JPH08103659A - Crystalline titanium-silicalite coated catalyst for epoxidation of olefin compound - Google Patents

Crystalline titanium-silicalite coated catalyst for epoxidation of olefin compound

Info

Publication number
JPH08103659A
JPH08103659A JP6262040A JP26204094A JPH08103659A JP H08103659 A JPH08103659 A JP H08103659A JP 6262040 A JP6262040 A JP 6262040A JP 26204094 A JP26204094 A JP 26204094A JP H08103659 A JPH08103659 A JP H08103659A
Authority
JP
Japan
Prior art keywords
catalyst
silicalite
crystalline titanium
reaction
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6262040A
Other languages
Japanese (ja)
Other versions
JP3609860B2 (en
Inventor
Hideki Omori
秀樹 大森
Kaori Saito
香織 斉藤
Yoji Suzuki
陽司 鈴木
Takao Yamada
隆男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Original Assignee
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd filed Critical Maruzen Petrochemical Co Ltd
Priority to JP26204094A priority Critical patent/JP3609860B2/en
Publication of JPH08103659A publication Critical patent/JPH08103659A/en
Application granted granted Critical
Publication of JP3609860B2 publication Critical patent/JP3609860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE: To provide a crystalline titanium.silicalite coated catalyst having such strength that it can be industrially and continuously used for a long time and producing an epoxide compd. with high selectivity without causing a side reaction when an olefin compd. is epoxidized with hydrogen peroxide. CONSTITUTION: The surface of a spherical carrier is coated with a crystalline titanium.silicalite layer to obtain the objective crystalline titanium silicalite.coated catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、過酸化水素でオレフィ
ン化合物をエポキシ化するに際し、固定床、流動床ある
いは移動床式の反応形態で、長時間に亘り、安定かつ連
続的にエポキシド官能基を有する生成物を合成するのに
適する、球形状の結晶性チタン・シリカライトコーティ
ング触媒に関するものである。
FIELD OF THE INVENTION The present invention relates to the epoxidation of an olefin compound with hydrogen peroxide in a fixed bed, fluidized bed or moving bed type reaction form in a stable and continuous manner for a long time. It relates to a spherical crystalline titanium-silicalite coating catalyst suitable for synthesizing a product having

【0002】[0002]

【従来の技術】結晶性チタン・シリカライトは、過酸化
水素とエチレン、プロピレン等のオレフィン化合物とか
ら、酸化エチレン、酸化プロピレン等のエポキシド化合
物を製造する際の触媒として既に公知であり、その反応
機構および触媒調製法に関して各種の提案がなされてい
る。
2. Description of the Related Art Crystalline titanium / silicalite is already known as a catalyst for producing an epoxide compound such as ethylene oxide or propylene oxide from hydrogen peroxide and an olefin compound such as ethylene or propylene. Various proposals have been made regarding the mechanism and the catalyst preparation method.

【0003】例えば、その反応機構に関しては、J.C
atal.,133,220(1992)において、エ
ポキシド化合物は結晶性チタン・シリカライトのミクロ
細孔内で生成し、得られたエポキシド化合物のオキシラ
ン環もミクロ細孔内で開環しグリコール、グリコールエ
ーテル類に分解されることが開示されている。また、そ
のため、高選択率でエポキシド化合物を得るためには、
結晶性チタン・シリカライト触媒を微小な球状とし、細
孔内の拡散距離を短くし、生成したエポキシド化合物を
速やかに細孔内から取り去ることが不可欠であることも
知られている。
For example, regarding the reaction mechanism, J. C
atal. , 133 , 220 (1992), the epoxide compound is formed in the micropores of crystalline titanium silicalite, and the oxirane ring of the obtained epoxide compound is also opened in the micropores to form glycol and glycol ethers. It is disclosed to be decomposed. Therefore, in order to obtain an epoxide compound with high selectivity,
It is also known that it is indispensable to make the crystalline titanium-silicalite catalyst into a fine spherical shape, shorten the diffusion distance in the pores, and quickly remove the produced epoxide compound from the pores.

【0004】また、過酸化水素とオレフィン化合物とか
らエポキシド化合物を合成するのに適した結晶性チタン
・シリカライト触媒の調製法としては、特開昭61−1
83275号、特開昭62−185081号、特開平6
−9592号、特公平4−5028号、ヨーロッパ特許
第315,247号、同第315,248号に開示され
ているが、これらに開示されている結晶性チタン・シリ
カライト触媒は、いずれも結晶性チタン・シリカライト
単独の微粒子であり、工業的に固定床、流動床あるいは
移動床式の反応装置でエポキシ化反応を長時間連続的に
行なうためには適さないものであって、これらの欠点を
克服するためには、ある程度強度を有する球状物等への
物理的成形が必要であった。
Further, a method for preparing a crystalline titanium-silicalite catalyst suitable for synthesizing an epoxide compound from hydrogen peroxide and an olefin compound is disclosed in JP-A-61-1.
83275, JP-A-62-185081, JP-A-6-6
No. 9592, Japanese Examined Patent Publication No. 4-5028, and European Patents 315, 247 and 315, 248, the crystalline titanium-silicalite catalysts disclosed therein are all crystalline. Fine particles of titanium and silicalite alone, which are not suitable for continuous long-term epoxidation reaction in industrially fixed bed, fluidized bed or moving bed type reactors. In order to overcome this, it was necessary to physically form a spherical material having a certain strength.

