑性樹脂成形材の真比重 ρg=無機質中空球状体の真比重 上記の計算式は無機質中空球状体が全く破損しない場合
です。
Calculation formula: Specific gravity of light wood composite board (ρB) = M / V = M / [(αM / ρt) + (βM / ρp) + (γ
M / ρg)] = (ρt × ρp × ρg) / (α × ρp × ρg + β × ρt × ρg
+ Γ × ρt × ρp) where M = weight of lightweight wooden synthetic board V = volume of lightweight wooden synthetic board α = weight ratio of cellulose crushed material wt% β = weight ratio of thermoplastic resin molding material wt% γ = inorganic material Weight ratio of hollow spheres wt% ρt = true specific gravity of crushed cellulosic material ρp = true specific gravity of thermoplastic resin molding ρg = true specific gravity of inorganic hollow spheres The above formula is used when the inorganic hollow spheres are not damaged at all is.

【0116】30%の無機質中空球状体が破損した場合
の軽量木質合成板の比重は、 計算式; ρB=M/V=M/[(αM/ρt)+(βM/ρp)+
(γM×0.7/ρg)] =(ρt×ρp×ρg)/(α×ρp×ρg+β×ρt×ρg
+γ×ρt×ρp×0.7) 実施例の軽量木質合成板の比重(ρB)は、 木粉のα=27wt% ;PPのβ=45wt% ;ガラスバ
ルーンのγ=28wt% 木粉のρt=1.4 ;PPのρp=0.9 ;ガラスバ
ルーンのρg=0.32 であるので、 ρB=(ρt×ρp×ρg)/(α×ρp×ρg+β×ρt×ρg
+γ×ρt×ρp×0.7) =1.4×0.9×0.32/(0.27×0.9×0.32+0.45×1.4×0.3
2+0.28×1.4×0.9×0.7) ≒0.77 したがって、W:910mm、H:12mm、L:1820
mmの軽量木質合成板の重量(M)は、 M=91×1.2×182×0.77=15303
(g)≒15.3(kg) なお、肉厚10〜12mm程度の軽量木質合成板は、コン
クリートパネル、車両用内外装の板、机やテーブル、食
器棚等の家具材料など様々な用途に使用される。
The specific gravity of the lightweight wooden synthetic board when 30% of the inorganic hollow spheres are damaged is calculated by the following formula: ρB = M / V = M / [(αM / ρt) + (βM / ρp) +
(ΓM × 0.7 / ρg)] = (ρt × ρp × ρg) / (α × ρp × ρg + β × ρt × ρg
+ Γ × ρt × ρp × 0.7) The specific gravity (ρB) of the lightweight wooden synthetic board of the example is α = 27 wt% of wood powder; β = 45 wt% of PP; γ = 28 wt% of glass balloon ρt of wood powder = 1.4; PP ρp = 0.9; Glass balloon ρg = 0.32, so ρB = (ρt × ρp × ρg) / (α × ρp × ρg + β × ρt × ρg
+ Γ × ρt × ρp × 0.7) = 1.4 × 0.9 × 0.32 // (0.27 × 0.9 × 0.32 + 0.45 × 1.4 × 0.3
2 + 0.28 × 1.4 × 0.9 × 0.7) ≈ 0.77 Therefore, W: 910mm, H: 12mm, L: 1820
The weight (M) of the lightweight wooden synthetic board of mm is: M = 91 × 1.2 × 182 × 0.77 = 15303
(G) ≈ 15.3 (kg) In addition, lightweight wooden synthetic boards with a wall thickness of 10 to 12 mm are used for various applications such as concrete panels, interior and exterior boards for vehicles, furniture materials such as desks, tables and cupboards. used.

【0117】なお、成形ダイ10の高さを20〜30mm
とすることによって、肉厚20〜30mmの軽量木質合成
板が成形され、この軽量木質合成板は床板や他の用途の
板材として使用される。したがって、成形される軽量木
質合成板の肉厚は上記の実施例に限定されない。
The height of the molding die 10 is 20 to 30 mm.
As a result, a lightweight wooden synthetic board having a wall thickness of 20 to 30 mm is formed, and this lightweight wooden synthetic board is used as a floor board or a plate material for other purposes. Therefore, the thickness of the light-weight synthetic wood board to be formed is not limited to the above-mentioned embodiment.

【0118】[0118]

【表3】 [Table 3]

【0119】以上の製品としての成形板29である軽量
木質合成板 W:910mm、H:3mmをシャーリングに
より1820mm毎に切断し、重量4.0kgの軽量木質
合成板を得た。この軽量木質合成板は、ガラスバルーン
の破損率が30%であったが、軽量木質合成板の比重は
約0.81である。
The light-weight wooden synthetic board W: 910 mm, H: 3 mm, which is the molded board 29 as the above product, was cut into 1820 mm intervals by shearing to obtain a lightweight wooden synthetic board having a weight of 4.0 kg. In this lightweight wooden synthetic board, the damage rate of the glass balloon was 30%, but the specific gravity of the lightweight wooden synthetic board was about 0.81.

