JPH08102313A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH08102313A
JPH08102313A JP6237715A JP23771594A JPH08102313A JP H08102313 A JPH08102313 A JP H08102313A JP 6237715 A JP6237715 A JP 6237715A JP 23771594 A JP23771594 A JP 23771594A JP H08102313 A JPH08102313 A JP H08102313A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
electrode terminal
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6237715A
Other languages
Japanese (ja)
Inventor
Yasunobu Koga
靖信 古賀
Hideya Takahashi
秀哉 高橋
Masayuki Endo
正幸 遠藤
Ayaki Watanabe
綾樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6237715A priority Critical patent/JPH08102313A/en
Publication of JPH08102313A publication Critical patent/JPH08102313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To reduce material cost and enhance the reliability of a positive terminal by using a material having austenite and ferrite structure at normal temperature in the positive terminal and fixing a positive electrode to a battery cover or a battery can by caulking. CONSTITUTION: A positive terminal 23 is made of two phase stainless steel comprising austenite and ferrite structure at normal temperature, and enveloped together with a negative electrode 3 and a separator 8. The negative electrode 3, the separator 8, a positive electrode 2, and the separator 8, and the negative electrode 3 are mutually stacked in order to form an electrode stacked body. The positive electrode 2 is fixed to a battery cover 21 or a battery can by caulking. Then they are put in a flat type battery container 10 and an electrolyte prepared by dissolving a lithium salt serving as an electrolyte in an organic solvent is poured in the container 10. Since two phase stainless steel is used and the positive electrode is fixed by caulking, cost is reduced, leakage resistance is ensured to the shock such as falling down, and a battery with high reliability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばラップトップコン
ピュータ、セルラーホーン、8ミリビデオ、オーディオ
機器等のポータブル電子機器用電源として使用して好適
な非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery suitable for use as a power source for portable electronic equipment such as laptop computers, cellular phones, 8 mm video and audio equipment.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ラップトップコンピュータ、セルラーホーン、8ミリビ
デオ、オーディオ機器等のポータブル電子機器の発展は
めざましく、電子技術の進歩により、これらポータブル
電子機器は、小型、軽量、薄型化が進んでいる。機器の
小型、軽量、薄型化に伴い、電源として用いられる電池
に対しても、小型、軽量、薄型化さらには高エネルギー
密度化が要求される。これまで、鉛電池、ニッケル・カ
ドミウム電池等の水溶液系二次電池が使用されてきた
が、軽量化、高エネルギー化の要求に対して十分とはい
えない。
2. Description of the Related Art In recent years,
The development of portable electronic devices such as laptop computers, cellular phones, 8 mm video and audio devices has been remarkable, and due to the progress of electronic technology, these portable electronic devices have become smaller, lighter and thinner. As devices become smaller, lighter, and thinner, batteries used as power sources are required to be smaller, lighter, thinner, and have higher energy density. Up to now, aqueous secondary batteries such as lead batteries and nickel-cadmium batteries have been used, but they cannot be said to be sufficient for the demands for weight reduction and high energy.

【0003】最近、高エネルギー密度を有し、しかも、
クリーンな電池としてリチウム二次電池に対し、大きな
関心と期待が持たれている。
Recently, it has a high energy density and
There is great interest and expectation for lithium secondary batteries as clean batteries.

【0004】現在実用化されている非水電解液二次電池
としては、リチウムLiのドープ、脱ドープが可能な炭
素材料を負電極とし、リチウムコバルト酸化物、リチウ
ムニッケル酸化物等のリチウム複合酸化物を正電極とし
たリチウムイオン二次電池があり、近年、活発な開発研
究が行われている。
As a non-aqueous electrolyte secondary battery which has been put into practical use at present, a carbon material capable of doping and dedoping lithium Li is used as a negative electrode, and lithium composite oxide such as lithium cobalt oxide and lithium nickel oxide is used. There is a lithium-ion secondary battery using an object as a positive electrode, and in recent years, active research and development has been conducted.

【0005】このリチウムイオン二次電池は正及び負電
極の容量設計を最適化することにより、リチウム金属を
用いた電池系で見られるLiデントライトの形成はな
く、サイクル特性、安全性に優れ、更に低温特性、負荷
特性あるいは急速充電特性にも優れており、大いに期待
が持たれていると共に、ラップトップコンピュータ、セ
ルラーホーン、8ミリビデオ、オーディオ機器等のポー
タブル電子機器用電源として用いられている。
By optimizing the capacity design of the positive and negative electrodes, this lithium ion secondary battery is free from the formation of Li dendrite seen in a battery system using lithium metal, and has excellent cycle characteristics and safety, Furthermore, it has excellent low-temperature characteristics, load characteristics, and quick charging characteristics, and is highly anticipated, and it is used as a power source for portable electronic devices such as laptop computers, cellular phones, 8 mm video, and audio devices. .