【0005】また、結晶性チタン・シリカライトの球状
物等への物理的成形方法として、特開昭63−1124
12号において、結晶性チタン・シリカライトを結合剤
と混ぜ、スプレードライ法により直径5〜1,000μ
mの多孔質な球状体を得る方法も提案されているが、こ
の方法で成形された球状体は、上記微粒子と同様に、触
媒細孔内の拡散距離が短く、生成したエポキシド化合物
を速やかに細孔内から取り去り、選択率を上げる点にお
いては好ましいものの、固定床、流動床あるいは移動床
式の反応装置に用いられる触媒としては、触媒の充填・
取り出し易さ、流れ易さの点において実用的でなく、ま
た、強度の点においても不十分であった。
Further, as a method of physically molding crystalline titanium / silicalite into a spherical material or the like, JP-A-63-1124 is used.
In No. 12, mixed crystalline titanium / silicalite with a binder and spray-dried to obtain a diameter of 5 to 1,000 μm.
A method for obtaining a porous spherical body of m has also been proposed, but the spherical body formed by this method has a short diffusion distance in the catalyst pores as in the case of the above-mentioned fine particles, and the produced epoxide compound can be rapidly produced. Although it is preferable in that it is removed from the inside of the pores and the selectivity is increased, the catalyst used in a fixed bed, fluidized bed or moving bed reactor is a catalyst packed or
It was not practical in terms of easiness of taking out and easiness of flow, and was also insufficient in terms of strength.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
状況に鑑み、工業的に固定床、流動床あるいは移動床式
の反応装置に好適に適用し得て、長時間連続的に使用可
能な強度を持ち、しかも、過酸化水素でオレフィン化合
物をエポキシ化するに際し副反応が起きず、高選択率で
エポキシド化合物を製造することを可能にする、結晶性
チタン・シリカライト触媒を提供することを目的とす
る。
In view of the above conventional circumstances, the present invention can be industrially suitably applied to a fixed bed, fluidized bed or moving bed type reactor and can be continuously used for a long time. To provide a crystalline titanium-silicalite catalyst having high strength and capable of producing an epoxide compound with a high selectivity without causing a side reaction when epoxidizing an olefin compound with hydrogen peroxide. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成させるために鋭意検討を重ねた結果、不活性球形
担体表面に、結晶性チタン・シリカライトを均一にコー
ティングすることにより、上記目的を達成し得て、工業
的に有用なオレフィン化合物のエポキシ化用触媒が得ら
れることを見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above object, and as a result, by uniformly coating crystalline titanium / silicalite on the surface of an inert spherical carrier, The present invention has been completed by finding that the above object can be achieved and an industrially useful catalyst for epoxidation of olefin compounds can be obtained.

【0008】したがって、本発明の要旨は、球形担体表
面に結晶性チタン・シリカライト層をコートしてなるこ
とを特徴とするオレフィン化合物のエポキシ化用結晶性
チタン・シリカライトコーティング触媒に存する。
Accordingly, the gist of the present invention resides in a crystalline titanium-silicalite coating catalyst for epoxidation of an olefin compound, characterized in that the surface of a spherical carrier is coated with a crystalline titanium-silicalite layer.

【0009】本発明に使用される結晶性チタン・シリカ
ライトは、一般に微粉末状で得られるが、その調製は、
ZEOLITES,12,943(1992)に開示さ
れているような公知の方法によればよく、例えば、テト
ラエチルオルトケイ酸と水酸化テトラ−n−プロピルア
ンモニム水溶液を混合した中へ、チタニウムテトラブト
キシドを滴下しゲルを調製した後、オートクレーブ中、
170℃、発生圧力下、2〜7日間水熱合成することで
得られる。
The crystalline titanium silicalite used in the present invention is generally obtained in the form of fine powder.
A known method such as that disclosed in ZEOLITES, 12 , 943 (1992) may be used. For example, titanium tetrabutoxide is added dropwise into a mixture of tetraethylorthosilicic acid and an aqueous solution of tetra-n-propylammonium hydroxide. After preparing the gel, in the autoclave,
It can be obtained by hydrothermal synthesis at 170 ° C. under a generated pressure for 2 to 7 days.

【0010】ここで得られる結晶性チタン・シリカライ
ト微粉末のSi/Ti原子比は、7〜10,000、好
ましくは10〜200が適当である。
The crystalline titanium / silicalite fine powder thus obtained has a Si / Ti atomic ratio of 7 to 10,000, preferably 10 to 200.