【0120】実施例の30%の無機質中空球状体が破損
した軽量木質合成板の比重(ρB)は、 木粉のα=32wt% ;PCのβ=36wt% ;ガラスバ
ルーンのγ=32wt% 木粉のρt=1.4 ;PCのρp=1.2 ;ガラスバ
ルーンのρg=0.32 であるので、 ρB=(ρt×ρp×ρg)/(α×ρp×ρg+β×ρt×ρg
+γ×ρt×ρp×0.7) =1.4×1.2×0.32/(0.32×1.2×0.32+0.36×1.4×0.
32+0.32×1.4×1.2×0.7) ≒0.81 したがって、W:910mm、H:3mm、L:1820mm
の軽量木質合成板の重量(M)は、 M=91×0.3×182×0.81=4024(g)
≒4.0(kg) このような薄板は、各種建築材料、家具材料、機器パー
ツ等として広範囲な使用目的に向けた素材となる。例え
ば、上記の薄板の軽量木質合成板は、家屋の室内装飾用
の化粧板などの建築材として使用され、あるいは約30
0mm四方の大きさに加工してフロアリングブロックなど
の床材として使用される。さらに、他の用途として、自
動車の車内の内装材として、例えば、運転席のメータパ
ネル周りの化粧板、トランスミッション周囲の化粧板、
その他の車内の壁面の化粧板として使用され、高級感を
得ることができる。機器パーツとしては電気機器等のボ
ックスパネルや他の機器の化粧板として使用される。
The specific gravity (ρB) of the lightweight wooden synthetic board in which 30% of the inorganic hollow spheres of the example was broken is α = 32 wt% of wood powder; β = 36 wt% of PC; γ = 32 wt% of glass balloon Powder ρt = 1.4; PC ρp = 1.2; Glass balloon ρg = 0.32, so ρB = (ρt × ρp × ρg) / (α × ρp × ρg + β × ρt × ρg
+ γ × ρt × ρp × 0.7) = 1.4 × 1.2 × 0.32 / (0.32 × 1.2 × 0.32 + 0.36 × 1.4 × 0.
32 + 0.32 × 1.4 × 1.2 × 0.7) ≈0.81 Therefore, W: 910mm, H: 3mm, L: 1820mm
The weight (M) of the lightweight wooden composite board of M is: M = 91 × 0.3 × 182 × 0.81 = 4024 (g)
≈4.0 (kg) Such a thin plate is a material for a wide range of purposes such as various building materials, furniture materials, equipment parts, and the like. For example, the above-mentioned thin lightweight wooden synthetic board is used as a construction material such as a decorative board for interior decoration of a house, or about 30
It is processed into a 0 mm square size and used as flooring materials such as flooring blocks. Further, as another application, as an interior material of the interior of an automobile, for example, a decorative plate around the driver's seat meter panel, a decorative plate around the transmission,
It is used as a decorative plate on the wall surface inside other vehicles, and can give a high-class feeling. As equipment parts, it is used as a box panel for electric equipment and a decorative plate for other equipment.

【0121】[0121]

【表4】 [Table 4]

【0122】以上の製品としての成形板29である軽量
木質合成板 W:910mm、H:12mmを鋸盤により1
820mm毎に切断し、重量16.7kgのベージュ色の
軽量木質合成板を得た。この軽量木質合成板は、ガラス
バルーンの破損率が30%であったが、軽量木質合成板
の比重は約0.84で軽いものである。
[0122] A lightweight wooden synthetic board W: 910 mm, H: 12 mm, which is the molded board 29 as the above product, is 1
It was cut at intervals of 820 mm to obtain a beige light weight synthetic wood board having a weight of 16.7 kg. In this lightweight wooden synthetic board, the glass balloon had a breakage rate of 30%, but the specific weight of the lightweight wooden synthetic board was about 0.84, which is light.

【0123】実施例の30%の無機質中空球状体が破損
した軽量木質合成板の比重(ρB)は、 木粉のα=30wt% ;軟質塩ビのβ=40wt% ;ガラ
スバルーンのγ=30wt% 木粉のρt=1.4 ;軟質塩ビのρp=1.25;ガラ
スバルーンのρg=0.32 であるので、 ρB=(ρt×ρp×ρg)/(α×ρp×ρg+β×ρt×ρg
+γ×ρt×ρp×0.7) =1.4×1.25×0.32/(0.3×1.25×0.32+0.4×1.4×0.3
2+0.3×1.4×1.25×0.7) ≒0.84 したがって、W:910mm、H:12mm、L:1820
mmの軽量木質合成板の重量(M)は、 M=91×1.2×182×0.84=16694
(g)≒16.7(kg) なお、成形される軽量木質合成板の肉厚は上記の実施例
に限定されず、前述したように肉厚10〜12mm程度の
軽量木質合成板は、コンクリートパネル、車両用内外装
の板、机やテーブル、食器棚等の家具材料など様々な用
途に使用され、肉厚20〜30mmの軽量木質合成板は床
板や他の用途の板材として使用され、薄板は、各種建築
材料、家具材料、機器パーツ等として広範囲な使用目的
に向けた素材となる。
The specific gravity (ρB) of the lightweight wooden synthetic board in which 30% of the inorganic hollow spheres of the example was broken was α = 30 wt% of wood powder; β = 40 wt% of soft vinyl chloride; γ = 30 wt% of glass balloon. Wood powder ρt = 1.4; soft vinyl chloride ρp = 1.25; glass balloon ρg = 0.32, so ρB = (ρt × ρp × ρg) / (α × ρp × ρg + β × ρt × ρg
+ Γ × ρt × ρp × 0.7) = 1.4 × 1.25 × 0.32 / (0.3 × 1.25 × 0.32 + 0.4 × 1.4 × 0.3
2 + 0.3 × 1.4 × 1.25 × 0.7) ≈0.84 Therefore, W: 910mm, H: 12mm, L: 1820
The weight (M) of the lightweight wooden synthetic board of mm is M = 91 × 1.2 × 182 × 0.84 = 16694
(G) ≈ 16.7 (kg) The thickness of the light-weight wooden synthetic board to be molded is not limited to that in the above-mentioned embodiment, and as described above, the light-weight wooden synthetic board having a thickness of about 10 to 12 mm is made of concrete. Used for various applications such as panels, interior and exterior boards for vehicles, furniture materials such as desks, tables, cupboards, etc. Lightweight synthetic wood boards with a wall thickness of 20 to 30 mm are used as floor boards and board materials for other purposes, and are thin plates. Is a material for a wide range of purposes such as various building materials, furniture materials, equipment parts, etc.

