JPH08101262A - Magnetic field waveform measurement system - Google Patents

Magnetic field waveform measurement system

Info

Publication number
JPH08101262A
JPH08101262A JP23879894A JP23879894A JPH08101262A JP H08101262 A JPH08101262 A JP H08101262A JP 23879894 A JP23879894 A JP 23879894A JP 23879894 A JP23879894 A JP 23879894A JP H08101262 A JPH08101262 A JP H08101262A
Authority
JP
Japan
Prior art keywords
waveform
magnetic field
data
probe
numerical data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23879894A
Other languages
Japanese (ja)
Other versions
JP2765490B2 (en
Inventor
Hideki Sasaki
英樹 佐々木
Takashi Harada
高志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6238798A priority Critical patent/JP2765490B2/en
Publication of JPH08101262A publication Critical patent/JPH08101262A/en
Application granted granted Critical
Publication of JP2765490B2 publication Critical patent/JP2765490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To accurately measure the waveform on time axis of magnetic field and current with a wide range of frequency components without being restricted by the shape of an object to be measured. CONSTITUTION: The measuring system consists of a probe 2 for measuring magnetic field, a voltage waveform measuring instrument 3 for converting the waveform into numeric data and transferring the data externally, and a waveform processing device 4. The waveform processing device consists of a numeric value operation part 5 for performing operation to the numeric data of time-axis waveform transmitted from the voltage waveform measuring instrument, a probe calibration data storage part 6 for measuring magnetic field with a function for inputting amplitude and phase related to the ratio of a magnetic field strength H (f) to be measured of the probe for measuring magnetic field to an output voltage V (f) and storing the data, and a display part 7 for outputting the operated data and displaying the data as a time-axis waveform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンピュータのクロック
信号などの周期的な信号や静電気放電に伴う非周期的な
電流などにより発生した磁界の時間軸波形を測定するた
めの測定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring system for measuring a time axis waveform of a magnetic field generated by a periodic signal such as a clock signal of a computer or an aperiodic current caused by electrostatic discharge.

【0002】[0002]

【従来の技術】従来、磁界波形の測定には、図8に示す
ようにケーブルに流れる電流がその周囲に作る磁界を測
定するための電流プローブ32とオシロスコープ33
(ソニー・テクトロニクス編:電流プローブの測定技
術)の組み合わせによる測定システム31や、図10に
示すように出力段に積分回路43をつないだループプロ
ーブ42とオシロスコープ44の組み合わせた測定シス
テム41(Haga,et.al.]“A Measu
rement of Electrical andM
agnetic Field Radiated fr
om VDT,”Proceedings of 19
94 International Symposiu
m on Electromagnetic Comp
atibility,EMC’94 SENDAI,1
9P302,pp.647−650)が用いられてい
た。
2. Description of the Related Art Conventionally, as shown in FIG. 8, in measuring a magnetic field waveform, a current probe 32 and an oscilloscope 33 for measuring a magnetic field produced by a current flowing in a cable around it.
(Sony Tektronix: Current probe measurement technology), or a measurement system 41 (Haga, which combines a loop probe 42 in which an integrating circuit 43 is connected to the output stage and an oscilloscope 44 as shown in FIG. 10). et. al.] "A Measu
element of Electrical and M
Aggressive Field Radiated fr
om VDT, "Proceedings of 19"
94 International Symposium
m on Electromagnetic Comp
Ability, EMC'94 SENDAI, 1
9P302, pp. 647-650) was used.

【0003】電流プローブ32は図9に示すようにリン
グ状のフェライトコア34に2次コイル35を巻き、変
成器を形成させるもので、リング状コア34の中に被測
定ケーブル36を通して使用する。被測定ケーブル36
を通すために、リング状コア34は線路を分割して開閉
できる構造をなす。被測定ケーブル36を流れる高周波
の電流はその周囲に高周波磁界を発生させる。この磁界
をリング状コア34で検出し、2次側の負荷に誘起され
た電圧を測定することにより、変成器の巻き数比と負荷
値から電流値を換算して求める。
As shown in FIG. 9, the current probe 32 is formed by winding a secondary coil 35 around a ring-shaped ferrite core 34 to form a transformer. The current probe 32 is used by passing a cable 36 to be measured through the ring-shaped core 34. Cable to be measured 36
In order to pass through, the ring-shaped core 34 has a structure in which a line can be divided and opened and closed. The high frequency current flowing through the cable to be measured 36 generates a high frequency magnetic field around it. This magnetic field is detected by the ring-shaped core 34 and the voltage induced in the load on the secondary side is measured to convert the current value from the winding ratio of the transformer and the load value to obtain the value.

【0004】ループプローブ42の次段に積分回路43
をつないだ測定法41では、ループプローブ42の出力
電圧が自己インダクタンスの影響を無視しうる低周波帯
においてファラデーの電磁誘導の法則に従い鎖交磁束の
時間微分に比例する特性を利用したものである。時間微
分された電圧波形を電気的な時間積分回路43を通過さ
せることにより磁界の時間軸波形が測定できる。
An integrating circuit 43 is provided next to the loop probe 42.
In the measurement method 41 in which the output voltage of the loop probe 42 is proportional to the time derivative of the interlinkage magnetic flux according to Faraday's law of electromagnetic induction, the output voltage of the loop probe 42 can be ignored. . By passing the time-differentiated voltage waveform through the electrical time integration circuit 43, the time-axis waveform of the magnetic field can be measured.