【0011】また、結晶性チタン・シリカライト微粉末
をコートする球形担体としては、ある程度の強度を持
ち、不活性なものであれば特に限定する必要はなく、例
えば、球形シリカゲルや球形アルミナゲルが適当であ
る。また、この球形担体の大きさは、工業的な固定床、
流動床あるいは移動床式の反応装置への使用に適した、
直径0.2〜20.0mmが好ましい。
Further, the spherical carrier for coating the crystalline titanium / silicalite fine powder is not particularly limited as long as it has a certain strength and is inert, and examples thereof include spherical silica gel and spherical alumina gel. Appropriate. Also, the size of this spherical carrier is an industrial fixed bed,
Suitable for use in fluidized bed or moving bed reactors,
The diameter is preferably 0.2 to 20.0 mm.

【0012】球形担体表面への結晶性チタン・シリカラ
イトのコーティングは、結晶性チタン・シリカライトの
微粉末を結合剤と混合し、スラリー溶液とし、転動され
ている担体に噴霧することによって行うことができる。
The coating of the crystalline titanium / silicalite on the surface of the spherical carrier is carried out by mixing a fine powder of crystalline titanium / silicalite with a binder to form a slurry solution and spraying it onto the rolling carrier. be able to.

【0013】結合剤としては、その後の焼成により燃焼
し取り去ることができるものであればなんでもよく、例
えば、グリセリン、ポリビニルピロリドン、メチルセル
ロース、ポリビニルアルコールおよびツイーン80(ア
ルドリッチ社製)などの水溶液が使用できる。
Any binder may be used as long as it can be burned and removed by subsequent firing, and for example, an aqueous solution of glycerin, polyvinylpyrrolidone, methyl cellulose, polyvinyl alcohol, Tween 80 (manufactured by Aldrich) can be used. .

【0014】結晶性チタン・シリカライト微粉末と結合
剤からなるスラリー溶液中の結晶性チタン・シリカライ
トの濃度は、一般に、1〜80wt%、好ましくは2〜
40wt%とするのが適当である。この場合、コーティ
ング層と担体間の結合をより堅固にするために、該スラ
リー溶液中に、水酸化テトラメチルアンモニウム、水酸
化テトラエチルアンモニウム、水酸化テトラ−n−プロ
ピルアンモニウム、水酸化テトラ−i−プロピルアンモ
ニウムおよび水酸化テトラ−n−ブチルアンモニウム等
の第四級有機塩基を0.1〜20.0wt%加えておく
ことも効果的である。また、コーティング層の結晶性チ
タン・シリカライト含有量を低減する目的で、あらかじ
めスラリー溶液中にシリカゲル微粉末(0.1〜5.0
μm)、あるいは細かく切断したグラスウール等を結晶
性チタン・シリカライト微粉末に対し、0.01〜5重
量倍、好ましくは0.1〜2重量倍加えておくことも可
能である。
The concentration of the crystalline titanium / silicalite in the slurry solution consisting of the crystalline titanium / silicalite fine powder and the binder is generally 1 to 80% by weight, preferably 2 to
40 wt% is appropriate. In this case, in order to make the bond between the coating layer and the carrier more rigid, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-i-hydroxide is added to the slurry solution. It is also effective to add 0.1 to 20.0 wt% of a quaternary organic base such as propylammonium and tetra-n-butylammonium hydroxide. Further, in order to reduce the content of crystalline titanium / silicalite in the coating layer, a silica gel fine powder (0.1 to 5.0) was previously added to the slurry solution.
It is also possible to add 0.01 to 5 times by weight, preferably 0.1 to 2 times by weight, to the crystalline titanium / silicalite fine powder.

【0015】該スラリー溶液の球形担体表面への噴霧
は、例えば、造粒装置上で球形担体を転動中、スプレー
ガンを用い、2〜50ml /分で噴霧する等、周知の手
段が用いられる。
For the spraying of the slurry solution onto the surface of the spherical carrier, a well-known means such as spraying at a rate of 2 to 50 ml / min with a spray gun while the spherical carrier is rolling on a granulator is used. .

【0016】得られたコーティング触媒は、50〜12
0℃で1〜48時間乾燥後、300〜550℃で1〜1
2時間焼成される。
The coating catalyst obtained is from 50 to 12
After drying at 0 ° C for 1-48 hours, 1-1 at 300-550 ° C
Bake for 2 hours.

【0017】焼成後のコーティング層の厚さは、球形担
体の直径に対する比が、0.0001〜0.1、好まし
くは0.01〜0.1が適当である。
The thickness of the coating layer after baking is appropriately 0.0001 to 0.1, preferably 0.01 to 0.1, relative to the diameter of the spherical carrier.

【0018】本発明に従った結晶性チタン・シリカライ
トコーティング触媒は、過酸化水素とオレフィン化合物
から、高選択率でエポキシド化合物を与え、しかも、固
定床、流動床あるいは移動床式の反応装置を用いた工業
的連続製造法の触媒として有用なものである。
The crystalline titanium-silicalite coating catalyst according to the present invention provides an epoxide compound with a high selectivity from hydrogen peroxide and an olefin compound, and further, a fixed bed, fluidized bed or moving bed reactor is used. It is useful as a catalyst for the industrial continuous production method used.