【0124】[0124]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0125】(1)30メッシュ以下好ましくは無機質
中空球状体と略同等もしくはこれ以下の粒径の熱可塑性
樹脂成形材50〜85wt%に無機質中空球状体15〜5
0wt%を混入し、加熱、練成したので、無機質中空球状
体と熱可塑性樹脂成形材とは良く分散した状態で混練さ
れ、良好な混練状態を保ちながら押し出されるので、均
一で高密度で且つ軽量な軽量樹脂成形板を成形できた。
(1) 30 mesh or less, preferably 50 to 85 wt% of a thermoplastic resin molding material having a particle size substantially equal to or smaller than that of the inorganic hollow spheres and 15 to 5 of the inorganic hollow spheres.
Since 0 wt% was mixed, heated and kneaded, the inorganic hollow spheres and the thermoplastic resin molding material were kneaded in a well-dispersed state and extruded while maintaining a good kneading state. We were able to mold a lightweight resin molded plate.

【0126】(2)無機質中空球状体を熱可塑性樹脂成
形材内に混合したので軽量な軽量樹脂成形板を提供で
き、しかも押出し成形時のスクリューの剪断力により一
部の無機質中空球状体が破損したとしても、押出し生地
に対して押出し力に抗する抑制力を加えているので、破
損した無機質中空球状体から洩れた気体による気泡、巣
等の発生を防ぐことができ、均一で高密度で軽量な軽量
樹脂成形板を提供できた。
(2) Since the inorganic hollow spheres are mixed in the thermoplastic resin molding material, it is possible to provide a lightweight resin molding plate, and further, some of the inorganic hollow spheres are damaged by the shearing force of the screw during extrusion molding. Even if it does, since the suppression force against the extrusion force is applied to the extruded material, it is possible to prevent the generation of bubbles, cavities, etc. due to the gas leaked from the damaged inorganic hollow spherical body, and to provide a uniform and high density. We were able to provide a lightweight resin molded plate.

【0127】(3)押出し成形の押出し生地を、内面に
フッ素樹脂のシートを貼設又はフッ素樹脂をコーティン
グした成形ダイの成形部へ押出して押出し成形したの
で、押出し生地内の無機質中空球状体は大きな抵抗を受
けることなく円滑に流動し、均一で高密度の混練状態を
保ちながら押し出されるので、均一で高密度で軽量な軽
量樹脂成形板を提供できた。
(3) The extruded extruded cloth was extruded by extruding the extruded cloth into the molding portion of a molding die having a fluororesin sheet attached to the inner surface or coated with the fluororesin. Since it smoothly flows without receiving a large resistance and is extruded while maintaining a uniform and high-density kneaded state, it is possible to provide a uniform, high-density and lightweight lightweight resin molded plate.

【0128】(4)1軸のスクリューをもって成形ダイ
へ押出し、しかもこのスクリューをスクリュー溝の深さ
の基部から先端への絞り変化を少なくしたので、スクリ
ューの回転による剪断力が無機質中空球状体に与える影
響力を減少することができ、無機質中空球状体の破損率
を低下でき、軽量な軽量樹脂成形板又は軽量木質合成板
を提供できた。
(4) Since a single screw is extruded into a molding die, and the screw changes in the depth of the screw groove from the base to the tip are reduced, the shearing force due to the rotation of the screw causes an inorganic hollow spherical body. The influence exerted can be reduced, the breakage rate of the inorganic hollow spherical body can be reduced, and a lightweight lightweight resin molded plate or a lightweight wooden synthetic plate can be provided.

【0129】(5)成形ダイへの押し出しは、成形ダイ
の成形部の成形室の高さと同等以下の高さを有する方形
の射出口を形成し、且つ、この射出口に向けて徐々に狭
く断面変化するよう形成したダイにより行われるので、
多量の押出し生地を吐出し、ダイの目詰まりを防ぐこと
ができ、そのため無機質中空球状体に大きな圧力がかか
ることを防ぐことになり、無機質中空球状体の破損率を
低下することに寄与し、軽量な軽量樹脂成形板又は軽量
木質合成板を提供できた。
(5) The extrusion into the molding die forms a rectangular injection port having a height equal to or less than the height of the molding chamber of the molding section of the molding die, and gradually narrows toward this injection port. Since it is performed by the die formed so that the cross section changes,
Discharge a large amount of extruded dough, it is possible to prevent clogging of the die, thereby preventing a large pressure from being applied to the inorganic hollow spheres, which contributes to reducing the damage rate of the inorganic hollow spheres, It was possible to provide a lightweight lightweight resin molded plate or a lightweight wooden synthetic plate.

【0130】(6)本発明の無機質中空球状体を用いた
軽量木質合成粉は、セルロース系破砕物と熱可塑性樹脂
成形材との馴染みが良好で、熱可塑性樹脂成形材がセル
ロース系破砕物の表面全体に付着して熱的、科学的に安
定した木粉粒に固定化された状態を定常的に維持しうる
ように分散された木質合成粉が形成されるので、押し出
し成形時、押出し生地内のセルロース系破砕物の摩擦抵
抗を減じることになり、しかもこの木質合成粉の平均粒
径が無機質中空球状体と略同等もしくはこれ以下の粒径
に整粒して成るので、この木質合成粉と無機質中空球状
体とは良く混合分散する。したがって、本発明の無機質
中空球状体を用いた軽量木質合成粉を押出機に投入する
と、セルロース系破砕物と無機質中空球状体と熱可塑性
樹脂成形材が良く分散した状態で混練され、良好な混練
状態を保ちながら押し出されるので、均一で高密度で且
つ軽量な軽量木質合成板を成形できた。
(6) The lightweight woody synthetic powder using the inorganic hollow spheres of the present invention is well compatible with the cellulosic crushed material and the thermoplastic resin molding material, and the thermoplastic resin molding material is the cellulose crushed material. A synthetic wood powder is formed that is adhered to the entire surface and can be constantly maintained in a thermally and scientifically stable state that is fixed to wood powder granules. This will reduce the frictional resistance of the cellulosic crushed material inside, and since the average particle size of this wood-based synthetic powder is adjusted to a particle size approximately equal to or less than that of the inorganic hollow spheres, this wood-based synthetic powder And the inorganic hollow spheres are well mixed and dispersed. Therefore, when the lightweight wood synthetic powder using the inorganic hollow spheres of the present invention is put into an extruder, the cellulosic crushed product, the inorganic hollow spheres, and the thermoplastic resin molding material are kneaded in a well-dispersed state, and good kneading is performed. Since it was extruded while maintaining the state, it was possible to form a lightweight wooden synthetic board that was uniform, high-density and lightweight.