【0005】また図11に示すように本来、周波数特性
を測定するために利用される広帯域アンテナ45を用
い、アンテナの入力電界強度と出力電圧の関係を示すア
ンテナ係数を用いて電磁界の時間軸波形を測定する手段
も提案されている(例えば、馬杉ら著「間接ESDにと
もなう電磁パルスの測定と解析」、電子情報通信学会論
文誌B−II、No.9、pp647−654参照)。
Further, as shown in FIG. 11, a wideband antenna 45 originally used for measuring frequency characteristics is used, and an antenna coefficient showing the relationship between the input electric field strength and the output voltage of the antenna is used to calculate the time axis of the electromagnetic field. A means for measuring a waveform has also been proposed (see, for example, “Measurement and Analysis of Electromagnetic Pulses Associated with Indirect ESD” by Masugi et al., IEICE Transactions B-II, No. 9, pp 647-654).

【0006】[0006]

【発明が解決しようとする課題】コンピュータのクロッ
ク信号や静電気放電に伴い発生した電磁界は広い帯域に
わたる周波数成分を有しているため、時間軸波形の測定
精度向上のためには広帯域な周波数特性を有するプロー
ブやアンテナが必要とされる。
Since the clock signal of the computer and the electromagnetic field generated by electrostatic discharge have frequency components over a wide band, the frequency characteristic of the wide band is improved in order to improve the measurement accuracy of the time axis waveform. A probe or antenna with is required.

【0007】従来技術による電流プローブ32は内部で
電流プローブの特性を補正する機能を有しないため、周
波数特性が変成器のコア34によって制限され、測定周
波数範囲は出力電圧と出力電流の関係が1:1を満足す
る範囲に限られる。また、被測定ケーブル36を電流プ
ローブ32に挿入して測定するため、フラットケーブル
などの幅広のケーブルやプリント配線基板上の伝送線路
などの電流プローブ32に挿入不可能なケーブルや線路
近傍の磁界を測定することができないなどの欠点を有し
ていた。
Since the current probe 32 according to the related art does not have the function of internally correcting the characteristics of the current probe, the frequency characteristic is limited by the core 34 of the transformer, and the measurement frequency range has a relationship between the output voltage and the output current of 1: 1. It is limited to the range that satisfies: 1. Further, since the measured cable 36 is inserted into the current probe 32 for measurement, a wide cable such as a flat cable or a cable that cannot be inserted into the current probe 32 such as a transmission line on a printed wiring board or a magnetic field near the line is detected. It had a defect that it could not be measured.

【0008】ループプローブ42の次段に積分回路43
を設ける測定システム41は、前述のようにループプロ
ーブ42の出力電圧が磁界強度の時間変化の微分に比例
していることに基づいている。ところが、ループプロー
ブではその自己インダクタンスの影響が無視できなくな
る高い周波数帯においてはループプローブの出力はもは
や磁界強度の時間変化の微分に比例せず、高周波域の周
波数成分を持つ波形に対しては測定精度が悪くなるとい
う欠点を有していた。
An integrating circuit 43 is provided next to the loop probe 42.
The measurement system 41 provided with is based on the fact that the output voltage of the loop probe 42 is proportional to the derivative of the time change of the magnetic field strength as described above. However, in the high frequency band where the effect of its self-inductance cannot be ignored in the loop probe, the output of the loop probe is no longer proportional to the derivative of the change over time of the magnetic field strength, and it is measured for waveforms with frequency components in the high frequency range. It had a drawback that the accuracy became poor.

【0009】図12は直径10mmのループ面積を持つル
ープの被測定磁界強度H(f)と出力電圧V(f)の振
幅の比(a)と位相差(b)の周波数特性の例を示した
図である。それぞれの図において横軸は周波数を対数目
盛りと、振幅はdB表示とした。108 Hz以下の周波
数帯では振幅比は周波数に対し直線的に変化し、位相も
ほぼ−π/2ラジアンで一定であり、被測定磁界の時間
微分特性に比例した出力電圧が得られる。一方、108
Hzを越える周波数帯域では振幅比は直線から逸脱し、
位相も−π/2ラジアンから大きく変化してもはや出力
電圧は被測定磁界の時間微分特性に比例しない。このよ
うな周波数領域を含む波形を図10に示すような測定シ
ステム41で測定した結果を図13に示す。(a)の実
際の磁界波形に対し、測定された波形は(b)のように
なり、積分回路の付加による補正だけでは磁界の時間軸
波形が再現できない。
FIG. 12 shows an example of frequency characteristics of the ratio (a) of the amplitude of the measured magnetic field strength H (f) to the amplitude of the output voltage V (f) and the phase difference (b) of a loop having a loop area of 10 mm in diameter. It is a figure. In each figure, the horizontal axis represents the frequency on a logarithmic scale and the amplitude is in dB. In the frequency band of 10 8 Hz or less, the amplitude ratio changes linearly with respect to the frequency, and the phase is almost constant at −π / 2 radians, and an output voltage proportional to the time differential characteristic of the measured magnetic field can be obtained. On the other hand, 10 8
In the frequency band above Hz, the amplitude ratio deviates from the straight line,
The phase also greatly changes from -π / 2 radians, and the output voltage is no longer proportional to the time differential characteristic of the magnetic field to be measured. FIG. 13 shows a result obtained by measuring a waveform including such a frequency region with the measuring system 41 as shown in FIG. In contrast to the actual magnetic field waveform of (a), the measured waveform is as shown in (b), and the time axis waveform of the magnetic field cannot be reproduced only by the correction by adding the integrating circuit.