【0006】このリチウムイオン二次電池等の非水電解
液二次電池は、電池の作動電圧が高いという特徴を有す
る。これが従来の水溶液系電池に比べエネルギー密度が
高い要因となっている。しかるに作動電圧が高い電池に
おいては正極端子は電気化学的溶解の問題があり、使用
できる材料はアルミAl、ステンレス鋼SUSあるいは
白金等の貴金属に限られる。
The non-aqueous electrolyte secondary battery such as the lithium ion secondary battery is characterized in that the operating voltage of the battery is high. This is a factor that has a higher energy density than the conventional aqueous battery. However, in a battery with a high operating voltage, the positive electrode terminal has a problem of electrochemical dissolution, and usable materials are limited to noble metals such as aluminum Al, stainless steel SUS and platinum.

【0007】この白金等の貴金属をこの正極端子に使用
することは、この白金等の貴金属は高価であり実用性と
いう点で好ましくない。
It is not preferable to use the noble metal such as platinum for the positive electrode terminal because the noble metal such as platinum is expensive and practical.

【0008】一方、この正極端子の構造としては、ハー
メチックシール方式が一般的であるが、このハーメチッ
クシール方式は高価であるという不都合がある。
On the other hand, the structure of the positive electrode terminal is generally a hermetically sealed system, but this hermetically sealed system has a disadvantage that it is expensive.

【0009】また、この正極端子の構造としてAlピン
を電池蓋に絶縁体を介してカシメる方法も提案されてい
る。このカシメ法の場合Alピンをカシメることによ
り、Alピンと電池蓋との間に介される絶縁体を圧縮す
ることにより、正極端子部からの漏液を防ぐ構造となっ
ている。
As a structure of this positive electrode terminal, a method of crimping an Al pin to a battery lid via an insulator has been proposed. In the case of this crimping method, by crimping the Al pin, the insulator interposed between the Al pin and the battery lid is compressed to prevent liquid leakage from the positive electrode terminal portion.

【0010】この正極端子としてAl材を使用したとき
は、このAl材は材質的に柔らかいため加工性に優れる
が、柔らかいために耐衝撃性に劣り、落下等の衝撃によ
り絶縁体の部分的な圧縮率低下を生じ、漏液を引き起こ
す場合が婁々あり信頼性の点に問題がある不都合があっ
た。
When an Al material is used as the positive electrode terminal, the Al material is soft and excellent in workability, but inferior in impact resistance due to the softness, and is partially damaged by the impact such as dropping. There is an inconvenience in that the compressibility is lowered and liquid leakage is often caused, and there is a problem in reliability.

【0011】本発明は斯る点に鑑み実用的な材料で信頼
性の高い正極端子の構成を有する非水電解液二次電池を
提案せんとするものである。
In view of the above point, the present invention proposes a non-aqueous electrolyte secondary battery having a highly reliable positive electrode terminal structure made of a practical material.

【0012】[0012]

【課題を解決するための手段】本発明非水電解液二次電
池は例えば図1、図2に示す如く正極端子23の材料が
常温においてオーステナイトとフェライト組織よりなる
二相ステンレス鋼からなり、この正極端子23が電池蓋
21もしくは電池缶に絶縁体22を介してカシメ法によ
り取り付けられるものである。
In the non-aqueous electrolyte secondary battery of the present invention, as shown in FIGS. 1 and 2, for example, the material of the positive electrode terminal 23 is a duplex stainless steel composed of austenite and a ferrite structure at room temperature. The positive electrode terminal 23 is attached to the battery lid 21 or the battery can via the insulator 22 by the caulking method.

【0013】[0013]

【作用】本発明によれば正極端子23の材料を常温にお
いて、オーステナイトとフェライト組織よりなる二相ス
テンレス鋼とし、この正極端子23を電池蓋21もしく
は電池缶にカシメ法により取り付けているので、安価で
しかも漏液に対する信頼性の高いものを得ることができ
る。
According to the present invention, the positive electrode terminal 23 is made of a duplex stainless steel composed of austenite and a ferrite structure at room temperature, and the positive electrode terminal 23 is attached to the battery lid 21 or the battery can by the caulking method. Moreover, it is possible to obtain a highly reliable liquid leak.