【0131】(7)セルロース系破砕物と無機質中空球
状体の合計を20〜65wt%、前記熱可塑性樹脂成形材
を35〜80wt%とし、前記セルロース系破砕物と無機
質中空球状体を同一の重量割合としたので、熱可塑性樹
脂成形材に対するセルロース系破砕物と無機質中空球状
体との混合割合のバランスが良いため、セルロース系破
砕物と無機質中空球状体と熱可塑性樹脂成形材との混合
分散状態を良好にできた。
(7) The total amount of the cellulosic crushed product and the inorganic hollow spheres is 20 to 65 wt%, the thermoplastic resin molding material is 35 to 80 wt%, and the crushed cellulosic product and the inorganic hollow spheres have the same weight. Since the ratio is good, the mixture ratio of the cellulosic crushed material and the inorganic hollow spheres to the thermoplastic resin molding material is good, so the mixed dispersion state of the cellulosic crushed material, the inorganic hollow spheres and the thermoplastic resin molding material I was able to do well.

【0132】(8)60メッシュ以下の好ましくは微粉
状とした熱可塑性樹脂成形材を用いると、セルロース系
破砕物及び無機質中空球状体が熱可塑性樹脂成形材内に
良く分散するので、セルロース系破砕物と無機質中空球
状体と熱可塑性樹脂成形材との混合分散状態が良好な軽
量木質合成粉を得ることができた。
(8) When a thermoplastic resin molding material of 60 mesh or less, preferably in the form of fine powder, is used, the crushed cellulose material and the inorganic hollow spheres are well dispersed in the thermoplastic resin molding material. It was possible to obtain a lightweight woody synthetic powder in which the mixed state of the product, the inorganic hollow sphere and the thermoplastic resin molding material was good.

【0133】(9)本発明の無機質中空球状体を用いた
軽量木質合成粉を用いて押出し成形時、1軸のスクリュ
ーの剪断力により軽量木質合成粉内の一部の無機質中空
球状体が破損したとしても、押出し生地に対して押出し
力に抗する抑制力を加えているので、破損した無機質中
空球状体から洩れた気体による気泡、巣等の発生を防ぐ
ことができ、均一で高密度で且つ軽量な軽量木質合成板
を提供できた。
(9) During extrusion molding using the lightweight wooden synthetic powder using the inorganic hollow spherical body of the present invention, a part of the inorganic hollow spherical body in the lightweight wooden synthetic powder is damaged by the shearing force of the uniaxial screw. Even if it does, since the suppression force against the extrusion force is applied to the extruded material, it is possible to prevent the generation of bubbles, cavities, etc. due to the gas leaked from the damaged inorganic hollow spherical body, and to provide a uniform and high density. In addition, it was possible to provide a lightweight wooden synthetic board.

【0134】(10)押出し成形の押出し生地を、内面
にフッ素樹脂のシートを貼設又はフッ素樹脂をコーティ
ングした成形ダイの成形部へ押出して押出し成形したの
で、押出し生地内のセルロース系破砕物及び無機質中空
球状体は大きな抵抗を受けることなく円滑に流動し、均
一で高密度の混練状態を保ちながら押し出されるので、
均一で高密度で且つ軽量な軽量木質合成板を提供でき
た。
(10) The extruded extruded dough was extruded by extruding the extruded dough into the forming part of a forming die having a fluororesin sheet attached to the inner surface or coated with the fluororesin. Since the inorganic hollow spheres flow smoothly without receiving a large resistance and are extruded while maintaining a uniform and high density kneading state,
We were able to provide a lightweight wooden composite board that is uniform, dense, and lightweight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に使用するミキサー(流動混合
混練手段)の要部断面を示す全体正面図である。
FIG. 1 is an overall front view showing a cross section of a main part of a mixer (fluid mixing and kneading means) used in an example of the present invention.

【図2】本発明の実施例に使用するカッタミル(整粒手
段)の要部断面を示す全体正面図である。
FIG. 2 is an overall front view showing a cross section of a main part of a cutter mill (size regulating means) used in an example of the present invention.

【図3】本発明の実施例の押出機の縦断面を示す正面図
である。
FIG. 3 is a front view showing a vertical section of the extruder according to the embodiment of the present invention.

【図4】本発明の実施例の成形ダイの縦断面を示す正面
図である。
FIG. 4 is a front view showing a vertical section of a molding die according to an example of the present invention.

【図5】本発明の実施例の成形ダイの要部断面を示す平
面図である。
FIG. 5 is a plan view showing a cross section of a main part of a molding die according to an example of the present invention.

【図6】本発明の実施例のブレーキ手段の要部断面を示
す平面図である。
FIG. 6 is a plan view showing a cross section of a main part of the braking means of the embodiment of the present invention.

【図7】図6の矢視N−N線の縦断面図である。FIG. 7 is a vertical cross-sectional view taken along the line NN of FIG.