【0019】本発明の触媒の適用できるエポキシ化反応
は、過酸化水素とオレフィン化合物との従来のエポキシ
化反応に準ずればよい。
The epoxidation reaction to which the catalyst of the present invention can be applied may be similar to the conventional epoxidation reaction between hydrogen peroxide and an olefin compound.

【0020】例えば、原料として用いる過酸化水素源と
しては、市販の30wt%過酸化水素水、もしくは2級
アルコールを分子状酸素で酸化して得られる、未精製の
過酸化水素をそのまま用いることができる。また、エポ
キシ化されるオレフィン化合物としては、少なくとも1
個のエチレン性二重結合を持つ非環式および環式有機化
合物で、具体的には、エチレン、プロピレン、2−ブテ
ン、イソブテン、1−オクテン、シクロヘキセン、アリ
ルアルコール、オレイン酸メチル、ジアリルエーテルお
よび塩化アリル等があげられる。
For example, as a hydrogen peroxide source used as a raw material, commercially available 30 wt% hydrogen peroxide solution or unpurified hydrogen peroxide obtained by oxidizing a secondary alcohol with molecular oxygen can be used as it is. it can. The epoxidized olefin compound is at least 1
Acyclic and cyclic organic compounds having an ethylenic double bond, specifically, ethylene, propylene, 2-butene, isobutene, 1-octene, cyclohexene, allyl alcohol, methyl oleate, diallyl ether and Examples include allyl chloride.

【0021】また、反応は液相反応で、大気圧下で実施
できるが、オレフィン化合物がガス状である場合は、そ
れを液相中に溶解させるのに十分な圧力に保つことが好
ましい。反応温度は、0〜100℃、好ましくは20〜
80℃である。また、反応原料の供給速度は、触媒体積
/原料供給速度(V/F)=0.05〜2.0、好まし
くは0.05〜0.5である。
Further, the reaction is a liquid phase reaction and can be carried out under atmospheric pressure, but when the olefin compound is in a gaseous state, it is preferable to keep the pressure sufficient to dissolve it in the liquid phase. The reaction temperature is 0 to 100 ° C., preferably 20 to
It is 80 ° C. Further, the supply rate of the reaction raw material is catalyst volume / raw material supply rate (V / F) = 0.05 to 2.0, preferably 0.05 to 0.5.

【0022】[0022]

【実施例】以下、実施例によりさらに詳細に説明する
が、本発明がこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0023】実施例1 結晶性チタン・シリカライト微粉末(Si/Ti原子比
=13)50gと、結合剤として20wt%ポリビニル
アルコール水溶液150gを室温で1時間混合撹拌し、
スラリー溶液を調製した。次に、直径1.8〜2.0m
mの球形シリカゲル(富士シリシア化学株式会社製キャ
リアクト10)250gを遠心流動型造粒装置(フロイ
ント産業株式会社製CF360S)上で転動させ、上記
スラリー溶液を5ml/分で噴霧した。この間、転動し
やすくするため空気を150 l/分で吹き付け続け
た。噴霧終了後、80℃で20時間乾燥させ、300℃
で2時間仮焼成を行い、550℃で2時間焼成を行っ
た。これにより、球形シリカゲル1g当たり、結晶性チ
タン・シリカライトが0.14gの量でコートされた触
媒が得られた(以下「触媒1」と記す)。
Example 1 50 g of crystalline titanium / silicalite fine powder (Si / Ti atomic ratio = 13) and 150 g of 20 wt% polyvinyl alcohol aqueous solution as a binder were mixed and stirred at room temperature for 1 hour,
A slurry solution was prepared. Next, diameter 1.8-2.0m
250 g of m spherical silica gel (Carriact 10 manufactured by Fuji Silysia Chemical Ltd.) was tumbled on a centrifugal fluidized granulator (CF360S manufactured by Freund Sangyo Co., Ltd.), and the slurry solution was sprayed at 5 ml / min. During this period, air was continuously blown at 150 l / min to facilitate rolling. After spraying, dry at 80 ℃ for 20 hours, 300 ℃
Calcination was carried out for 2 hours and then at 550 ° C. for 2 hours. As a result, a catalyst coated with 0.14 g of crystalline titanium silicalite per 1 g of spherical silica gel was obtained (hereinafter referred to as "catalyst 1").

【0024】図1に電子線マイクロアナライザ(島津E
PMA−8705)を用い、加速電圧15kV、照射電
流50nA、分光結晶PET(ペンタエリスリトー
ル)、分析範囲3×3mmおよび分析時間262分で分
析した触媒断面のチタンの分布図を示す。
FIG. 1 shows an electron beam microanalyzer (Shimadzu E
The distribution diagram of titanium of the catalyst cross section analyzed using PMA-8705) with an acceleration voltage of 15 kV, an irradiation current of 50 nA, a spectroscopic crystal PET (pentaerythritol), an analysis range of 3 × 3 mm, and an analysis time of 262 minutes is shown.