【0010】電磁界の周波数特性を測定するための広帯
域アンテナ45を用い、この電磁界強度と出力電圧のア
ンテナ係数により補正する測定法では、通常のアンテナ
では振幅のみが校正されており、位相差に関するデータ
がないことから、その補正にあたってはアンテナの出力
電圧信号に対し複雑な処理(馬杉ら著「間接ESDにと
もなう電磁パルスの測定と解析」、電子情報通信学会論
文誌B−II、No.9、pp.647−654参照)を
施す必要があった。
In a measurement method in which a wideband antenna 45 for measuring the frequency characteristics of an electromagnetic field is used and is corrected by the electromagnetic field strength and the antenna coefficient of the output voltage, only the amplitude is calibrated in a normal antenna and the phase difference is corrected. Since there is no data on the above, there is no data on the output voltage signal of the antenna for the correction (Masugi et al. "Measurement and analysis of electromagnetic pulse accompanying indirect ESD", IEICE Transactions B-II, No. 9, pp. 647-654).

【0011】本発明の目的は広帯域な周波数成分を有す
る磁界および電流の時間軸波形を被測定物の形状による
制約を受けず、かつ精度よく測定するための測定システ
ムを提供することにある。
An object of the present invention is to provide a measuring system for measuring the time-axis waveforms of a magnetic field and a current having a broadband frequency component without being restricted by the shape of an object to be measured and with high accuracy.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、周波数領域における被測定磁界
強度と出力電圧の振幅比および位相差の関係である校正
係数が既知の磁界測定用プローブと、入力波形を数値デ
ータに変換し外部装置に転送可能な電圧波形測定装置
と、該電圧波形測定装置から送られた時間軸波形の数値
データを処理する波形処理装置で構成され、波形処理装
置は入力した数値データを演算処理する演算部と磁界測
定用プローブの被測定磁界強度と出力電圧の比に関する
振幅と位相のデータを入力し記憶する磁界測定用プロー
ブ校正係数データ記憶部と、演算された時間軸波形デー
タを表示する表示部で構成されることを特徴とする。
To achieve the above object, in the present invention, for magnetic field measurement in which a calibration coefficient, which is the relationship between the measured magnetic field strength in the frequency domain and the amplitude ratio and phase difference of the output voltage, is known. It is composed of a probe, a voltage waveform measuring device that can convert the input waveform into numerical data and transfer it to an external device, and a waveform processing device that processes the numerical data of the time axis waveform sent from the voltage waveform measuring device. The device has an arithmetic unit for arithmetically processing the input numerical data, a magnetic field measurement probe calibration coefficient data storage unit for inputting and storing amplitude and phase data related to the ratio of the measured magnetic field strength of the magnetic field measurement probe to the output voltage, and an arithmetic unit. It is characterized in that it is configured by a display unit for displaying the generated time axis waveform data.

【0013】波形処理装置の演算部は入力した波形の数
値データをフーリエ変換する機能と、記憶されている磁
界測定用プローブの校正係数のデータとフーリエ変換後
の数値データを演算処理する機能と、演算処理後の数値
データを逆フーリエ変換する機能を有していることを特
徴とする。
The arithmetic unit of the waveform processing device has a function of performing Fourier transform on the inputted numerical data of the waveform, a function of performing arithmetic processing on the stored data of the calibration coefficient of the magnetic field measuring probe and the numerical data after the Fourier transform. It is characterized by having a function of performing an inverse Fourier transform on numerical data after arithmetic processing.

【0014】周波数領域における被測定磁界強度と出力
電圧の振幅比および位相差の関係である校正係数が既知
の磁界測定用プローブとそのプローブの出力電圧波形を
測定するためのオシロスコープで構成され、前記オシロ
スコープには入力波形データを数値データに変換する機
能と、変換後の数値データをフーリエ変換する機能と磁
界測定用プローブの校正係数のデータを入力し記憶する
機能と、校正係数とフーリエ変換後の数値データを演算
処理する機能と、演算処理後の数値データを逆フーリエ
変換する機能と、逆フーリエ変換後の数値データを波形
として表示する機能を有していることを特徴とする。
A magnetic field measuring probe having a known calibration coefficient, which is the relationship between the measured magnetic field strength and the output voltage amplitude ratio and phase difference in the frequency domain, and an oscilloscope for measuring the output voltage waveform of the probe are used. The oscilloscope has a function of converting the input waveform data into numerical data, a function of performing a Fourier transform on the converted numerical data, a function of inputting and storing the data of the calibration coefficient of the magnetic field measurement probe, and a function of the calibration coefficient and the Fourier transform. It is characterized by having a function of performing arithmetic processing on numerical data, a function of performing an inverse Fourier transform on the numerical data after the arithmetic processing, and a function of displaying the numerical data after the inverse Fourier transform as a waveform.