【図8】図4の矢視J−J線の縦断面図である。8 is a vertical cross-sectional view taken along the line JJ of FIG.

【図9】図4の矢視K−K線の縦断面図である。9 is a vertical cross-sectional view taken along the line KK of FIG.

【符号の説明】[Explanation of symbols]

10 成形ダイ 11 導入部 12 導入孔 13 導入室 14,14a ヒータ 15 案内板 16 スクリーン部 17 アダプタ 18 流入口 19 押出ダイ 21 成形部 22 成形室 23 ダイ出口 24 シート(フッ素樹脂の) 25 冷却管 27 ピン 28 取付具 29 成形板 30a ブレーキ手段 31 ピンチローラ 31a 固定ピンチローラ 31b 自在ピンチローラ 34a,34b 軸受 36 軸受固定フレーム 70 押出機 71 スクリュー 72 ギヤ減速機 73 ホッパ 74 バレル 75 バンドヒータ 76 スクリーン 77 アダプタ 78 押出ダイ 79 押出し生地 80 ミキサー(流動混合混練手段) 81 ミキサー本体 82 上蓋 83 軸 84 スクレイパー 85,86,87 撹拌衝撃翼 88 排出口 89 蓋 91 シリンダ 92 締付ナット 93 排出ダクト 94 投入口 95 ガス排出管 120 カッタミル(整粒手段) 121 カッタミル本体 122 蓋 123 投入口 124 カッタ支持体 125 回転刃 126 固定刃 127 投入室 128 整粒室 129 スクリーン 131 排出口 10 Molding Die 11 Introductory Part 12 Introducing Hole 13 Introducing Chamber 14, 14a Heater 15 Guide Plate 16 Screen Part 17 Adapter 18 Inlet 19 Extrusion Die 21 Forming Part 22 Forming Chamber 23 Die Outlet 24 Sheet (of Fluorine Resin) 25 Cooling Pipe 27 Pin 28 Mounting tool 29 Forming plate 30a Braking means 31 Pinch roller 31a Fixed pinch roller 31b Flexible pinch roller 34a, 34b Bearing 36 Bearing fixed frame 70 Extruder 71 Screw 72 Gear reducer 73 Hopper 74 Barrel 75 Band heater 76 Screen 77 Adapter 78 Extrusion die 79 Extrusion dough 80 Mixer (fluid mixing and kneading means) 81 Mixer body 82 Upper lid 83 Shaft 84 Scraper 85,86,87 Stirring impact blade 88 Discharge port 89 Lid 91 Cylinder 92 Tightening nut 93 Exhaust duct 94 Input port 95 Gas exhaust pipe 120 Cutter mill (grinding means) 121 Cutter mill main body 122 Lid 123 Input port 124 Cutter support 125 Rotating blade 126 Fixed blade 127 Input chamber 128 Particle size chamber 129 Screen 131 Discharge port

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29C 47/60 9349−4F 47/86 9349−4F // B29K 101:12 105:16 509:00 (54)【発明の名称】 無機質中空球状体を用いた軽量樹脂成形板及びその製造方法、並びに無機質中空球状体を用いた 軽量木質合成粉及びその製造方法、並びに前記軽量木質合成粉を用いた軽量木質合成板及びその 製造方法─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29C 47/60 9349-4F 47/86 9349-4F // B29K 101: 12 105: 16 509: 00 (54) [Title of Invention] Light-weight resin molded plate using inorganic hollow spherical body and its manufacturing method, lightweight wooden synthetic powder using inorganic hollow spherical body, its manufacturing method, and said light wooden synthetic powder Lightweight wood composite board and method of manufacturing the same