【0014】[0014]

【実施例】以下図面を参照して本発明非水電解液二次電
池の実施例につき説明しよう。図1において、10は例
えば厚さ300μmのステンレススチール板より成る例
えば厚さ8.3mm、幅34mm、高さ48mmの密閉
型の偏平角形電池容器を示し、この偏平角形電池容器1
0内に所定枚数の正電極2及び負電極3をセパレータ8
を介して交互に積層した積層体を収納する如くする。
Embodiments of the non-aqueous electrolyte secondary battery of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 10 designates a closed oblong battery container made of, for example, a stainless steel plate having a thickness of 300 μm and having a thickness of 8.3 mm, a width of 34 mm and a height of 48 mm.
A predetermined number of positive electrodes 2 and negative electrodes 3 are placed in the separator 8
The laminated body alternately laminated is accommodated.

【0015】この負電極3としては図1、図3に示す如
くこの偏平角形電池容器10の内部形状に対応した所定
大きさの矩形状の厚さが略10μmの銅Cu箔(又はニ
ッケルNi箔)より成る集電体7の両面にリチウムLi
をドープ、脱ドープ可能な炭素材料を負極活物質6とし
て被着する。
As the negative electrode 3, as shown in FIGS. 1 and 3, a copper Cu foil (or nickel Ni foil) having a rectangular thickness of about 10 μm and having a predetermined size corresponding to the internal shape of the flat rectangular battery container 10 is used. Lithium Li on both sides of the current collector 7 composed of
A carbon material capable of doping and dedoping is deposited as the negative electrode active material 6.

【0016】この負極活物質6としての炭素材料はリチ
ウムLiをドープ、脱ドープできるものであればよく、
熱分解炭素類、コークス類(ピッチコークス、ニードル
コークス、石油コークス等)、天然黒鉛類、人造黒鉛
類、ガラス状炭素類、有機高分子化合物焼結体、炭素繊
維、活性炭等が使用できる。好ましくは、(002)面
の面間隔が3.70Å以上、真密度1.70g/cc未
満で、活空気気流中における示差熱分析で700℃以上
に発熱ピークを持たない炭素材料が用いられる。
The carbon material as the negative electrode active material 6 may be any material that can be doped with lithium Li and dedoped.
Pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), natural graphites, artificial graphites, glassy carbons, organic polymer compound sintered bodies, carbon fibers, activated carbon and the like can be used. Preferably, a carbon material having a (002) plane spacing of 3.70 Å or more and a true density of less than 1.70 g / cc and having no exothermic peak at 700 ° C. or more in a differential thermal analysis in an active air stream is used.

【0017】この負電極3の具体例としては、出発原料
として石油ピッチを用い、これを酸素を含む官能基を1
0〜20%導入(酸素架橋)した後、不活性ガス気流中
1000℃で焼成して得た、難黒鉛炭素材料を負極活物
質に使用する。この難黒鉛炭素材料の粉末90重量部と
結着材であるポリフッ化ビニリデン10重量部とを混合
し、この混合物をN−メチル−2−ピロリドンに分散さ
せてスラリー状にしたものを負極活物質6として、厚さ
略10μmのCu箔より成る集電体7の両面に塗布、乾
燥、プレスし、所定形状に切断し、この負電極3を得
た。
As a specific example of the negative electrode 3, petroleum pitch is used as a starting material, and a functional group containing oxygen is added to the negative electrode 3.
A non-graphite carbon material obtained by introducing 0 to 20% (oxygen crosslinking) and then firing at 1000 ° C. in an inert gas stream is used as a negative electrode active material. 90 parts by weight of the powder of the non-graphite carbon material and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and the mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was used as a negative electrode active material. As No. 6, the negative electrode 3 was obtained by coating, drying, and pressing on both sides of a current collector 7 made of Cu foil having a thickness of about 10 μm and cutting into a predetermined shape.

【0018】また正電極2としては図1、図3に示す如
く負電極3より幅及び高さが夫々やや小形の矩形状の厚
さが略20μmのアルミAl箔より成る集電体5の両面
にリチウムLiと遷移金属との複合酸化物例えばリチウ
ム、コバルト、ニッケルの炭酸塩を出発原料とし、これ
ら炭酸塩を、組成に応じて混合し酸素存在雰囲気下60
0〜1000℃の温度範囲で焼成して得られたものを正
極活物質4として被着する。この場合出発原料は炭酸塩
に限定されず、酸化物、水酸化物であっても良い。
As the positive electrode 2, as shown in FIGS. 1 and 3, both sides of a current collector 5 made of aluminum Al foil having a width and height slightly smaller than the negative electrode 3 and a thickness of about 20 μm. In addition, a complex oxide of lithium Li and a transition metal, for example, a carbonate of lithium, cobalt, or nickel is used as a starting material, and these carbonates are mixed according to the composition and mixed in an oxygen-existing atmosphere.
What is obtained by firing in the temperature range of 0 to 1000 ° C. is applied as the positive electrode active material 4. In this case, the starting material is not limited to carbonate, but may be oxide or hydroxide.

【0019】この正電極2の具体例としては、炭酸コバ
ルトと炭酸リチウムとをLi:Coが1:1となるよう
に混合し、空気中で900℃、5時間焼成して作製した
LiCoO2 を91重量部と導電剤としてグラファイト
6重量部及び結着材としてポリフッ化ビニリデン3重量
部とを混合し、この混合物をN−メチル−2−ピロリド
ンに分散させてスラリー状にしたものを、厚さ略20μ
mのAl箔より成る集電体5の両面に塗布、乾燥、プレ
スし、所定形状に切断し、この正電極2を得た。
As a specific example of the positive electrode 2, LiCoO 2 prepared by mixing cobalt carbonate and lithium carbonate so that Li: Co becomes 1: 1 and firing in air at 900 ° C. for 5 hours. 91 parts by weight, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and the mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry. About 20μ
The positive electrode 2 was obtained by coating, drying, and pressing on both sides of a current collector 5 made of Al foil of m.

【0020】本例においては図4に示す如く、この正電
極2の両面に上述負電極3の幅と同じ幅Wを有し、厚み
が例えば25μmの微孔性ポリエチレンフィルムからな
るセパレータ8を夫々配し、この正電極2を挟んだ2枚
のセパレータ8の各辺の一部を図4に示す如く、熱融着
し、この正電極2をセパレータ8に封袋する。図4にお
いて、8aは熱融着部を示す。
In this example, as shown in FIG. 4, separators 8 having the same width W as the width of the negative electrode 3 on both sides of the positive electrode 2 and made of a microporous polyethylene film having a thickness of 25 μm, for example, are respectively provided. The positive electrode 2 is placed and the two separators 8 sandwiching the positive electrode 2 are partially heat-sealed as shown in FIG. 4, and the positive electrode 2 is sealed in the separator 8. In FIG. 4, 8a indicates a heat-sealed portion.

【0021】この図4において、2aは正極リードを示
し、この正極リード2aは集電体5であるAl箔の一部
を延長したもので、この正極リード2aには正極活物質
4は塗布しないものとする。
In FIG. 4, reference numeral 2a denotes a positive electrode lead, and the positive electrode lead 2a is a part of an Al foil which is a current collector 5 extended, and the positive electrode active material 4 is not applied to the positive electrode lead 2a. I shall.

【0022】その後、負電極3とセパレータ8により封
袋した正電極2とを図1に示す如く交互に積み重ねてゆ
き、電極の積層体を得る。この積層体の正電極2、負電
極3及びセパレータ8の積層位置関係は図1に示す如く
負電極3、セパレータ8、正電極2、セパレータ8、負
電極3‥‥セパレータ8、負電極3の順となる如くす
る。
Thereafter, the negative electrode 3 and the positive electrode 2 sealed by the separator 8 are alternately stacked as shown in FIG. 1 to obtain a laminated body of electrodes. The stacking positional relationship of the positive electrode 2, the negative electrode 3 and the separator 8 of this stacked body is as shown in FIG. 1, the negative electrode 3, the separator 8, the positive electrode 2, the separator 8, the negative electrode 3 ... The separator 8 and the negative electrode 3. Make it in order.

【0023】このように負電極3及びセパレータ8で封
袋した正電極2を積層した積層体を図1に示す如く、2
枚のステンレススチール板11,11で挟み、その上よ
り接着テープ12を巻き付けて固定する。
As shown in FIG. 1, a laminated body in which the negative electrode 3 and the positive electrode 2 sealed with the separator 8 are laminated in this manner is shown in FIG.
It is sandwiched by a pair of stainless steel plates 11 and 11, and an adhesive tape 12 is wound on and fixed to the stainless steel plates 11 and 11.

【0024】またこの積層体の各正電極2の正極リード
2aを束ね、この束ねた正極リード2aにサブリード1
3の一端を溶接して取り付ける。一方各負電極3より正
電極2と同様に延長して設けた負極リード3aを束ね、
この束ねた負極リード3aをステンレススチール板1
1,11の一方に溶接する。
Further, the positive electrode leads 2a of each positive electrode 2 of this laminated body are bundled, and the sub lead 1 is attached to the bundled positive electrode leads 2a.
Weld one end of 3 and attach. On the other hand, bundle the negative electrode leads 3a provided extending from each negative electrode 3 in the same manner as the positive electrode 2,
The bundled negative electrode leads 3a are attached to the stainless steel plate 1
Weld to one of 1 and 11.

【0025】また偏平角形電池容器10の下面に図1に
示す如く絶縁シート14を敷き、その後、この偏平角形
電池容器10にこの積層体をバネ板15とともに挿入す
る。その後この積層体の両側にある2枚のステンレスス
チール板11,11を夫々この偏平角形電池容器10に
溶接する。
An insulating sheet 14 is laid on the lower surface of the flat rectangular battery container 10 as shown in FIG. 1, and then the laminated body is inserted into the flat rectangular battery container 10 together with the spring plate 15. After that, the two stainless steel plates 11 and 11 on both sides of this laminated body are welded to the flat rectangular battery container 10, respectively.

【0026】またサブリード13の他端を、予めガスケ
ット22を介して電池蓋21に取り付けられた正極端子
23に溶接して接続する。本例においては、この正極端
子23は図2A,B,C,Dに示す如く電池蓋21と正
極端子23との絶縁及び密封性を得るために、ポリプロ
ピレンからなるガスケット22を介しこの電池蓋21に
正極端子23をスピンカシメにより取り付ける。図2A
は電池蓋21の断面図を示し、まずこの電池蓋21の端
子取付孔21aに図2Bに示す如くつばを有する円筒状
のガスケット22を挿入する。次に図2Cに示す如くつ
ばを有する円柱状の正極端子23をガスケット22の中
心孔に挿入し、その後図2Dに示す如くスピンカシメに
より正極端子23のカシメを行い、正極端子23付きの
電池蓋21を作製する。
The other end of the sub lead 13 is welded and connected to a positive electrode terminal 23 previously attached to the battery lid 21 via a gasket 22. In this example, the positive electrode terminal 23 is provided with a gasket 22 made of polypropylene in order to obtain insulation and sealing property between the battery lid 21 and the positive electrode terminal 23 as shown in FIGS. 2A, B, C and D. The positive electrode terminal 23 is attached to the. Figure 2A
Shows a sectional view of the battery lid 21, and first, a cylindrical gasket 22 having a collar is inserted into the terminal mounting hole 21a of the battery lid 21 as shown in FIG. 2B. Next, as shown in FIG. 2C, a cylindrical positive electrode terminal 23 having a brim is inserted into the center hole of the gasket 22, and then the positive electrode terminal 23 is swaged by spin caulking as shown in FIG. To make.

【0027】この場合、この正極端子23の材料は常温
においてオーステナイトとフェライト組織よりなる二相
ステンレス鋼SUS329J4Lとする。この材料はC
r(24.00〜26.00wt%),Ni(5.50
〜7.50wt%),Mo(2.50〜3.50wt
%)を含み、他は鉄が主成分である二相ステンレス鋼で
ある。この電池蓋21を偏平角形電池容器10に装着
し、この電池蓋21の周囲をレーザー溶接し、電解液注
入前のリチウムイオン二次電池を作製した。
In this case, the material of the positive electrode terminal 23 is duplex stainless steel SUS329J4L consisting of austenite and ferrite structure at room temperature. This material is C
r (24.0 to 26.00 wt%), Ni (5.50)
~ 7.50 wt%), Mo (2.50-3.50 wt%)
%) And the other is duplex stainless steel containing iron as a main component. The battery lid 21 was attached to the flat rectangular battery container 10, and the periphery of the battery lid 21 was laser-welded to produce a lithium ion secondary battery before injection of the electrolytic solution.

【0028】その後、この密閉型の偏平角形電池容器1
0内に電解液9を注入する。この電解液9はリチウム塩
を電解質としてこれを有機溶媒に溶解させた電解液が用
いられる。ここで有機溶媒は特に限定されないが、プロ
ピレンカーボネート、エチレンカーボネート、ジエチル
カーボネート、ジメチルカーボネート、ジプロピルカー
ボネート、テトラヒドフラン、γ−ブチロラクトン、メ
チルエチルカーボネート等の単独もしくは2種類以上の
混合溶媒が使用可能である。電解質としては、LiPF
6 ,LiBF4 ,LiClO4 ,LiAsF6 等が使用
可能である。
Thereafter, the closed flat rectangular battery container 1
Electrolyte solution 9 is injected into 0. As the electrolytic solution 9, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, tetrahydrofuran, γ-butyrolactone, methyl ethyl carbonate and the like can be used alone or in combination of two or more kinds. Is. LiPF6 as the electrolyte
6 , LiBF 4 , LiClO 4 , LiAsF 6 and the like can be used.

【0029】斯る本例によれば正極端子23の材料を常
温において、オーステナイトとフェライト組織よりなる
二相ステンレス鋼とし、この正極端子23を電池蓋21
にカシメ法により取り付けているので安価でしかも漏液
に対する信頼性の高いものを得ることができる利益があ
る。
According to the present example, the material of the positive electrode terminal 23 is a duplex stainless steel composed of austenite and a ferrite structure at room temperature, and the positive electrode terminal 23 is used as the battery lid 21.
Since it is attached by the caulking method, there is an advantage that an inexpensive and highly reliable liquid leak can be obtained.

【0030】因みに、比較例1として、正極端子23の
材料がAl(A5056)であること以外は上述実施例
と同様の方法によりリチウムイオン二次電池を作製し
た。
By the way, as Comparative Example 1, a lithium ion secondary battery was produced by the same method as in the above-mentioned example except that the material of the positive electrode terminal 23 was Al (A5056).

【0031】また比較例2として、正極端子23の材料
がオーステナイト系のSUS304であること以外は上
述実施例と同様の方法によりリチウムイオン二次電池を
作製した。
Further, as Comparative Example 2, a lithium ion secondary battery was manufactured by the same method as in the above-mentioned Example except that the material of the positive electrode terminal 23 was austenitic SUS304.

【0032】比較例3として、正極端子23の材料が、
オーステナイト系のSUS317である以外は上述実施
例と同様の方法によりリチウムイオン二次電池を作製し
た。
In Comparative Example 3, the material of the positive electrode terminal 23 is
A lithium ion secondary battery was produced by the same method as in the above-described example except that the austenitic SUS317 was used.

【0033】また比較例4として、正極端子23の材料
が、フェライト系のSUS430であること以外は上述
実施例と同様の方法により、リチウムイオン二次電池を
作製した。
Further, as Comparative Example 4, a lithium ion secondary battery was manufactured by the same method as in the above-mentioned Example except that the material of the positive electrode terminal 23 was ferrite SUS430.

【0034】更に比較例5として、正極端子23の材料
が、フェライト系のSUS447J1であること以外は
上述実施例と同様の方法により、リチウムイオン二次電
池を作製した。
Further, as Comparative Example 5, a lithium ion secondary battery was produced by the same method as in the above-mentioned Example except that the material of the positive electrode terminal 23 was ferrite SUS447J1.

【0035】上述の実施例及び比較例1〜5について、
23℃の環境において充電を行った。この充電は充電電
圧を4.2Vに設定し、300mAの定電流で7時間行
った。この充電は設定電圧である4.2Vまでは、30
0mAの定電流で充電が行われ、設定電圧に達すると電
流が垂下する定電流、定電圧充電である。
Regarding the above-mentioned Examples and Comparative Examples 1-5,
Charging was performed in an environment of 23 ° C. This charging was carried out at a constant current of 300 mA for 7 hours with the charging voltage set to 4.2V. This charging is 30V up to 4.2V which is the set voltage.
Charging is performed with a constant current of 0 mA, and when the set voltage is reached, the current droops and the constant current and constant voltage are charged.

【0036】充電終了後、60℃の環境において、充電
電圧4.2Vでフロート充電を200時間行った。この
フロート充電後、試験電池を解体し、電池から正極端子
23を取り出し、表面状態を走査型電子顕微鏡により観
察し、溶解の有無を調べた。
After the completion of charging, float charging was carried out for 200 hours at a charging voltage of 4.2 V in an environment of 60 ° C. After this float charging, the test battery was disassembled, the positive electrode terminal 23 was taken out from the battery, and the surface state was observed with a scanning electron microscope to examine the presence or absence of dissolution.

【0037】この観察結果は、実施例及び比較例1は溶
解が無かったが、この比較例2〜4には溶解があった。
As a result of this observation, in Example and Comparative Example 1, there was no dissolution, but in Comparative Examples 2 to 4, there was dissolution.

【0038】この結果より上述実施例の二相ステンレス
鋼及び比較例1のAlは正極端子として用いたときの耐
溶解性は優れていることが明らかである。
From these results, it is clear that the duplex stainless steels of the above-mentioned examples and Al of the comparative example 1 have excellent dissolution resistance when used as the positive electrode terminal.

【0039】次に、この耐溶解性に問題が無かった上述
実施例及び比較例1につき温湿度サイクルによるリーク
確認試験を行った。これは温度85℃、湿度60%の雰
囲気に2時間保持し、その後6時間かけて−40℃まで
冷却する。この−40℃に達したら2時間保持し、その
後再び6時間かけて85℃に昇温し、この85℃で2時
間保持する。このサイクルを3回繰り返した後、この正
極端子23からの漏液を調査した。この漏液の確認は顕
微鏡により行い正極端子部からの電解液の漏液が認めら
れる電池の数を調べた。
Next, a leak confirmation test by a temperature / humidity cycle was conducted on the above-mentioned Example and Comparative Example 1 in which there was no problem in the dissolution resistance. This is kept in an atmosphere having a temperature of 85 ° C. and a humidity of 60% for 2 hours, and then cooled to −40 ° C. in 6 hours. When the temperature reaches -40 ° C, the temperature is maintained for 2 hours, then the temperature is raised to 85 ° C again over 6 hours, and the temperature is maintained at 85 ° C for 2 hours. After repeating this cycle three times, liquid leakage from the positive electrode terminal 23 was investigated. This leakage was confirmed by a microscope, and the number of batteries in which the leakage of the electrolyte from the positive electrode terminal portion was recognized was checked.

【0040】実施例及び比較例1につき夫々20個につ
き、この調査をしたが電解液の漏液は1つも見つからな
かった。
This investigation was carried out for 20 pieces each in the example and the comparative example 1, but no leakage of the electrolytic solution was found.

【0041】また上述実施例及び比較例1の夫々20個
につき、23℃の環境において、設定電圧4.2V,3
00mAの定電流で7時間の充電を行った後、プラスチ
ックタイル上に2.0mの高さから6面及び1コーナー
の計7回の落下を行った。
In addition, the set voltage of 4.2V, 3 for each of 20 pieces of the above-mentioned example and the comparative example 1 in the environment of 23 ° C.
After charging at a constant current of 00 mA for 7 hours, a total of 7 drops of 6 faces and 1 corner from a height of 2.0 m were performed on the plastic tile.

【0042】この落下後の電池につき上述同様に正極端
子部からの電解液の漏液が認められた電池の数を調べた
ところ、実施例のものは1つも無かったが比較例1のも
のは8個につき電解液の漏液が認められた。
When the number of batteries in which electrolyte leakage from the positive electrode terminal portion was found in the dropped batteries was examined in the same manner as described above, none of the examples was found, but the one of Comparative example 1 was found. Leakage of the electrolytic solution was observed in eight of them.

【0043】以上の結果よりAlを正極端子に使用した
ときは衝撃のない状態では漏液の問題はないが、落下等
の衝撃を受けた場合に漏液の問題が確認されたが、上述
実施例では落下後も漏液がなく、落下等の衝撃に対する
信頼性に優れることは明らかである。
From the above results, when Al is used for the positive electrode terminal, there is no problem of liquid leakage when there is no shock, but it is confirmed that there is a problem of liquid leakage when shocked such as dropping. In the example, there is no liquid leakage even after dropping, and it is clear that it has excellent reliability against impact such as dropping.

【0044】尚、上述実施例においては電池蓋に正極端
子を取り付ける例につき述べたがこの正極端子を電池缶
に取り付ける場合も本発明を適用できることは勿論であ
る。また上述実施例は本発明をリチウムイオン二次電池
に適用した例につき述べたが、本発明をその他の非水電
解液二次電池に適用できることは勿論である。また本発
明は上述実施例に限ることなく本発明の要旨を逸脱する
ことなく、その他種々の構成が採り得ることは勿論であ
る。
In the above-mentioned embodiment, the example in which the positive electrode terminal is attached to the battery lid has been described, but it goes without saying that the present invention can be applied to the case where the positive electrode terminal is attached to the battery can. In addition, although the above-mentioned embodiment describes the example in which the present invention is applied to the lithium ion secondary battery, it is needless to say that the present invention can be applied to other non-aqueous electrolyte secondary batteries. Further, the present invention is not limited to the above-described embodiments, and needless to say, various other configurations can be adopted without departing from the gist of the present invention.

【0045】[0045]

【発明の効果】以上述べた如く本発明によれば正極端子
23の材料として、常温において、オーステナイトとフ
ェライト組織よりなる二相ステンレス鋼を用い、この正
極端子をカシメ法により取り付けているので、安価で、
しかも落下等の衝撃に対しても耐漏液保持に優れた信頼
性の高い非水電解液二次電池を得ることができる利益が
ある。
As described above, according to the present invention, as the material of the positive electrode terminal 23, duplex stainless steel composed of austenite and ferrite structure is used at room temperature, and the positive electrode terminal is attached by the caulking method, which is inexpensive. so,
Moreover, there is an advantage that it is possible to obtain a highly reliable non-aqueous electrolyte secondary battery that is excellent in retaining liquid leakage against impact such as dropping.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明非水電解液二次電池の一実施例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明の要部の説明に供する断面図である。FIG. 2 is a cross-sectional view for explaining the main part of the present invention.

【図3】リチウムイオン二次電池の説明に供する線図で
ある。
FIG. 3 is a diagram provided for explaining a lithium ion secondary battery.

【図4】図1の説明に供する線図である。FIG. 4 is a diagram for explaining FIG.

【符号の説明】[Explanation of symbols]

2 正電極 2a 正極リード 3 負電極 8 セパレータ 21 電池蓋 22 ガスケット 23 正極端子 2 Positive electrode 2a Positive electrode lead 3 Negative electrode 8 Separator 21 Battery lid 22 Gasket 23 Positive electrode terminal

フロントページの続き (72)発明者 遠藤 正幸 福島県郡山市日和田町高倉字下杉1−1 株式会社ソニー・エナジー・テック郡山工 場内 (72)発明者 渡辺 綾樹 福島県郡山市日和田町高倉字下杉1−1 株式会社ソニー・エナジー・テック郡山工 場内Front page continuation (72) Inventor Masayuki Endo 1-1, Shimosugi, Takakura, Hiwada-cho, Koriyama, Fukushima Prefecture Sony Energy Tech Co., Ltd. Koriyama Plant (72) Inventor, Ayaki Watanabe Takakura, Hiwada-cho, Koriyama, Fukushima Prefecture 1-1 Shimodusugi Sony Energy Tech Koriyama Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極端子の材料が常温においてオーステ
ナイトとフェライト組織よりなる二相ステンレス鋼から
なり、前記正極端子が電池蓋もしくは電池缶に絶縁体を
介してカシメ法により取り付けられることを特徴とする
非水電解液二次電池。
1. The material of the positive electrode terminal is made of a duplex stainless steel composed of austenite and a ferrite structure at room temperature, and the positive electrode terminal is attached to a battery lid or a battery can via an insulator by a caulking method. Non-aqueous electrolyte secondary battery.
JP6237715A 1994-09-30 1994-09-30 Nonaqueous electrolytic secondary battery Pending JPH08102313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6237715A JPH08102313A (en) 1994-09-30 1994-09-30 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6237715A JPH08102313A (en) 1994-09-30 1994-09-30 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH08102313A true JPH08102313A (en) 1996-04-16

Family

ID=17019431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6237715A Pending JPH08102313A (en) 1994-09-30 1994-09-30 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH08102313A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018622A1 (en) * 1997-10-07 1999-04-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2006253131A (en) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd Secondary cell and its assembling method
WO2010113271A1 (en) * 2009-03-31 2010-10-07 三菱重工業株式会社 Rechargeable battery and battery system
JP2013138029A (en) * 2006-03-14 2013-07-11 Lg Chem Ltd Highly safe multi-layered electrochemical cell
EP3174125A4 (en) * 2014-08-25 2017-08-23 Nisshin Steel Co., Ltd. Lithium-ion secondary-battery case and manufacturing method therefor
KR20230076735A (en) 2021-11-24 2023-05-31 주식회사 엘지에너지솔루션 Fixing structure of Electrode terminal, and battery, battery pack and vehicle including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018622A1 (en) * 1997-10-07 1999-04-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6156452A (en) * 1997-10-07 2000-12-05 Matsushita Electric Indsutrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2006253131A (en) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd Secondary cell and its assembling method
JP2013138029A (en) * 2006-03-14 2013-07-11 Lg Chem Ltd Highly safe multi-layered electrochemical cell
WO2010113271A1 (en) * 2009-03-31 2010-10-07 三菱重工業株式会社 Rechargeable battery and battery system
EP3174125A4 (en) * 2014-08-25 2017-08-23 Nisshin Steel Co., Ltd. Lithium-ion secondary-battery case and manufacturing method therefor
US10790480B2 (en) 2014-08-25 2020-09-29 Nisshin Steel Co., Ltd. Lithium-ion secondary-battery case and manufacturing method therefor
KR20230076735A (en) 2021-11-24 2023-05-31 주식회사 엘지에너지솔루션 Fixing structure of Electrode terminal, and battery, battery pack and vehicle including the same

Similar Documents

Publication Publication Date Title
JP2006252895A (en) Battery
US8431265B2 (en) Electric cell
KR20060097630A (en) Cathode material and battery
EP2262037A1 (en) Lithium secondary battery using ionic liquid
JPH10214638A (en) Lithium secondary battery
JP2004296256A (en) Nonaqueous electrolyte secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
US7767350B2 (en) Nonaqueous electrolyte battery
US20230083371A1 (en) Secondary battery
US20210043941A1 (en) Battery
CN101714672A (en) Non-aqueous electrolyte battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2001210384A (en) Nonaqueous electrolytic solution secondary battery
JP2002042775A (en) Nonaqueous electrolyte secondary battery
JPH08102313A (en) Nonaqueous electrolytic secondary battery
JP3714259B2 (en) Nonaqueous electrolyte secondary battery
JPH06251758A (en) High capacity cylindrical battery
JP2000285902A5 (en)
JP2010021043A (en) Separator, manufacturing method of separator and battery
CN113130848B (en) Electrode and lithium ion battery
JPH0896839A (en) Lithium ion secondary battery
JP2002015769A (en) Non-aqueous electrolyte battery
JPH0963562A (en) Nonaqueous-electrolyte secondary battery
JP2000294202A (en) Thin battery
JP2001057230A (en) Non-aqueous electrolyte secondary battery