【0015】[0015]

【作用】磁界波形の測定には、測定に関わる帯域におい
て被測定磁界H(f)と波形測定用受信機の入力インピ
ーダンスに等しいインピーダンスで終端したときの出力
電圧の比C(f)が既知である磁界測定用プローブを用
いる。fは周波数、終端のインピーダンスは通常50オ
ームが用いられる。C(f)は振幅比と位相差のデータ
からなる。磁界測定用プローブの出力電圧波形v(t)
のフーリエ変換をV(f)とし、受信磁界の周波数特性
をH(f)とすれば、V(f)、C(f)、H(f)の
間には H(f)=C(f)V(f) (1) の関係がある。(1)式は振幅と位相差でそれぞれ別々
の計算を行う。振幅の項は乗算し、位相差の項は加算す
る。H(f)を逆フーリエ変換することにより磁界の時
間軸波形h(t)が求まる。
In the measurement of the magnetic field waveform, the ratio C (f) between the measured magnetic field H (f) and the output voltage when terminated with an impedance equal to the input impedance of the waveform measuring receiver is known in the band related to the measurement. A magnetic field measuring probe is used. f is a frequency, and the terminal impedance is usually 50 ohms. C (f) consists of amplitude ratio and phase difference data. Output voltage waveform v (t) of magnetic field measurement probe
Let V (f) be the Fourier transform of H (f), and let H (f) be the frequency characteristic of the received magnetic field. H (f) = C (f) between V (f), C (f), and H (f). ) V (f) (1). Equation (1) separately calculates the amplitude and the phase difference. The amplitude term is multiplied and the phase difference term is added. The time-axis waveform h (t) of the magnetic field is obtained by inverse Fourier transforming H (f).

【0016】この方法はオシロスコープなどの電圧波形
測定装置の測定可能周波数帯域とループプローブなどの
磁界測定用プローブの被測定磁界強度H(f)と出力電
圧V(f)の振幅比と位相差のデータが得られている周
波数帯域の範囲で波形の測定が可能であり、磁界測定用
プローブの周波数特性による制限を受けない。
According to this method, the measurable frequency band of a voltage waveform measuring device such as an oscilloscope and the amplitude ratio and phase difference between the measured magnetic field strength H (f) and the output voltage V (f) of a magnetic field measuring probe such as a loop probe are measured. Waveforms can be measured within the frequency band for which data is obtained, and are not limited by the frequency characteristics of the magnetic field measurement probe.

【0017】測定可能な周波数帯域は電界波形測定装置
の周波数帯域もしくは磁界測定用プローブの校正可能周
波数帯域から決定される。
The measurable frequency band is determined from the frequency band of the electric field waveform measuring device or the calibratable frequency band of the magnetic field measuring probe.

【0018】磁界測定用プローブの被測定磁界強度H
(f)と出力電圧V(f)の振幅比と位相差は標準磁界
発生源としてグランドプレーンが十分に広くかつ整合終
端したマイクロストリップ線路を用いることにより測定
することができる(例えば、佐々木ら著、“磁界測定用
ループプローブの校正”1994年電子情報通信学会春
季全国大会予稿集B−285参照)。
Measured magnetic field strength H of the magnetic field measuring probe
The amplitude ratio and the phase difference between (f) and the output voltage V (f) can be measured by using a microstrip line having a sufficiently wide ground plane and matching termination as a standard magnetic field source (for example, by Sasaki et al. , "Calibration of loop probe for magnetic field measurement", Proceedings of the 1994 IEICE Spring National Convention, B-285).

【0019】[0019]

【実施例】以下に本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明による測定システム1を示す
ブロック図である。本測定システム1は磁界測定用プロ
ーブ2、波形を数値データに変換し、外部に転送可能な
電圧波形測定装置3、波形処理装置4で構成する。波形
処理装置4は電圧波形測定装置3から送られた時間軸波
形の数値データに対し演算を行う数値演算部5と磁界測
定用プローブ2の被測定磁界強度H(f)と出力電圧V
(f)の比に関する振幅と位相のデータを入力し記憶す
る機能を有する磁界測定用プローブ校正データ記憶部
6、演算されたデータを出力し時間軸波形として表示す
る表示部7で構成される。
FIG. 1 is a block diagram showing a measuring system 1 according to the present invention. The measurement system 1 includes a magnetic field measurement probe 2, a voltage waveform measurement device 3 that converts a waveform into numerical data and can be transferred to the outside, and a waveform processing device 4. The waveform processing device 4 calculates the magnetic field strength H (f) and the output voltage V of the magnetic field measurement probe 2 and the numerical calculation part 5 that calculates the numerical data of the time axis waveform sent from the voltage waveform measurement device 3.
It is composed of a magnetic field measurement probe calibration data storage unit 6 having a function of inputting and storing amplitude and phase data relating to the ratio (f), and a display unit 7 for outputting the calculated data and displaying it as a time axis waveform.

【0021】波形処理装置4にはコンピュータやワーク
ステーションなどの情報処理装置を用い、この情報処理
装置に前記の機能を有効とするようなソフトウェアーを
組み込んでもよい。
An information processing device such as a computer or a workstation may be used as the waveform processing device 4, and software for enabling the above-mentioned functions may be incorporated in this information processing device.