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 30メッシュ以下の熱可塑性樹脂成形材
50〜85wt%に無機質中空球状体15〜50wt%を混
入し、加熱、練成し、1軸のスクリューをもって成形ダ
イへ押出して所定の肉厚に成形し、且つ前記成形部で徐
冷して押出し、且つ、この押出し生地に押出し力に抗す
る抑制力を加えて押出し生地の密度を高くして成ること
を特徴とする無機質中空球状体を用いた軽量樹脂成形
板。
1. 50 to 85 wt% of a thermoplastic resin molding material of 30 mesh or less is mixed with 15 to 50 wt% of inorganic hollow spheres, heated and kneaded, and extruded into a molding die with a single screw to obtain a predetermined meat. An inorganic hollow spherical body, characterized in that it is formed into a thick and extruded after being slowly cooled in the forming part, and that the extruded material is made to have a high density by applying a suppressing force against the extruding force. Lightweight resin molded board using.
【請求項2】 30メッシュ以下好ましくは無機質中空
球状体と略同等もしくはこれ以下の粒径の熱可塑性樹脂
成形材50〜85wt%に無機質中空球状体15〜50wt
%を混入し、加熱、練成し、1軸のスクリューをもって
内壁面にフッ素樹脂のシートを貼設又はフッ素樹脂をコ
ーティングした成形ダイの成形部へ押出して所定の肉厚
に押出し成形し、且つ前記成形部で徐冷して押出し、且
つ、この押出し生地に押出し力に抗する抑制力を加えて
押出し生地の密度を高くしたことを特徴とする無機質中
空球状体を用いた軽量樹脂成形板の製造方法。
2. A thermoplastic resin molding material having a particle size of 30 mesh or less, preferably substantially the same as or smaller than that of the inorganic hollow sphere, and 15 to 50 wt% of the inorganic hollow sphere to 50 to 85 wt% of the thermoplastic resin molding material.
%, Mixed with heating and kneading, and using a single screw to stick a fluororesin sheet on the inner wall surface or extrude to the molding part of a fluororesin-coated molding die to extrude to a predetermined wall thickness, and Slowly extruded in the molding part, and, and, to the extruded fabric, a lightweight resin molded plate using an inorganic hollow spherical body characterized by increasing the density of the extruded fabric by adding a suppressing force against the extruding force. Production method.
【請求項3】 前記スクリュー溝の深さの基部から先端
への絞り変化を少なくして前記無機質中空球状体の破損
率を低下せしめた請求項2記載の無機質中空球状体を用
いた軽量樹脂成形板の製造方法。
3. A lightweight resin molding using an inorganic hollow spherical body according to claim 2, wherein the change in the depth of the screw groove from the base to the tip is reduced to reduce the breakage rate of the inorganic hollow spherical body. Method of manufacturing a plate.
【請求項4】 前記成形ダイへの押出しは、成形ダイの
成形部の成形室の高さと同等以下の高さを有する方形の
射出口を形成し、且つ、この射出口に向けて徐々に狭く
断面変化するよう形成した押出ダイにより行われる請求
項2又は3記載の無機質中空球状体を用いた軽量樹脂成
形板の製造方法。
4. The extrusion into the molding die forms a rectangular injection port having a height equal to or less than the height of the molding chamber of the molding section of the molding die, and gradually narrows toward this injection port. The method for producing a lightweight resin molded plate using an inorganic hollow spherical body according to claim 2 or 3, which is carried out by an extrusion die formed so as to change in cross section.
【請求項5】 含有水分量を15wt%以内とし平均粒径
20メッシュ以下のセルロース系破砕物10〜55wt%
に対して熱可塑性樹脂成形材35〜80wt%を混合、ゲ
ル化混練し、冷却、粉砕し無機質中空球状体と略同等も
しくはこれ以下の粒径に整粒して成る木質合成粉に無機
質中空球状体10〜45wt%を混合分散したことを特徴
とする無機質中空球状体を用いた軽量木質合成粉。
5. A crushed cellulosic material having an average particle size of 20 mesh or less and having a water content of 15 wt% or less 10 to 55 wt%
Of the thermoplastic resin molding material, mixed, gelled, kneaded, cooled, pulverized, and sized to a particle size substantially equal to or smaller than that of the inorganic hollow spheres. Light-weight synthetic wood powder using inorganic hollow spheres, characterized by mixing and dispersing 10 to 45 wt% of the body.
【請求項6】 含有水分量を15wt%以内とし平均粒径
20メッシュ以下のセルロース系破砕物10〜55wt%
に対して熱可塑性樹脂成形材35〜80wt%をともに攪
拌衝撃翼により混合して、摩擦熱によりゲル化混練し、
冷却、粉砕し整粒して木質合成粉を得る工程と、前記木
質合成粉に無機質中空球状体10〜45wt%を加え、混
合、分散する工程を少なくとも含むことを特徴とする無
機質中空球状体を用いた軽量木質合成粉の製造方法。
6. A cellulosic crushed product having an average particle size of 20 mesh or less and having a water content of 15 wt% or less, 10 to 55 wt%
On the other hand, 35-80 wt% of the thermoplastic resin molding material is mixed together by a stirring impact blade, and gelled and kneaded by friction heat,
An inorganic hollow spherical body comprising at least a step of cooling, pulverizing and sizing to obtain a synthetic wood powder, and a step of adding 10 to 45 wt% of the inorganic hollow spherical body to the synthetic wood powder, and mixing and dispersing. A method for producing a lightweight synthetic wood powder used.
【請求項7】 前記セルロース系破砕物に、熱可塑性樹
脂成形材を攪拌衝撃翼により混合して、摩擦熱によりゲ
ル化混練し、冷却し、粉砕して無機質中空球状体と略同
等もしくはこれ以下の粒径に整粒する工程を少なくとも
含む請求項6記載の無機質中空球状体を用いた軽量木質
合成粉の製造方法。
7. The crushed cellulosic material is mixed with a thermoplastic resin molding material by a stirring impact blade, gelled and kneaded by frictional heat, cooled and pulverized to be approximately equal to or less than the inorganic hollow spherical body. The method for producing a lightweight woody synthetic powder using an inorganic hollow sphere according to claim 6, which comprises at least a step of adjusting the particle size to the above.
【請求項8】 前記セルロース系破砕物と無機質中空球
状体の合計を20〜65wt%、前記熱可塑性樹脂成形材
を35〜80wt%とした請求項6記載の無機質中空球状
体を用いた軽量木質合成粉の製造方法。
8. A lightweight wood material using an inorganic hollow spherical body according to claim 6, wherein the total amount of the cellulosic crushed product and the inorganic hollow spherical body is 20 to 65 wt% and the thermoplastic resin molding material is 35 to 80 wt%. Manufacturing method of synthetic powder.
【請求項9】 前記セルロース系破砕物と無機質中空球
状体の合計を20〜65wt%、前記熱可塑性樹脂成形材
を35〜80wt%とし、前記セルロース系破砕物と無機
質中空球状体を同一の重量割合とした請求項6記載の無
機質中空球状体を用いた軽量木質合成粉の製造方法。
9. The total weight of the cellulosic crushed product and the inorganic hollow spheres is 20 to 65 wt%, the thermoplastic resin molding material is 35 to 80 wt%, and the cellulosic crushed product and the inorganic hollow sphere are the same weight. The method for producing a lightweight synthetic wood powder using the inorganic hollow spheres according to claim 6.