【0025】触媒は真球であり、結晶性チタン・シリカ
ライトコーティング層は、0.01〜0.1mm(コー
ティング層の厚さ/球形シリカゲルの直径=0.005
〜0.056)で触媒全体を完全にコートしていること
がわかる。
The catalyst is spherical, and the crystalline titanium-silicalite coating layer has a thickness of 0.01 to 0.1 mm (coating layer thickness / spherical silica gel diameter = 0.005).
It can be seen that the entire catalyst is completely coated at .about.0.056).

【0026】実施例2 シリカゲル微粉末20gと20wt%水酸化テトラ−n
−プロピルアンモニウム水溶液70gを混ぜ、室温で1
時間攪拌した。これに、実施例1と同様の結晶性チタン
・シリカライト微粉末14g、結合剤としてグリセリン
4.2gを加えスラリー溶液を調製した。次に、上記ス
ラリー溶液を10ml/分で実施例1で用いたと同じ球
形シリカゲル70g上に噴霧した以外は、実施例1と同
様に、コーティング、乾燥、仮焼成、焼成を行ない、球
形シリカゲル1g当たり、結晶性チタン・シリカライト
が0.1gの量でコートされた触媒が得られた(以下
「触媒2」と記す)。
Example 2 20 g of silica gel fine powder and 20 wt% tetra-n hydroxide hydroxide
-Mix 70g of propylammonium aqueous solution and mix at room temperature for 1
Stir for hours. The same crystalline titanium / silicalite fine powder 14 g as in Example 1 and glycerin 4.2 g as a binder were added thereto to prepare a slurry solution. Next, coating, drying, pre-baking and firing were performed in the same manner as in Example 1 except that the above slurry solution was sprayed onto 70 g of the same spherical silica gel as used in Example 1 at 10 ml / min. A catalyst coated with 0.1 g of crystalline titanium-silicalite was obtained (hereinafter referred to as "catalyst 2").

【0027】なお、ここで用いた水酸化テトラ−n−プ
ロピルアンモニウムは、シリカゲルの表面を溶解する作
用があり、その結果コーティング層とシリカゲルとの結
合を強固にする働きがある。
The tetra-n-propylammonium hydroxide used here has a function of dissolving the surface of the silica gel, and as a result, has a function of strengthening the bond between the coating layer and the silica gel.

【0028】比較例1 シリカゲル微粉末6g、20wt%水酸化テトラ−n−
プロピルアンモニウム20g、水8gを混ぜ、これに実
施例1と同様の結晶性チタン・シリカライト微粉末1g
を加え、ニーダーで乾燥しながら成形可能な水分量にな
るまで混練し、押し出し成形機にて外径2mmのワイヤ
ーを得た。次に、実施例1と同様に、乾燥、仮焼成、焼
成を行ない、その後、長さ5mmの円筒形となるように
切断した(以下「触媒3」と記す)。
Comparative Example 1 Silica gel fine powder 6 g, 20 wt% hydroxide tetra-n-
20 g of propylammonium and 8 g of water were mixed, and to this was added 1 g of crystalline titanium / silicalite fine powder as in Example 1.
Was added and kneaded while drying with a kneader until the amount of water that can be formed was obtained, and a wire having an outer diameter of 2 mm was obtained by an extrusion molding machine. Next, in the same manner as in Example 1, drying, calcination, and calcination were performed, and thereafter, the material was cut into a cylindrical shape having a length of 5 mm (hereinafter referred to as "catalyst 3").

【0029】実施例3 内径12mmのステンレス製カラムに触媒1を2.8m
l充填した反応器を作成し、これに、メチルアルコール
154g、イソプロパノール181g、ピロリン酸二水
素二ナトリウム27mg、30wt%過酸化水素水30
gに、プロピレン42gを混ぜた反応原料を、触媒体積
/原料供給速度(V/F)=0.1でカラムに通液し、
反応温度60℃でプロピレンのエポキシ化反応を行なっ
た。その結果、過酸化水素基準の反応率95%、酸化プ
ロピレン選択率91%であった。
Example 3 2.8 m of catalyst 1 was placed on a stainless steel column having an inner diameter of 12 mm.
A reactor filled with 1 was prepared, and 154 g of methyl alcohol, 181 g of isopropanol, 27 mg of disodium dihydrogen pyrophosphate, 30 wt% hydrogen peroxide solution were added to the reactor.
A reaction raw material in which 42 g of propylene was mixed with g was passed through the column at a catalyst volume / raw material supply rate (V / F) = 0.1,
The propylene epoxidation reaction was carried out at a reaction temperature of 60 ° C. As a result, the reaction rate based on hydrogen peroxide was 95%, and the propylene oxide selectivity was 91%.

【0030】実施例4 触媒1の代わりに触媒2を用い、触媒体積/原料供給速
度(V/F)=0.2とした以外は、実施例3と同様に
プロピレンのエポキシ化反応を行なった。その結果、過
酸化水素基準の反応率92%、酸化プロピレン選択率8
9%であった。
Example 4 The epoxidation reaction of propylene was carried out in the same manner as in Example 3 except that the catalyst 2 was used instead of the catalyst 1 and the catalyst volume / raw material supply rate (V / F) was 0.2. . As a result, the reaction rate based on hydrogen peroxide was 92%, and the propylene oxide selectivity was 8
It was 9%.

【0031】比較例2 触媒1の代わりに触媒3を用い、触媒体積/原料供給速
度(V/F)=0.2とした以外は、実施例3と同様に
プロピレンのエポキシ化反応を行なった。その結果、過
酸化水素基準の反応率37%、酸化プロピレン選択率6
4%であった。
Comparative Example 2 The propylene epoxidation reaction was carried out in the same manner as in Example 3 except that the catalyst 3 was used in place of the catalyst 1 and the catalyst volume / raw material supply rate (V / F) was 0.2. . As a result, the reaction rate based on hydrogen peroxide was 37%, and the propylene oxide selectivity was 6
4%.

【0032】比較例3 触媒1の代わりに触媒3を用い、触媒体積/原料供給速
度(V/F)=0.6とした以外は、実施例3と同様に
プロピレンのエポキシ化反応を行なった。その結果、過
酸化水素基準の反応率63%、酸化プロピレン選択率5
8%であった。実施例3および4より触媒量を増やした
にもかかわらず、反応率、選択率ともに低い値であっ
た。
Comparative Example 3 The propylene epoxidation reaction was carried out in the same manner as in Example 3 except that the catalyst 3 was used in place of the catalyst 1 and the catalyst volume / raw material supply rate (V / F) was 0.6. . As a result, the reaction rate based on hydrogen peroxide was 63%, and the propylene oxide selectivity was 5
It was 8%. Although the catalyst amount was increased from those of Examples 3 and 4, both the reaction rate and the selectivity were low.

【0033】実施例5 内径12mmのステンレス製カラムに触媒1を2.8m
l充填した反応器を作成し、これに、イソプロパノール
335g、ピロリン酸二水素二ナトリウム27mg、3
0wt%過酸化水素水30gに、イソブテン56gを混
ぜた反応原料を、触媒体積/原料供給速度(V/F)=
0.2でカラムに通液し、反応温度60℃でイソブテン
のエポキシ化反応を行なった。その結果、過酸化水素基
準の反応率82%、酸化イソブテン選択率80%であっ
た。
Example 5 2.8 m of catalyst 1 was placed on a stainless steel column having an inner diameter of 12 mm.
A reactor charged with 1 l was prepared, and 335 g of isopropanol, 27 mg of disodium dihydrogen pyrophosphate, 3 mg were added thereto.
A reaction raw material prepared by mixing 56 g of isobutene with 30 g of 0 wt% hydrogen peroxide was used as catalyst volume / raw material supply rate (V / F) =
The solution was passed through the column at 0.2, and the epoxidation reaction of isobutene was performed at a reaction temperature of 60 ° C. As a result, the reaction rate based on hydrogen peroxide was 82% and the isobutene oxide selectivity was 80%.

【0034】比較例4 触媒1の代わりに触媒3を用い、触媒体積/原料供給速
度(V/F)=0.4とした以外は、実施例5と同様に
イソブテンのエポキシ化反応を行なった。その結果、過
酸化水素基準の反応率43%、酸化イソブテン選択率6
1%であった。実施例5より触媒量を増やしたにもかか
わらず、反応率、選択率ともに低い値であった。
Comparative Example 4 The epoxidation reaction of isobutene was carried out in the same manner as in Example 5 except that the catalyst 3 was used in place of the catalyst 1 and the catalyst volume / raw material supply rate (V / F) was 0.4. . As a result, the reaction rate based on hydrogen peroxide was 43% and the isobutene oxide selectivity was 6
It was 1%. Although the catalyst amount was increased from that of Example 5, both the reaction rate and the selectivity were low.

【0035】実施例6 内径12mmのステンレス製カラムに触媒1を2.8m
l充填した反応器を作成し、これに、イソプロパノール
335g、ピロリン酸二水素二ナトリウム27mg、3
0wt%過酸化水素水30gに、アリルアルコール58
gを混ぜた反応原料を、触媒体積/原料供給速度(V/
F)=0.2でカラムに通液し、反応温度60℃でアリ
ルアルコールのエポキシ化反応を行なった。その結果、
過酸化水素基準の反応率84%、グルシドール選択率7
7%であった。
Example 6 2.8 m of catalyst 1 was placed on a stainless steel column having an inner diameter of 12 mm.
A reactor charged with 1 l was prepared, and 335 g of isopropanol, 27 mg of disodium dihydrogen pyrophosphate, 3 mg were added thereto.
Allyl alcohol 58 in 30 g of 0 wt% hydrogen peroxide solution
The reaction raw material mixed with g was used as a catalyst volume / raw material supply rate (V /
F) = 0.2 was passed through the column, and the epoxidation reaction of allyl alcohol was performed at a reaction temperature of 60 ° C. as a result,
84% reaction rate based on hydrogen peroxide, glucidol selectivity 7
7%.

【0036】実施例7 内径12mmのステンレス製カラムに触媒1を2.8m
l充填した反応器を作成し、これに、ピロリン酸二水素
二ナトリウム0.003wt%、過酸化水素2wt%、
プロピレン10wt%、イソプロパノール44wt%、
メタノール38wt%、水6wt%を反応原料とし、触
媒体積/原料供給速度(V/F)=0.1でカラムに通
液し、反応温度60℃で100時間連続反応を行なっ
た。反応終了後、カラムに空気を通気しながら、80℃
で2時間乾燥し、370℃で13時間焼成して触媒の再
生を行なった。これを放冷後、再度上記と同様の連続反
応を行なった。上記反応と触媒再生のサイクルを繰り返
し行ない、各サイクルの反応における反応時間20時間
および100時間での酸化プロピレン収率(%)[過酸
化水素基準の反応率(%)×酸化プロピレン選択率
(%)÷100]の結果を図2に示す。本願の触媒は、
15サイクル繰り返しても触媒性能の低下は見られなか
った。
Example 7 2.8 m of catalyst 1 was placed on a stainless steel column having an inner diameter of 12 mm.
A reactor filled with 1 l was prepared, and 0.003 wt% of disodium dihydrogen pyrophosphate, 2 wt% of hydrogen peroxide,
Propylene 10 wt%, isopropanol 44 wt%,
38 wt% of methanol and 6 wt% of water were used as reaction raw materials and passed through the column at a catalyst volume / raw material supply rate (V / F) = 0.1, and a continuous reaction was performed at a reaction temperature of 60 ° C. for 100 hours. After the reaction was completed, air was passed through the column at 80 ° C.
The catalyst was regenerated by drying for 2 hours and calcining at 370 ° C. for 13 hours. After allowing this to cool, the same continuous reaction as above was performed again. The above reaction and catalyst regeneration cycles were repeated, and the propylene oxide yield (%) at the reaction time of 20 hours and 100 hours in each cycle reaction [reaction rate based on hydrogen peroxide (%) x propylene oxide selectivity (%) ) ÷ 100] is shown in FIG. The catalyst of the present application is
No deterioration in catalyst performance was observed even after repeating 15 cycles.

【0037】[0037]

【発明の効果】本発明の触媒によれば、固定床、流動床
あるいは移動床式反応装置により、長期間、高収率およ
び高選択率でエポキシド化合物を経済的に工業的に製造
することができる。また、本発明の触媒は、高強度であ
るので、焼成による再生を繰り返しても、微細化等の形
状変化も起こらず、一定の形状が維持され、また、触媒
活性が低下しない。したがって、本発明の触媒は、過酸
化水素とオレフィン化合物とから、エポキシド化合物の
工業的製造において非常に有用なものである。
EFFECTS OF THE INVENTION According to the catalyst of the present invention, an epoxide compound can be economically and industrially produced with a fixed bed, a fluidized bed or a moving bed type reactor for a long period at a high yield and a high selectivity. it can. Further, since the catalyst of the present invention has a high strength, even if it is repeatedly regenerated by firing, it does not undergo a shape change such as miniaturization and maintains a constant shape, and the catalyst activity does not decrease. Therefore, the catalyst of the present invention is very useful in the industrial production of epoxide compounds from hydrogen peroxide and olefin compounds.

【図面の簡単な説明】[Brief description of drawings]

【図1】エポキシ樹脂で包埋後、断面研磨した触媒1の
電子線マイクロアナライザによるチタン原子の分布図で
ある。
FIG. 1 is a distribution diagram of titanium atoms by an electron beam microanalyzer of a catalyst 1 having a cross section polished after embedding with an epoxy resin.

【図2】実施例7における、各サイクルの酸化プロピレ
ン収率(%)を示す図である。
FIG. 2 is a diagram showing a propylene oxide yield (%) in each cycle in Example 7.

【符号の説明】[Explanation of symbols]

1 コーティング層中のチタン原子 2 球形シリカゲル担体 1 Titanium atom in coating layer 2 Spherical silica gel carrier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 球形担体表面に結晶性チタン・シリカラ
イト層をコートしてなることを特徴とするオレフィン化
合物のエポキシ化用結晶性チタン・シリカライトコーテ
ィング触媒。
1. A crystalline titanium-silicalite coating catalyst for epoxidation of an olefin compound, characterized in that the surface of a spherical carrier is coated with a crystalline titanium-silicalite layer.
【請求項2】 結晶性チタン・シリカライト層の厚さ
が、球形担体の直径に対する比が、0.0001〜0.
1である請求項1記載の触媒。
2. The thickness of the crystalline titanium-silicalite layer to the diameter of the spherical carrier is 0.0001-0.
The catalyst according to claim 1, which is 1.
【請求項3】 球形担体の直径が、0.2〜20.0m
mである請求項1または2記載の触媒。
3. The spherical carrier has a diameter of 0.2 to 20.0 m.
The catalyst according to claim 1 or 2, which is m.
【請求項4】 球形担体が、アルミナまたはシリカゲル
である請求項1ないし3のいずれかに記載の触媒。
4. The catalyst according to claim 1, wherein the spherical carrier is alumina or silica gel.
JP26204094A 1994-09-30 1994-09-30 Crystalline titanium and silicalite coating catalysts for epoxidation of olefin compounds Expired - Lifetime JP3609860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26204094A JP3609860B2 (en) 1994-09-30 1994-09-30 Crystalline titanium and silicalite coating catalysts for epoxidation of olefin compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26204094A JP3609860B2 (en) 1994-09-30 1994-09-30 Crystalline titanium and silicalite coating catalysts for epoxidation of olefin compounds

Publications (2)

Publication Number Publication Date
JPH08103659A true JPH08103659A (en) 1996-04-23
JP3609860B2 JP3609860B2 (en) 2005-01-12

Family

ID=17370199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26204094A Expired - Lifetime JP3609860B2 (en) 1994-09-30 1994-09-30 Crystalline titanium and silicalite coating catalysts for epoxidation of olefin compounds

Country Status (1)

Country Link
JP (1) JP3609860B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524379A (en) * 1997-11-27 2001-12-04 ソルヴェイ Epoxidation catalyst, its use and method of epoxidation in the presence of this catalyst
JP2002145872A (en) * 2000-11-01 2002-05-22 Maruzen Petrochem Co Ltd Method of manufacturing epoxy compound
CN1330416C (en) * 2004-01-10 2007-08-08 大连理工大学 Modification method of titanium silicone molecular sieve and its application
CN100390159C (en) * 2003-11-28 2008-05-28 大连理工大学 Method and device for epoxidation of propylene using plasma of hydrogen and oxygen
US8513154B2 (en) 2008-04-30 2013-08-20 Dow Technology Investments, Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
US8685883B2 (en) 2008-04-30 2014-04-01 Dow Technology Investments Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524379A (en) * 1997-11-27 2001-12-04 ソルヴェイ Epoxidation catalyst, its use and method of epoxidation in the presence of this catalyst
JP2002145872A (en) * 2000-11-01 2002-05-22 Maruzen Petrochem Co Ltd Method of manufacturing epoxy compound
CN100390159C (en) * 2003-11-28 2008-05-28 大连理工大学 Method and device for epoxidation of propylene using plasma of hydrogen and oxygen
CN1330416C (en) * 2004-01-10 2007-08-08 大连理工大学 Modification method of titanium silicone molecular sieve and its application
US8513154B2 (en) 2008-04-30 2013-08-20 Dow Technology Investments, Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
US8685883B2 (en) 2008-04-30 2014-04-01 Dow Technology Investments Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
US9101906B2 (en) 2008-04-30 2015-08-11 Dow Technology Investments Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same

Also Published As

Publication number Publication date
JP3609860B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
EP0311983B1 (en) Method for the preparation of titanium-silicalites
US5859265A (en) Oxidation catalyst, its preparation and oxidation using the oxidation catalyst
KR100225874B1 (en) Ethylene oxide catalyst and process for its preparation
JP4282096B2 (en) Direct oxidation of olefins to olefin oxides.
EP0915861B1 (en) Process for the direct oxidation of olefins to olefin oxides
CN101291877B (en) Preparation of titanosilicate zeolite ts-1
JPS62185081A (en) Epoxidation of olefin compound
JP2000511818A (en) Oxidation catalyst and method for producing epoxide from olefins, hydrogen and oxygen using said oxidation catalyst
US20040176621A1 (en) Surface-modified mixed oxides containing noble metal and titanium for the selective oxidation of hydrocarbons
US20020091277A1 (en) Epoxidation catalyst, its use and epoxidation process in the presence of this catalyst
KR20010052243A (en) Method for producing a shaped body using a metal oxide sol, shaped body, the use thereof in the production of an alkene oxide
EP1140883A1 (en) Process for the direct oxidation of olefins to olefin oxides
JP2006525283A5 (en)
JP3609860B2 (en) Crystalline titanium and silicalite coating catalysts for epoxidation of olefin compounds
US6670491B2 (en) Process for the direct oxidation of olefins to olefin oxides
US6323351B1 (en) Process for the direct oxidation of olefins to olefin oxides
JP4712189B2 (en) Zeolite-based catalyst, its use and process for epoxidation in the presence of this catalyst
ES2292811T3 (en) DIRECT EPOXIDATION PROCEDURE USING A MIXED CATALYSTING SYSTEM.
JPH11165074A (en) Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide
CN105524037B (en) A kind of method of oxidizing cyclohexanone
JPH10244156A (en) Catalyst for partially oxidizing hydrocarbon and method for partially oxidizing hydrocarbon
KR20010079727A (en) Method for producing a titanium silicate with rut structure
JP2001525248A (en) Molded article containing inert carrier and at least one porous oxide material
JPH10316417A (en) Production of titanium-containing beta-zeolite
CN112742471A (en) Core-shell structure titanium-silicon material, preparation method thereof and method for producing epoxy compound through oxidation reaction of macromolecular olefin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term