【0022】波形処理装置4内部での数値処理の様子を
図2に示す。入力された時間軸tにおける波形v(t)
の数値データ51は数値処理演算部5にてフーリエ変換
され52、周波数軸fのデータV(f)が得られる。V
(f)はそれぞれの周波数に対して振幅と位相のデータ
を有している。V(f)と校正データ記憶部6に蓄えら
れている磁界測定用プローブの被測定磁界強度と出力電
圧の周波数軸fにおける校正係数C(f)53に関する
演算を行う54。C(f)は振幅と位相のデータで構成
され、それぞれの周波数においては振幅は掛け合わせ、
位相は足し合わせて周波数軸fにおける磁界データH
(f)を得る。H(f)を逆フーリエ変換することによ
り時間軸波形h(t)が求まる55。この時間軸のデー
タを波形表示部7に波形データとして表示させる56。
FIG. 2 shows a state of numerical processing in the waveform processing device 4. Waveform v (t) on the input time axis t
The numerical data 51 is subjected to Fourier transform 52 in the numerical processing calculation unit 5 to obtain data V (f) on the frequency axis f. V
(F) has amplitude and phase data for each frequency. Calculation 54 is performed on V (f) and the calibration coefficient C (f) 53 on the frequency axis f of the measured voltage of the magnetic field measurement probe stored in the calibration data storage unit 6 and the output voltage. C (f) is composed of amplitude and phase data, and the amplitude is multiplied at each frequency,
The phases are added together and the magnetic field data H on the frequency axis f
Obtain (f). The time-axis waveform h (t) is obtained by inverse Fourier transforming H (f) 55. The time axis data is displayed 56 on the waveform display unit 7 as waveform data.

【0023】コンピュータのクロック信号など周期性を
有する信号は周波数軸のデータが離散的になるため、H
(f)からh(t)への変換においては、それぞれの周
波数における振幅と位相差を持つ正弦波の足し合わせと
して求めることができる。静電気放電に伴う電流などの
作る非周期性の磁界の場合には周波数スペクトルは連続
となり、逆フーリエ変換を実行する必要がある。フーリ
エ変換、逆フーリエ変換はともにFFTなの既に提供さ
れている計算手段もしくは手法による。
A signal having a periodicity such as a clock signal of a computer has a discrete data on the frequency axis.
In the conversion from (f) to h (t), it can be obtained as the sum of sine waves having the amplitude and phase difference at each frequency. In the case of a non-periodic magnetic field created by the current associated with electrostatic discharge, the frequency spectrum becomes continuous, and it is necessary to execute the inverse Fourier transform. Both the Fourier transform and the inverse Fourier transform are based on the already provided calculation means or method of FFT.

【0024】次に実際の測定例として、50オームの特
性インピーダンスを持ち、整合終端したマイクロストリ
ップ線路基板近傍の磁界波形を測定した例を図を用いて
説明する。図3は測定ブロック11である。パルス発生
器16を用いて周波数10MHzのパルス状の繰り返し
電流をマイクロストリップ線路15に供給した。この電
流によりマイクロストリップ線路基板15の近傍に発生
した高周波磁界を磁界測定用プローブ12を用いて測定
する。磁界測定用プローブとして直径10mmのループ面
を有するループプローブ12を用いた。
Next, as an actual measurement example, an example of measuring a magnetic field waveform in the vicinity of a matching-terminated microstrip line substrate having a characteristic impedance of 50 ohms will be described with reference to the drawings. FIG. 3 shows the measurement block 11. A pulse generator 16 was used to supply a pulsed repetitive current having a frequency of 10 MHz to the microstrip line 15. The high frequency magnetic field generated in the vicinity of the microstrip line substrate 15 by this current is measured using the magnetic field measuring probe 12. A loop probe 12 having a loop surface with a diameter of 10 mm was used as a magnetic field measurement probe.

【0025】図4に測定に用いたループプローブ12の
測定磁界強度と出力電圧の振幅比および位相差の関係で
ある校正係数を示す。ループプローブ12の出力電圧波
形は電圧波形測定装置13として波形を数値データに変
換可能なディジタイジングオシロスコープ13を用い
た。図5に(a)方形波および(b)三角波の電流を供
給したときのループプローブ12の出力電圧波形v
(t)を示す。
FIG. 4 shows the calibration coefficient which is the relationship between the measured magnetic field strength of the loop probe 12 used for the measurement and the amplitude ratio and phase difference of the output voltage. For the output voltage waveform of the loop probe 12, a digitizing oscilloscope 13 capable of converting the waveform into numerical data was used as the voltage waveform measuring device 13. FIG. 5 shows the output voltage waveform v of the loop probe 12 when the square wave current (a) and the triangle wave current (b) are supplied.
(T) is shown.

【0026】数値データに変換された電圧波形v(t)
を波形処理装置14に転送し図2に示したデータ処理を
施した後の磁界の時間軸波形を図6に実線で示す。縦軸
はマイクロストリップ線路15を流れる電流に換算して
示した。図6の破線は50オームの入力インピーダンス
の受信機にてマイクロストリップ線路15のストリップ
導体−グランドプレーン間の電圧を測定し、その入力イ
ンピーダンスで除すことにより求めた電流の時間軸波形
である。
Voltage waveform v (t) converted into numerical data
Is transferred to the waveform processing device 14 and the time axis waveform of the magnetic field after the data processing shown in FIG. 2 is performed is shown by the solid line in FIG. The vertical axis is shown in terms of the current flowing through the microstrip line 15. The broken line in FIG. 6 is a time-axis waveform of the current obtained by measuring the voltage between the strip conductor and the ground plane of the microstrip line 15 with a receiver having an input impedance of 50 ohms and dividing the voltage by the input impedance.

【0027】伝送線路上を流れる高周波電流は高周波磁
界を発生させる。したがって、電流近傍の高周波磁界波
形を測定することにより、高周波電流の波形が求められ
る。
The high frequency current flowing on the transmission line generates a high frequency magnetic field. Therefore, the waveform of the high frequency current can be obtained by measuring the waveform of the high frequency magnetic field near the current.

【0028】図7は本発明による第2の実施例である測
定システム21のブロック図である。本測定システム2
1は周波数領域における被測定磁界強度と出力電圧の振
幅比位相差の関係である校正係数が既知のループプロー
ブ22とオシロスコープ23で構成される。オシロスコ
ープ23には波形データを数値データに変換する機能2
4、この数値データを四則演算したり、フーリエ変換、
逆フーリエ変換の計算を可能とする演算機能25と磁界
強度を測定するループプローブ22の校正係数を入力し
記憶する機能26と演算した後の波形データを表示する
機能27を有している。ループプローブ22の出力電圧
の処理は図2と同様の流れによる。
FIG. 7 is a block diagram of the measuring system 21 according to the second embodiment of the present invention. Main measurement system 2
Reference numeral 1 is composed of a loop probe 22 and an oscilloscope 23 having a known calibration coefficient, which is the relationship between the measured magnetic field strength in the frequency domain and the amplitude ratio phase difference of the output voltage. The oscilloscope 23 has a function 2 for converting waveform data into numerical data.
4, arithmetic operation of this numerical data, Fourier transform,
It has a calculation function 25 that enables calculation of the inverse Fourier transform, a function 26 that inputs and stores the calibration coefficient of the loop probe 22 that measures the magnetic field strength, and a function 27 that displays the waveform data after calculation. The processing of the output voltage of the loop probe 22 follows the same flow as in FIG.

【0029】[0029]

【発明の効果】以上説明したように本発明による磁界の
時間軸波形測定システムは、被測定磁界波形の周波数成
分が磁界測定用プローブの被測定磁界強度と出力電圧の
振幅比と位相差の関係が校正されている周波数帯域に含
まれている限り、磁界測定用プローブの周波数特性によ
る制限をうけず測定できるため、コンピュータのクロッ
ク信号や静電気放電などに伴う広帯域な周波数成分を有
する磁界および電流の時間軸波形を精度よく測定できる
効果を有する。また、磁界測定用プローブとしてループ
アンテナを用いればケーブルなどを貫通させる必要がな
いため、被測定対象による制約を受けない。
As described above, in the time domain waveform measuring system of the magnetic field according to the present invention, the frequency component of the measured magnetic field waveform is the relationship between the measured magnetic field strength of the magnetic field measuring probe, the amplitude ratio of the output voltage, and the phase difference. As long as it is included in the calibrated frequency band, it can be measured without being limited by the frequency characteristics of the magnetic field measurement probe, so it is possible to measure magnetic fields and currents that have wide-band frequency components due to computer clock signals and electrostatic discharge. It has an effect that the time axis waveform can be accurately measured. Further, if a loop antenna is used as the magnetic field measuring probe, it is not necessary to penetrate a cable or the like, so that there is no restriction due to the object to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る磁界波形測定システ
ムのブロック図。
FIG. 1 is a block diagram of a magnetic field waveform measuring system according to a first embodiment of the present invention.

【図2】数値データの処理フローを示す図。FIG. 2 is a diagram showing a processing flow of numerical data.

【図3】磁界波形の測定例を表すブロック図。FIG. 3 is a block diagram showing a measurement example of a magnetic field waveform.

【図4】ループプローブの校正係数の周波数特性図。FIG. 4 is a frequency characteristic diagram of a calibration coefficient of a loop probe.

【図5】出力電圧波形図。FIG. 5 is an output voltage waveform diagram.

【図6】磁界波形図。FIG. 6 is a magnetic field waveform diagram.

【図7】本発明の第2の実施例に係る磁界波形測定シス
テムのブロック図。
FIG. 7 is a block diagram of a magnetic field waveform measuring system according to a second embodiment of the present invention.

【図8】従来技術による電流波形測定ブロック図。FIG. 8 is a current waveform measurement block diagram according to a conventional technique.

【図9】従来技術による電流プローブを示す図。FIG. 9 shows a current probe according to the prior art.

【図10】従来技術による磁界波形測定ブロック図。FIG. 10 is a block diagram of a magnetic field waveform measurement according to a conventional technique.

【図11】従来技術による電磁界波形測定ブロック図。FIG. 11 is a block diagram of a conventional electromagnetic field waveform measurement.

【図12】ループプローブの校正係数の周波数特性図。FIG. 12 is a frequency characteristic diagram of the calibration coefficient of the loop probe.

【図13】従来技術による磁界波形の測定結果を示す
図。
FIG. 13 is a diagram showing a measurement result of a magnetic field waveform according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 磁界波形測定システム 2 波形測定用プローブ 3 電圧波形測定装置 4 波形処理装置 5 数値演算部 6 磁界測定用プローブ校正データ記憶部 7 波形データ表示部 11 測定ブロック図 12 ループプローブ 13 ディジタイジングオシロスコープ 14 波形処理装置 15 マイクロストリップ線路 16 パルス発生器 21 磁界波形測定システム 22 磁界測定用プローブ 23 オシロスコープ 24 波形データ−数値データ変換機能 25 演算機能 26 磁界測定用プローブ校正データ記憶機能 27 演算処理データ表示機能 31 電流波形測定システム 32 電流プローブ 33 オシロスコープ 34 リング状コア 35 2次コイル 36 被測定ケーブル 41 磁界波形測定システム 42 ループプローブ 43 積分回路 44 オシロスコープ 45 広帯域アンテナ 51 電圧の時間軸波形の数値データv(t) 52 フーリエ変換処理 53 磁界測定用プローブの校正データC(f) 54 磁界の周波数特性を売るための計算処理 55 磁界の時間軸波形データh(t) 56 データの表示 1 Magnetic field waveform measurement system 2 Waveform measurement probe 3 Voltage waveform measurement device 4 Waveform processing device 5 Numerical calculation unit 6 Magnetic field measurement probe calibration data storage unit 7 Waveform data display unit 11 Measurement block diagram 12 Loop probe 13 Digitizing oscilloscope 14 Waveform Processing device 15 Microstrip line 16 Pulse generator 21 Magnetic field waveform measurement system 22 Magnetic field measurement probe 23 Oscilloscope 24 Waveform data-numerical data conversion function 25 Calculation function 26 Magnetic field measurement probe calibration data storage function 27 Calculation processing data display function 31 Current Waveform measurement system 32 Current probe 33 Oscilloscope 34 Ring core 35 Secondary coil 36 Cable to be measured 41 Magnetic field waveform measurement system 42 Loop probe 43 Integration circuit 44 Oscilloscope 45 Broadband antenna 51 Numerical data v (t) 52 Fourier transform process of voltage time axis waveform 53 Calibration data C (f) 54 of magnetic field measurement probe 54 Calculation process for selling frequency characteristics of magnetic field 55 Magnetic field time axis waveform data h (T) Display of 56 data

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】周波数領域における被測定磁界強度と出力
電圧の振幅比および位相差の関係である校正係数が既知
の磁界測定用プローブと、入力波形を数値データに変換
し外部装置に転送可能な電圧波形測定装置と、該電圧波
形測定装置から送られた時間軸波形の数値データを処理
する波形処理装置で構成され、波形処理装置は入力した
数値データを演算処理する演算部と磁界測定用プローブ
の被測定磁界強度と出力電圧の比に関する振幅と位相の
データを入力し記憶する磁界測定用プローブ校正係数デ
ータ記憶部と、演算された時間軸波形データを表示する
表示部で構成されることを特徴とする磁界波形測定シス
テム。
1. A magnetic field measuring probe having a known calibration coefficient, which is the relationship between the measured magnetic field strength in the frequency domain and the amplitude ratio and phase difference of the output voltage, and an input waveform that can be converted into numerical data and transferred to an external device. It is composed of a voltage waveform measuring device and a waveform processing device for processing the numerical data of the time axis waveform sent from the voltage waveform measuring device. The waveform processing device is an arithmetic unit for arithmetically processing the input numerical data and a magnetic field measuring probe. Of the magnetic field measurement probe calibration coefficient data storage unit for inputting and storing amplitude and phase data related to the ratio of the measured magnetic field strength to the output voltage, and a display unit for displaying the calculated time-axis waveform data. Characteristic magnetic field waveform measurement system.
【請求項2】波形処理装置の演算部は入力した波形の数
値データをフーリエ変換する機能と、記憶されている磁
界測定用プローブの校正係数のデータとフーリエ変換後
の数値データを演算処理する機能と、演算処理後の数値
データを逆フーリエ変換する機能を有していることを特
徴とする請求項1に記載の磁界波形測定システム。
2. The calculation unit of the waveform processing device has a function of performing a Fourier transform on the input numerical data of the waveform, and a function of calculating the stored data of the calibration coefficient of the magnetic field measuring probe and the numerical data after the Fourier transform. 2. The magnetic field waveform measuring system according to claim 1, further comprising a function of performing an inverse Fourier transform on the numerical data after the arithmetic processing.
【請求項3】周波数領域における被測定磁界強度と出力
電圧の振幅比および位相差の関係である校正係数が既知
の磁界測定用プローブとそのプローブの出力電圧波形を
測定するためのオシロスコープで構成され、前記オシロ
スコープには入力波形データを数値データに変換する機
能と、変換後の数値データをフーリエ変換する機能と磁
界測定用プローブの校正係数のデータを入力し記憶する
機能と、校正係数とフーリエ変換後の数値データを演算
処理する機能と、演算処理後の数値データを逆フーリエ
変換する機能と、逆フーリエ変換後の数値データを波形
として表示する機能を有していることを特徴とする磁界
波形測定システム。
3. A magnetic field measurement probe having a known calibration coefficient, which is the relationship between the measured magnetic field strength in the frequency domain and the amplitude ratio and phase difference of the output voltage, and an oscilloscope for measuring the output voltage waveform of the probe. The oscilloscope has a function of converting the input waveform data into numerical data, a function of performing a Fourier transform on the converted numerical data, a function of inputting and storing the calibration coefficient data of the magnetic field measurement probe, a calibration coefficient and a Fourier transform. A magnetic field waveform characterized by having a function of performing arithmetic processing on the subsequent numerical data, a function of performing an inverse Fourier transform on the numerical data after the arithmetic processing, and a function of displaying the numerical data after the inverse Fourier transform as a waveform. Measuring system.
JP6238798A 1994-10-03 1994-10-03 Magnetic field waveform measurement system Expired - Fee Related JP2765490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238798A JP2765490B2 (en) 1994-10-03 1994-10-03 Magnetic field waveform measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238798A JP2765490B2 (en) 1994-10-03 1994-10-03 Magnetic field waveform measurement system

Publications (2)

Publication Number Publication Date
JPH08101262A true JPH08101262A (en) 1996-04-16
JP2765490B2 JP2765490B2 (en) 1998-06-18

Family

ID=17035450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238798A Expired - Fee Related JP2765490B2 (en) 1994-10-03 1994-10-03 Magnetic field waveform measurement system

Country Status (1)

Country Link
JP (1) JP2765490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138057A (en) * 1997-07-17 1999-02-12 Ricoh Co Ltd Foreign noise eliminating device and radiation measuring device equipped with eliminating device
JP4810648B2 (en) * 2006-05-08 2011-11-09 テクトロニクス・インコーポレイテッド Input bypass circuit for current probe
JP2013076569A (en) * 2011-09-29 2013-04-25 Kyushu Institute Of Technology Current measuring device for semiconductor circuit
JP2015034785A (en) * 2013-08-09 2015-02-19 Tdk株式会社 Method and instrument for estimating far electromagnetic field and instrument for measuring near electromagnetic field
JP2017150828A (en) * 2016-02-22 2017-08-31 中部電力株式会社 Inference method and inference device for lightning stroke
JP2021056046A (en) * 2019-09-27 2021-04-08 パナソニックIpマネジメント株式会社 Evaluation system and evaluation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301368A (en) * 2015-09-25 2016-02-03 江苏绿扬电子仪器集团有限公司 High-speed data acquisition system based on ARM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321865U (en) * 1986-07-25 1988-02-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321865U (en) * 1986-07-25 1988-02-13

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138057A (en) * 1997-07-17 1999-02-12 Ricoh Co Ltd Foreign noise eliminating device and radiation measuring device equipped with eliminating device
JP4810648B2 (en) * 2006-05-08 2011-11-09 テクトロニクス・インコーポレイテッド Input bypass circuit for current probe
JP2013076569A (en) * 2011-09-29 2013-04-25 Kyushu Institute Of Technology Current measuring device for semiconductor circuit
JP2015034785A (en) * 2013-08-09 2015-02-19 Tdk株式会社 Method and instrument for estimating far electromagnetic field and instrument for measuring near electromagnetic field
JP2017150828A (en) * 2016-02-22 2017-08-31 中部電力株式会社 Inference method and inference device for lightning stroke
JP2021056046A (en) * 2019-09-27 2021-04-08 パナソニックIpマネジメント株式会社 Evaluation system and evaluation device

Also Published As

Publication number Publication date
JP2765490B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US7459917B2 (en) Measuring method for electromagnetic field intensity and apparatus therefor, measuring method for electromagnetic field intensity distribution and apparatus therefor, measuring method for current and voltage distributions and apparatus therefor
US7038468B2 (en) Method and a test setup for measuring large-signal S-parameters that include the coefficients relating to the conjugate of the incident waves
GB2382662B (en) High frequency circuit analyzer
JPH05312859A (en) Impedance meter
JP3234339B2 (en) Power measuring apparatus and method
US5532590A (en) Apparatus for measuring circuit parameters wherein errors due to transmission lines are prevented
JP2765490B2 (en) Magnetic field waveform measurement system
EP0936469A2 (en) Loop resistance tester (LRT) for cable shield integrity monitoring
US7079961B2 (en) Method and apparatus for measuring impedance of electrical component under high interference conditions
US5321363A (en) Two-terminal circuit element measuring apparatus for performing contact checks
CN110286253A (en) A kind of adaptive probe impedance matching process and device
Harada et al. Time‐domain magnetic field waveform measurement near printed circuit boards
JP4925232B2 (en) Electric field probe
CA2184770C (en) Method and apparatus for correcting drift in the response of analog receiver components in induction well logging instruments
US20030210040A1 (en) Permeability detection system of ferrite core using magnetic field induction method
JPH11183537A (en) Method and apparatus for measuring current waveform
JP2000009775A (en) Current measuring device and specifying method for current generating source
Aykan Calibration of circular loop antennas
JP2022054493A (en) Method for measuring and calibrating high frequency voltage and current waveform
TWI798893B (en) Testing method and testing system
JP3218983B2 (en) Electromagnetic field strength measurement device
EP3889627B1 (en) Magnetism detection device and magnetism detection method
JP2004151065A (en) Waveform measuring method and device of high frequency signal
CN114994583B (en) Magnetic resonance radio frequency gain calibration method based on radio frequency system modeling and system thereof
US3492569A (en) Bridge circuit network for measurement of reflection coefficients

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980303

LAPS Cancellation because of no payment of annual fees