【請求項10】 前記熱可塑性樹脂成形材が60メッシ
ュ以下である請求項6記載の無機質中空球状体を用いた
軽量木質合成粉の製造方法。
10. The method for producing a lightweight wooden synthetic powder using an inorganic hollow spherical body according to claim 6, wherein the thermoplastic resin molding material has a size of 60 mesh or less.
【請求項11】 含有水分量を15wt%以内とし平均粒
径20メッシュ以下のセルロース系破砕物10〜55wt
%に対して熱可塑性樹脂成形材35〜80wt%を混合、
ゲル化混練し、冷却、粉砕し整粒して成る木質合成粉に
無機質中空球状体10〜45wt%を混合、分散して得た
軽量木質合成粉を加熱、練成し、1軸のスクリューをも
って成形ダイへ押出して成ることを特徴とする軽量木質
合成粉を用いた軽量木質合成板。
11. A cellulosic crushed product having an average particle size of 20 mesh or less and having a water content of 15 wt% or less 10 to 55 wt
% Thermoplastic resin molding material 35-80 wt% is mixed,
Gel-kneading, cooling, crushing, sizing, and sizing, and mixing and dispersing 10-45 wt% of inorganic hollow spheres into the synthetic wood powder. The lightweight synthetic wood powder obtained by heating and kneading is mixed with a single screw. A lightweight wooden synthetic board using a lightweight wooden synthetic powder, characterized by being extruded into a molding die.
【請求項12】 含有水分量を15wt%以内とし平均粒
径20メッシュ以下のセルロース系破砕物10〜55wt
%に対して熱可塑性樹脂成形材35〜80wt%をともに
攪拌衝撃翼により混合して、摩擦熱によりゲル化混練
し、冷却し、粉砕して整粒形成した木質合成粉に無機質
中空球状体10〜45wt%を加え、混合、分散して得た
軽量木質合成粉を加熱、練成し、1軸のスクリューをも
って成形ダイへ押出す工程を少なくとも含むことを特徴
とする軽量木質合成粉を用いた軽量木質合成板の製造方
法。
12. A crushed cellulosic material having an average particle size of 20 mesh or less and having a water content of 15 wt% or less 10 to 55 wt
% Of the thermoplastic resin molding material together with a stirring impact blade, gelled and kneaded by frictional heat, cooled, pulverized, and sized by pulverization to form synthetic hollow wood powder and inorganic hollow spheres 10 The light-weight synthetic wood powder is characterized by including at least a step of heating and kneading the light-weight synthetic wood powder obtained by mixing, dispersing and adding ~ 45 wt% and extruding to a molding die with a single screw. A method for manufacturing a lightweight wooden synthetic board.
【請求項13】 前記セルロース系破砕物に熱可塑性樹
脂成形材を攪拌衝撃翼により混合して、摩擦熱によりゲ
ル化混練し、冷却し、粉砕して整粒形成した木質合成粉
に無機質中空球状体を加え、混合、分散し、1軸のスク
リューをもって成形ダイへ押出した押出し生地を徐冷
し、且つ、この押出し生地に押出し力に抗する抑制力を
加えて押出し生地の密度を高くする工程を含む請求項1
2記載の軽量木質合成粉を用いた軽量木質合成板の製造
方法。
13. A wood synthetic powder, which is prepared by mixing a cellulose resin crushed product with a thermoplastic resin molding material by a stirring impact blade, gelling and kneading by frictional heat, cooling, and crushing to form an inorganic hollow sphere. A process of adding a body, mixing and dispersing, gradually cooling the extruded dough extruded to a forming die with a single screw, and adding a suppressing force against the extruding force to the extruded dough to increase the density of the extruded dough. Claim 1 including
2. A method for manufacturing a lightweight wooden synthetic board using the lightweight wooden synthetic powder according to 2.
【請求項14】 前記押出し生地を、内壁面にフッ素
樹脂のシートを貼設又はフッ素樹脂をコーティングした
成形ダイの成形部へ押出して押出し成形したことを特徴
とする請求項13記載の軽量木質合成粉を用いた軽量木
質合成板の製造方法。
14. The lightweight wood-synthesized wood according to claim 13, wherein the extruded material is extruded by extruding the extruded cloth onto a molding portion of a molding die having a fluororesin sheet attached to the inner wall surface or coated with the fluororesin. A method for manufacturing a lightweight wooden synthetic board using powder.
【請求項15】 前記スクリューの基部から先端への絞
り変化を少なくして前記無機質中空球状体の破損率を低
下せしめた請求項12,13又は14記載の軽量木質合
成粉を用いた軽量木質合成板の製造方法。
15. A lightweight wood-based synthetic method using a lightweight wood-based synthetic powder according to claim 12, 13 or 14, wherein a change in drawing from a base of the screw to a tip thereof is reduced to reduce a breakage rate of the inorganic hollow spherical body. Method of manufacturing a plate.
【請求項16】 前記成形ダイへの押出しは、成形ダイ
の成形部の成形室の高さと同等以下の高さを有する方形
の射出口を形成し、且つ、この射出口に向けて徐々に狭
く断面変化するよう形成した押出ダイにより行われる請
求項12,13,14又は15記載の軽量木質合成粉を
用いた軽量木質合成板の製造方法。
16. The extrusion into the molding die forms a rectangular injection port having a height equal to or less than the height of the molding chamber of the molding section of the molding die, and gradually narrows toward this injection port. The method for producing a lightweight wooden synthetic board using the lightweight wooden synthetic powder according to claim 12, 13, 14 or 15, which is carried out by an extrusion die formed so as to have a changed cross section.
JP24165694A 1994-10-05 1994-10-05 Light-weight resin molded board using inorganic hollow spheres and method for producing the same, lightweight synthetic wood powder using inorganic hollow spheres and a method for producing the same, and lightweight synthetic wood board using the lightweight wooden synthetic powder and a method for producing the same Expired - Fee Related JP3439267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24165694A JP3439267B2 (en) 1994-10-05 1994-10-05 Light-weight resin molded board using inorganic hollow spheres and method for producing the same, lightweight synthetic wood powder using inorganic hollow spheres and a method for producing the same, and lightweight synthetic wood board using the lightweight wooden synthetic powder and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24165694A JP3439267B2 (en) 1994-10-05 1994-10-05 Light-weight resin molded board using inorganic hollow spheres and method for producing the same, lightweight synthetic wood powder using inorganic hollow spheres and a method for producing the same, and lightweight synthetic wood board using the lightweight wooden synthetic powder and a method for producing the same

Publications (2)

Publication Number Publication Date
JPH08103934A true JPH08103934A (en) 1996-04-23
JP3439267B2 JP3439267B2 (en) 2003-08-25

Family

ID=17077570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24165694A Expired - Fee Related JP3439267B2 (en) 1994-10-05 1994-10-05 Light-weight resin molded board using inorganic hollow spheres and method for producing the same, lightweight synthetic wood powder using inorganic hollow spheres and a method for producing the same, and lightweight synthetic wood board using the lightweight wooden synthetic powder and a method for producing the same

Country Status (1)

Country Link
JP (1) JP3439267B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785259A (en) * 1996-03-18 1998-07-28 Ein Engineering Co., Ltd. Process for regenerating laminated thermoplastic molded resin articles and apparatus for regenerating the same
JP2007253417A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Flooring manufacturing method and flooring manufactured by this method
WO2013094490A1 (en) * 2011-12-20 2013-06-27 Wpcコーポレーション株式会社 Woody synthetic powder
CN103350442A (en) * 2013-06-18 2013-10-16 泗阳蓝阳托盘设备科技有限公司 Novel plant fiber extruder
KR101445647B1 (en) * 2013-07-29 2014-10-02 황덕현 Apparatus and Method for Manufacturing Incombustible Panel using Waste Synthetic Resin
CN107282929A (en) * 2017-07-11 2017-10-24 大连大学 Fiber alignment strengthens composite material by electric current direct heating powder hot extrusion preparation method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785259A (en) * 1996-03-18 1998-07-28 Ein Engineering Co., Ltd. Process for regenerating laminated thermoplastic molded resin articles and apparatus for regenerating the same
JP2007253417A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Flooring manufacturing method and flooring manufactured by this method
WO2013094490A1 (en) * 2011-12-20 2013-06-27 Wpcコーポレーション株式会社 Woody synthetic powder
US9505932B2 (en) 2011-12-20 2016-11-29 Beijing Shengsheng Culture Limited Liability Company Synthetic wood meal
CN103350442A (en) * 2013-06-18 2013-10-16 泗阳蓝阳托盘设备科技有限公司 Novel plant fiber extruder
KR101445647B1 (en) * 2013-07-29 2014-10-02 황덕현 Apparatus and Method for Manufacturing Incombustible Panel using Waste Synthetic Resin
CN107282929A (en) * 2017-07-11 2017-10-24 大连大学 Fiber alignment strengthens composite material by electric current direct heating powder hot extrusion preparation method and device
CN107282929B (en) * 2017-07-11 2019-05-07 大连大学 Fiber alignment enhances composite material by electric current direct heating powder hot extrusion preparation method and device

Also Published As

Publication number Publication date
JP3439267B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
PL176960B1 (en) Synthetic wooden meal, method of and apparatus for obtaining such wooden meal, synthetic wooden board containing synthetic wooden meal, method of and apparatus for forming such board by extrusion
US5801205A (en) Reprocessed resin formed of thermoset resin formed material, method for reprocessing thermoset resin foamed material and method for molding molded article formed of the reprocessed resin
JP3768559B2 (en) Waste paper synthetic powder and method and apparatus for producing the same, and method and apparatus for extruding waste paper synthetic plate using the waste paper synthetic powder
US4228116A (en) Process for producing remoldable panels
JP3566348B2 (en) A method and an apparatus for collecting and granulating a waste resin molded product, and a method for manufacturing a wooden synthetic board using the collected resin material.
EP0655310B1 (en) Method of manufacturing wood-like product and the product
JP4371373B2 (en) MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY
JPH09216500A (en) Method for farming pattern of woody synthetic plate
JP3892019B2 (en) Pellet manufacturing method and pellet manufacturing apparatus
JP3543021B2 (en) Extrusion molding method and apparatus for reinforced wood composite board
JP3439267B2 (en) Light-weight resin molded board using inorganic hollow spheres and method for producing the same, lightweight synthetic wood powder using inorganic hollow spheres and a method for producing the same, and lightweight synthetic wood board using the lightweight wooden synthetic powder and a method for producing the same
JPH07266313A (en) Woody synthetic powder, its manufacture and device, woody synthetic plate using the powder, and method and apparatus for extrusion molding the plate
JPH0966527A (en) Reclaimed resin made of thermosetting resin foam, reclaiming method for thermosetting resin foam and molding method for molding made of the same reclaimed resin
CN103946315B (en) Joint product, its manufacture method and its application, material component and final products
JPH09123169A (en) Thermoplastic resin synthetic material with plastic bottle as material, manufacture thereof, thermoplastic resin molding using the material and manufacture thereof
JP4384276B2 (en) PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE
JPH08118452A (en) Method and apparatus for extrusion molding of hollow resin panel
JP4108876B2 (en) Method and apparatus for extrusion molding of hollow resin molded plate
JP3672616B2 (en) Hollow resin molded plate having reinforcing profile, and method and apparatus for molding hollow resin molded plate
JPH09141656A (en) Synthetic wood powder made of raw material of waste polyester fiber and manufacture thereof, and synthetic wood molding using the powder and manufacture thereof
JP3554606B2 (en) Woodblock using waste agricultural film made of soft vinyl chloride and method for producing the same
JP2004216910A (en) Manufacturing device for ligneous synthetic powder and extrusion-molding device for ligneous synthetic board
CN106046825A (en) Luggage waste and reed composite sectional material and manufacturing method thereof
JP3602605B2 (en) Wood grain forming method and apparatus for wood composite board
JP2000343529A (en) Manufacture of woody resin composition, woody resin composition obtained thereby and its molded product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees