JPH0799980A - Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same - Google Patents

Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same

Info

Publication number
JPH0799980A
JPH0799980A JP5273078A JP27307893A JPH0799980A JP H0799980 A JPH0799980 A JP H0799980A JP 5273078 A JP5273078 A JP 5273078A JP 27307893 A JP27307893 A JP 27307893A JP H0799980 A JPH0799980 A JP H0799980A
Authority
JP
Japan
Prior art keywords
ala
val
dna
nitrilase
thr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5273078A
Other languages
Japanese (ja)
Inventor
Chiyan Bara Teku
チャン バラ テク
Yoshio Aoshima
美穂 青島
Keizo Furuhashi
敬三 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5273078A priority Critical patent/JPH0799980A/en
Publication of JPH0799980A publication Critical patent/JPH0799980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain a new gene encoding a polypeptide having nitrilase activity derived from Rhodococcus rhodochrous, capable of industrially and advantageously producing a carboxylic acid from a nitrile by a genetics engineering method. CONSTITUTION:Rhodococcus rhodochrous PA-34 (FERM BP-1559) is added to a medium, cultured at 30 deg.C for 24 hours, mixed with glycine and further cultured for 24 hours. The cell is collected, suspended in tris-hydrochloric acid buffer solution (pH 8), treated with lysozyme and peptidase and further ground to collect a gene contained in the cell. Then, the gene is treated with a restriction enzyme and bonded to a vector to prepare a DNA library by a conventional method. The DNA library is screened with a probe containing part of a gene encoding nitrilase to select a clone. A DNA is recovered from the clone and treated with a restriction enzyme to give the objective new gene encoding a polypeptide having nitrilase activity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロドコッカス ロドク
ロス(Rhodococcus rhodochrous)起源の、ニトリル類を
対応するカルボン酸類に変換するニトリラーゼ活性を有
するポリペプチドをコードする遺伝子DNAに関する。
また、本発明は、この遺伝子DNAをベクターに組込ん
だ組換え体DNA及びこの組換え体DNAで形質転換さ
れた形質転換体に関する。さらに、本発明は、ニトリル
をこの形質転換体によって対応するカルボン酸類に変換
する方法に関する。
TECHNICAL FIELD The present invention relates to a gene DNA encoding a polypeptide having nitrilase activity for converting nitriles into corresponding carboxylic acids, which originates from Rhodococcus rhodochrous .
The present invention also relates to a recombinant DNA in which this gene DNA is incorporated into a vector and a transformant transformed with this recombinant DNA. Furthermore, the present invention relates to a method for converting nitriles to the corresponding carboxylic acids by means of this transformant.

【0002】[0002]

【従来の技術】ニトリル類を水和して対応するカルボン
酸類に変換する酵素はニトリラーゼとして知られてお
り、当該酵素を産生する微生物としては、例えば、Fusa
rium oxysporum f. sp. me lonis(Biotechnol. Appl.
Biochem., 11, 581-601(1989))、Fusarium solani(Bio
chem. J., 167, 685-692(1977))、Nocardia sp.(Int.
J.Biochem., 17, 677-683(1985))、Arthrobacter sp.(A
ppl. Environ. Microbiol., 51, 302-306(1986))、Rhod
ococcus rhodochrous Jl(Eur. J. Biochem.,182,349-
356(1989))、Rhodococcus rhodochrous K22(J. Bacte
riol.,172, 4807-4815(1990)) 、Rhodococcus rhodoc
hrous PA-34(Appl. Microbiol. Biotechnol., 37, 184-
190(1992))等を挙げることができる。これらの微生物の
うち、α−アミノニトリルから光学活性なα−アミノ酸
を製造することが知られているのはロドコッカス ロド
クロス(Rhodococcus rhodochrous)PA-34 だけである。
2. Description of the Related Art An enzyme that hydrates nitriles to convert them into corresponding carboxylic acids is known as nitrilase. Examples of microorganisms producing the enzyme include Fusa.
rium oxysporum f. sp. me lonis ( Biotechnol. Appl.
Biochem., 11 , 581-601 (1989)), Fusarium solani (Bio
chem. J., 167 , 685-692 (1977)), Nocardia sp. (Int.
J. Biochem., 17 , 677-683 (1985)), Arthrobacter sp. (A
ppl. Environ. Microbiol., 51 , 302-306 (1986)), Rhod
ococcus rhodochrous Jl (Eur. J. Biochem., 182, 349-
356 (1989)), Rhodococcus rhodochrous K22 (J. Bacte
riol., 172, 4807-4815 (1990)), Rhodococcus rhodoc
hrous PA-34 (Appl. Microbiol. Biotechnol., 37 , 184-
190 (1992)) and the like. Of these microorganisms, only Rhodococcus rhodochrous PA-34 is known to produce an optically active α-amino acid from α-aminonitrile.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、遺伝子
組換え操作によりニトリラーゼ遺伝子をクローン化し、
これをベクターに組み込んで組換え体DNAとし、組換
え体DNAで微生物を形質転換し、微生物菌体内にニト
リラーゼ遺伝子のコピーを多数存在させて、微生物の触
媒活性を飛躍的に増大させてニトリル類からカルボン酸
類を製造することについて鋭意検討を行った。その結
果、ロドコッカス ロドクロス(Rhodococcus rhodochr
ous)に由来するニトリラーゼ遺伝子を見出し、その塩基
配列を決定することができた。そして、この遺伝子DN
Aを用いて上記遺伝子組換え操作によりニトリル類から
対応するカルボン酸を収率よく得ることができることを
見出して本発明を完成するに至った。すなわち、本発明
の課題は、ニトリラーゼ遺伝子を提供することにある。
The present inventors have cloned a nitrilase gene by a gene recombination operation,
This is incorporated into a vector to form a recombinant DNA, the recombinant DNA is used to transform a microorganism, and a large number of copies of the nitrilase gene are present in the microbial cells to dramatically increase the catalytic activity of the microorganism to thereby improve nitriles. The present inventors have earnestly studied the production of carboxylic acids. As a result, Rhodococcus rhodochr
ous) -derived nitrilase gene, and its base sequence could be determined. And this gene DN
The present inventors have completed the present invention by finding that the corresponding carboxylic acid can be obtained from nitriles in good yield by the above gene recombination operation using A. That is, an object of the present invention is to provide a nitrilase gene.

【0004】また、本発明の課題は、この遺伝子を用い
て遺伝子組換え操作によりニトリル類から対応するカル
ボン酸類を製造する方法を提供することにある。さら
に、本発明の課題は、この遺伝子組換え操作で使用する
組換え体DNA及び形質転換体を提供することにある。
本発明の方法では、特にα−アミノニトリルから対応す
る光学活性α−アミノ酸を簡単に製造できる。
Another object of the present invention is to provide a method for producing the corresponding carboxylic acids from nitriles by gene recombination using this gene. A further object of the present invention is to provide a recombinant DNA and a transformant used in this gene recombination operation.
According to the method of the present invention, the corresponding optically active α-amino acid can be simply produced particularly from α-aminonitrile.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記した
ようにロドコッカス ロドクロス(Rhodococcus rhodoc
hrous)PA-34 からニトリラーゼ活性を有するポリペプチ
ドをコードする遺伝子DNAを分離して塩基配列を決定
し、これをベクターに組み込んで組換え体DNAとし、
さらに組換え体DNAで微生物を形質転換して形質転換
体を作製し、これを用いてニトリル類のカルボン酸類へ
の変換を行うことにより、本発明を完成した。
SUMMARY OF THE INVENTION As described above, the present inventors have found that Rhodococcus rhodoc
hrous) PA-34 was isolated from the gene DNA encoding the polypeptide having nitrilase activity, the base sequence was determined, and this was incorporated into a vector to give a recombinant DNA,
Further, the present invention was completed by transforming a microorganism with the recombinant DNA to prepare a transformant, and using this to convert nitriles into carboxylic acids.

【0006】以下、本発明を詳細に説明する。本発明の
ニトリラーゼ遺伝子の供給源としては、ニトリラーゼ活
性を有するロドコッカス ロドクロス(Rhodococcus rh
odochrous)PA-34 が使用される。本菌株の菌学的性質は
特開平4-79894 号公報に記載されている。本菌株は微工
研条寄第1559号 (FERM BP-1559) として工業技術院微生
物工業技術研究所 (生命工学工業技術研究所) に寄託さ
れている。本発明は下記(1)〜(5)の工程により実
施される。
The present invention will be described in detail below. Sources of nitrilase gene of the present invention, Rhodococcus having nitrilase activity Rodokurosu (Rhodococcus rh
odochrous) PA-34 is used. The mycological properties of this strain are described in JP-A-4-79894. This strain has been deposited at the Institute for Microbial Technology, Institute of Industrial Science (Biotechnology Institute), as Micro Engineering Research Article No. 1559 (FERM BP-1559). The present invention is carried out by the following steps (1) to (5).

【0007】(1)ニトリラーゼのアミノ酸配列のN−
末端の部分配列の決定とDNAプローブの作製 ロドコッカス ロドクロス(Rhodococcus rhodochrous)
PA-34 からニトリラーゼを抽出精製し、そのN−末端の
アミノ酸配列を決定する。決定したアミノ酸配列をもと
に推定した遺伝子の塩基配列を持つDNAプローブを合
成する。
(1) N-of the amino acid sequence of nitrilase
Determination of terminal partial sequence and preparation of DNA probe Rhodococcus rhodochrous
Nitrilases are extracted and purified from PA-34, and the N-terminal amino acid sequence thereof is determined. A DNA probe having a gene base sequence deduced from the determined amino acid sequence is synthesized.

【0008】(2) ニトリラーゼ遺伝子を含むDNA
断片の調製 ロドコッカス ロドクロス(Rhodococcus rhodochrous)
PA-34 から染色体DNAを分離し、制限酵素で切断後、
サザンハイブリダイゼーションによりニトリラーゼ遺伝
子を含むDNA断片を工程(1)で調製したDNAプロ
ーブで検出する。
(2) DNA containing nitrilase gene
Preparation of fragments Rhodococcus rhodochrous
Isolate chromosomal DNA from PA-34, cut with restriction enzyme,
The DNA fragment containing the nitrilase gene is detected by Southern hybridization with the DNA probe prepared in step (1).

【0009】(3)組換え体DNAライブラリーの作製 工程(2)で調製したDNA断片をベクターに組み込ん
で組換え体DNAライブラリーを作製し、ついで、形質
転換体を作製する。調製した形質転換体からコロニーハ
イブリダイゼーションにより、ニトリラーゼ遺伝子を含
む形質転換体を選別し、サザンハイブリダイゼーション
で確認する。
(3) Preparation of recombinant DNA library A recombinant DNA library is prepared by incorporating the DNA fragment prepared in step (2) into a vector, and then a transformant is prepared. Transformants containing the nitrilase gene are selected from the prepared transformants by colony hybridization, and confirmed by Southern hybridization.

【0010】(4)塩基配列の決定 工程(3)で選別された形質転換体に含まれる組換え体
DNA中のDNA断片の塩基配列を決定する。
(4) Determination of nucleotide sequence The nucleotide sequence of the DNA fragment in the recombinant DNA contained in the transformant selected in step (3) is determined.

【0011】(5)ニトリラーゼ遺伝子の発現 不要部分を制限酵素で除去したニトリラーゼ遺伝子を含
むDNA断片を発現ベクターに組み込み、形質転換体を
作製後これを培養し、培養菌体から調製したニトリラー
ゼによりニトリル類からカルボン酸類を生産する。
(5) Expression of nitrilase gene A DNA fragment containing a nitrilase gene in which an unnecessary portion is removed by a restriction enzyme is incorporated into an expression vector, a transformant is prepared and then cultured, and then nitrilase is prepared by nitrilase prepared from cultured cells. To produce carboxylic acids.

【0012】上記の工程で用いるベクターとしては、プ
ラスミド pUC19 、プラスミドpMK2等が挙げられ、また
形質転換に用いるホストとしては、E. coli HB101 、E.
coli JM103 、E. coli JM109 等が挙げられるが、これ
らに限定されるものではない。
The vector used in the above step includes plasmid pUC19, plasmid pMK2, etc., and the host used for transformation is E. coli HB101, E. coli.
Examples thereof include, but are not limited to, E. coli JM109 and E. coli JM109.

【0013】ニトリラーゼの基質となるニトリル化合物
としては、特開平1-317394号公報記載のαアミノニトリ
ル化合物およびその他のニトリル化合物を挙げることが
できる。例えば、α−アミノニトリルには、2-アミノプ
ロパンニトリル、2-アミノブタンニトリル、2-アミノ-3
- メチルブタンニトリル、2-アミノ-4- メチルペンタン
ニトリル、2-アミノ-3- メチルペンタンニトリル、2-ア
ミノ-3- ヒドロキシプロパンニトリル、2-アミノ-3- ヒ
ドロキシブタンニトリル、2-アミノ-3- グアニジノペン
タンニトリル、2-アミノ-3- メチルカプトプロパンニト
リル、2,7-ジアミノ-4,5- ジチアオクタンニトリル、2-
アミノ-4- メチルオキシブタンニトリル、2-アミノ-3-
フェニルプロパンニトリル、3-(4- ヒドロキシフェニ
ル) プロパンニトリル、3-アミノ-3- シアノプロパン
酸、4-アミノ-4- シアノブタン酸、3-アミノ-3- シアノ
プロパンアミド、4-アミノ-4- シアノブタンアミド、2,
6-ジアミノヘキサンニトリル、2,6-ジアミノ-5- ヒドロ
キシヘキサンニトリル、2-アミノ-3-(3-インドリル) プ
ロパンニトリル、2-アミノ-3-(4-イミダゾイル) プロパ
ンニトリル、2-シアノピロリジン、2-シアノ-4- ヒドロ
キシピロリジン、2-アミノ-2- フェニルエタンニトリル
などを例示することができる。また、他のニトリル化合
物としては例えば、アセトニトリル、プロピオニトリ
ル、n-ブチロニトリル、n-カプロニトリル、メタクリロ
ニトリル、イソブチロニトリル、グルタロニトリル、ト
リアクリロニトリル、クロトノニトリル、ラクトニトリ
ル、サクシノニトリル、アクリロニトリル、ベンゾニト
リル、フェニルアセトニトリル等を例示することができ
る。しかし、これらのニトリル化合物に限定されるもの
ではない。また、α−ニトリル化合物は、DL体を用い
てもよいし、L体あるいはD体を用いることができる。
L体又はD体を用いると、光学活性をもつアミノ酸を簡
単な操作で得ることができる。
Examples of the nitrile compound serving as a substrate for nitrilase include α-amino nitrile compounds and other nitrile compounds described in JP-A-1-317394. For example, α-aminonitrile includes 2-aminopropanenitrile, 2-aminobutanenitrile, 2-amino-3.
-Methylbutanenitrile, 2-amino-4-methylpentanenitrile, 2-amino-3-methylpentanenitrile, 2-amino-3-hydroxypropanenitrile, 2-amino-3-hydroxybutanenitrile, 2-amino-3 -Guanidinopentanenitrile, 2-amino-3-methylcaptopropanenitrile, 2,7-diamino-4,5-dithiaoctanenitrile, 2-
Amino-4-methyloxybutanenitrile, 2-amino-3-
Phenylpropanenitrile, 3- (4-hydroxyphenyl) propanenitrile, 3-amino-3-cyanopropanoic acid, 4-amino-4-cyanobutanoic acid, 3-amino-3-cyanopropanamide, 4-amino-4- Cyanobutanamide, 2,
6-diaminohexanenitrile, 2,6-diamino-5-hydroxyhexanenitrile, 2-amino-3- (3-indolyl) propanenitrile, 2-amino-3- (4-imidazoyl) propanenitrile, 2-cyanopyrrolidine , 2-cyano-4-hydroxypyrrolidine, 2-amino-2-phenylethanenitrile, and the like. Examples of other nitrile compounds include acetonitrile, propionitrile, n-butyronitrile, n-capronitrile, methacrylonitrile, isobutyronitrile, glutaronitrile, triacrylonitrile, crotononitrile, lactonitrile, succinonitrile. , Acrylonitrile, benzonitrile, phenylacetonitrile and the like. However, it is not limited to these nitrile compounds. Further, as the α-nitrile compound, a DL-form, an L-form or a D-form may be used.
When the L-form or D-form is used, an optically active amino acid can be obtained by a simple operation.

【0014】ニトリル類のカルボン酸類への変換には上
記酵素標品の他、形質転換体の培養液、菌体、菌体処理
物、固定化菌体等を用いることができる。ニトリル類の
カルボン酸への変換反応は、前記したニトリル化合物を
酵素、菌体またはその処理物と接触させることによって
行なわれるが、pH6〜12、温度20〜50℃の範囲で、種々
の緩衝液中で行なうことができる。緩衝液としては、燐
酸緩衝液、アンモニア緩衝液、ホウ酸緩衝液、トリス緩
衝液等を用いることができ、前記緩衝液に必要に応じ
て、該菌体の生育を促す炭素源、窒素源その他の成分を
添加して行なうことができる。これらの反応液条件の一
例は、特開平1-317394号公報、或は特開平4-79894 号公
報に既に記載されている。炭素源、窒素源その他の成分
を添加して行なうことができる。これらの反応条件の一
例は、特開平1-317394号公報や特開平4-79894 号公報に
すでに記載されている。得られたカルボン酸は、相分
離、濾過、抽出、カラムクロマトグラフィー等公知の手
段を適用して分離、採取することができる。
For the conversion of nitriles to carboxylic acids, in addition to the above-mentioned enzyme preparation, a transformant culture solution, cells, treated cells, immobilized cells and the like can be used. The conversion reaction of nitriles to carboxylic acid is carried out by bringing the above-mentioned nitrile compound into contact with an enzyme, a bacterial cell or a treated product thereof, and various buffer solutions within a pH range of 6 to 12 and a temperature range of 20 to 50 ° C. You can do it inside. As the buffer solution, a phosphate buffer solution, an ammonia buffer solution, a borate buffer solution, a Tris buffer solution or the like can be used. If necessary, the buffer solution may be a carbon source, a nitrogen source or the like which promotes the growth of the bacterial cells. Can be carried out by adding the components of. An example of these reaction liquid conditions has already been described in JP-A-1-317394 or JP-A-4-79894. It can be performed by adding a carbon source, a nitrogen source and other components. Examples of these reaction conditions have already been described in JP-A-1-317394 and JP-A-4-79894. The obtained carboxylic acid can be separated and collected by applying known means such as phase separation, filtration, extraction and column chromatography.

【0015】以下、実施例により本発明をさらに詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【実施例】【Example】

(1)ニトリラーゼのアミノ酸配列のN−末端の部分配
列の決定とDNAプローブの作製Rhodococcus rhodochrous PA-34 を培地(グルコー
ス、10g; Na2HPO4・12H2O、2.5g; KH2PO4、2.0g; MgSO
4 ・7H2O、0.5g; FeSO4 ・7H2O、0.03g; CaCl2・2H2O、
0.06g;酵母エキス、0.1g; イソブチルニトリル、5ml;
水、1 l; pH7.2) に加え、該菌体30℃で28時間培養し
た。その後、該培養液より該菌を遠心分離で集菌し、そ
の菌体をジチオスライトール5mMを含む0.1 M 燐酸緩衝
液(以降、燐酸緩衝液は前記の組成を称する)で洗浄
し、燐酸緩衝液に懸濁した。得られた懸濁液中の菌体の
菌体をフレンチプレスで破砕し、付加荷重13000gで20分
遠心分離し、得られた上清を素酵素液とした。文献(App
l. Microbiol. Biotechnol.,37, 184-190(1992))に記載
する方法に従い、該素酵素液を硫酸分画した後、Rhodoc
occusrhodochrous PA-34 由来のニトリラーゼをSephacr
yl S-300 HR、DEAE Toyopearl650S カラムクロマトグラ
フィーにより分離精製した。単離された該ニトリラーゼ
を用い、アミノ酸シークエンサー(アプライドバイオシ
ステム社製)によりそのN末端アミノ酸配列を解析し
た。決定されたN末端から11個のアミノ酸配列を配列表
配列番号3に示す。次いで、このアミノ酸配列から予想
される塩基配列を有する合成DNAを自動DNA合成機
(ベックマン社製)で作製し、更に、該合成DNAの
5’末端の1つの該酸をT4ポリヌクレオチドキナーゼと
〔γ-32P〕ATP とを用い放射性同位元素32P でラベルし
たDNAプローブを作製した。該DNAプローブの塩基
配列、5’末端の1つの塩基を除く32の塩基配列を配列
表配列番号4に示す。なお、2種のコドンが予想される
Glu 、Tyr 、Asn 、Phe 及びLys に付いては、それぞれ
2種の塩基を、又4種のコドンが予想されるThr とVal
に付いては、それぞれイノシン酸(I)を含む1種の塩
基を用いて、予測される複数種の合成DNAを作製し
た。以下の工程においては、前記の各塩基配列を有する
合成DNAからなる混合物を、DNAプローブとして使
用した。
(1) Determination of N-terminal partial sequence of nitrilase amino acid sequence and preparation of DNA probe Rhodococcus rhodochrous PA-34 was added to a medium (glucose, 10 g; Na 2 HPO 4 · 12H 2 O, 2.5 g; KH 2 PO 4 , 2.0g; MgSO
4 · 7H 2 O, 0.5g; FeSO 4 · 7H 2 O, 0.03g; CaCl 2 · 2H 2 O,
0.06g; yeast extract, 0.1g; isobutyl nitrile, 5ml;
In addition to water (1 l; pH 7.2), the cells were cultured at 30 ° C for 28 hours. Then, the bacteria are collected from the culture solution by centrifugation, and the bacterial cells are washed with 0.1 M phosphate buffer containing 5 mM dithiothreitol (hereinafter, the phosphate buffer has the above composition) to obtain the phosphate buffer. It was suspended in the liquid. The microbial cells in the obtained suspension were crushed with a French press and centrifuged for 20 minutes at an additional load of 13000 g, and the resulting supernatant was used as an enzyme solution. Literature (App
l. Microbiol. Biotechnol., 37 , 184-190 (1992)), after fractionating the elementary enzyme solution with sulfuric acid, Rhodoc
Sephacr nitrilase from occusrhodochrous PA-34
yl S-300 HR, DEAE Toyopearl 650S column chromatography for separation and purification. Using the isolated nitrilase, its N-terminal amino acid sequence was analyzed by an amino acid sequencer (manufactured by Applied Biosystems). The determined 11 amino acid sequence from the N-terminus is shown in SEQ ID NO: 3 in the Sequence Listing. Then, a synthetic DNA having a nucleotide sequence predicted from this amino acid sequence was prepared with an automatic DNA synthesizer (manufactured by Beckman), and further, one of the 5'-terminal acids of the synthetic DNA was designated as T4 polynucleotide kinase [ A DNA probe labeled with the radioisotope 32 P was prepared using γ- 32 P] ATP. The nucleotide sequence of the DNA probe is shown in SEQ ID NO: 4 of the Sequence Listing, except for 32 nucleotide sequences except for one nucleotide at the 5'end. Two types of codons are expected
For Glu, Tyr, Asn, Phe, and Lys, two types of bases are expected, and four types of codons are expected, Thr and Val.
In regard to 1), a plurality of predicted synthetic DNAs were prepared by using 1 type of base containing inosinic acid (I). In the following steps, a mixture composed of the synthetic DNA having each of the above base sequences was used as a DNA probe.

【0016】(2)ニトリラーゼ遺伝子を含むDNA断
片の調製 ロドコッカス ロドクロス(Rhodococcus rhodochrous)
PA-34 (微工研条寄第1559号) を培地 (グルコース、10
g; Na2HPO4 ・12H2O 、2.5g; KH2PO4、2g; MgSO4 ・7H2O
、0.5g; FeSO4 ・7H2O 、0.03g; CaCl2 ・2H2O、0.06g;
酵母エキス、0.1g; イソブチロニトリル、5ml;水、1 l;
pH7.2) 中30℃で24時間培養後、グリシンを0.2Mとなる
ように添加し24時間培養した。集菌後10mMのEDTAを含む
10mMのTris-HCl緩衝液(PH8) で洗浄し、吸光度単位で50
となるよう10mMのEDTAを含む10mMのTris-HCl緩衝液(PH
8) に懸濁した。調製した菌懸濁液にリゾチームとアク
ロモバクターのエンドペプチダーゼをそれぞれ10mg/m
l、5mg /l となるように加え、58℃で2時間放置後、S
DS(Sodium dodecyl sulfate) を2%となるよう加え、5
8℃で2時間放置した。前記処理の後、この菌体を文献
(Biochim. Biophys. Acta,72, 619-629(1963)) に記載
する方法に従って破砕して、該菌体中に含まれる遺伝子
を採取し、その遺伝子より当該菌由来のニトリラーゼ遺
伝子を含むトータルDNAを調製した。調製したトータ
ルDNAを各種の制限酵素で消化後、得られたDNA断
片と配列表配列番号4に記す核酸配列を有する上記工程
(1)で作製したDNAプローブとを用いて、文献((B
asic methods in molecular biology,Elsevier, New Yo
rk(1986))に記載する方法に従ってサザンハイブリダイ
ゼーションを行った。2X SSC緩衝液中でのプレハイブリ
ダイゼーション及びハイブリダイゼーションの温度は56
℃とし、洗浄温度は50℃とした。オートラジオグラムの
結果、EcoR I分解物の約0.9kbpの断片、BamH I分解物の
約2.6kbpの断片、及びPst I 分解物の約9.5kbpの断片、
この3つのDNA断片が上記DNAプローブとハイブリ
ダイズすることを確認した。前記3つのDNA断片は、
配列表配列番号3に記す当該菌由来のニトリラーゼN末
端から11個のアミノ酸配列をコードする核酸塩基配列を
有することが分り、それをそれぞれ分取した。
(2) Preparation of DNA fragment containing nitrilase gene Rhodococcus rhodochrous
PA-34 (Microtechnical Laboratory Article No. 1559) was added to the medium (glucose, 10
g; Na 2 HPO 4・ 12H 2 O, 2.5g; KH 2 PO 4 , 2g; MgSO 4・ 7H 2 O
, 0.5g; FeSO 4・ 7H 2 O, 0.03g; CaCl 2・ 2H 2 O, 0.06g;
Yeast extract, 0.1 g; isobutyronitrile, 5 ml; water, 1 l;
After culturing in pH 7.2) at 30 ° C. for 24 hours, glycine was added to 0.2 M to culture for 24 hours. Contains 10 mM EDTA after harvest
Wash with 10 mM Tris-HCl buffer (PH8) and absorb at 50
10 mM Tris-HCl buffer containing 10 mM EDTA (PH
8). Lysozyme and achromobacter endopeptidase were added to the prepared bacterial suspension at 10 mg / m 2 each.
l, 5mg / l, and leave at 58 ℃ for 2 hours.
Add DS (Sodium dodecyl sulfate) to 2% and add 5
It was left at 8 ° C for 2 hours. After the above treatment, the cells were
(Biochim. Biophys. Acta, 72, 619-629 (1963)), crushing to collect the gene contained in the bacterium, and total DNA containing the nitrilase gene derived from the bacterium from the gene. Was prepared. After digesting the prepared total DNA with various restriction enzymes, the obtained DNA fragment and the DNA probe prepared in the above step (1) having the nucleic acid sequence shown in SEQ ID NO: 4 in the Sequence Listing were used to prepare a literature ((B
asic methods in molecular biology, Elsevier, New Yo
Southern hybridization was performed according to the method described in rk (1986)). The temperature of prehybridization and hybridization in 2X SSC buffer is 56
The washing temperature was 50 ° C. As a result of the autoradiogram, a fragment of about 0.9 kbp of the EcoR I degradation product, a fragment of about 2.6 kbp of the BamHI degradation product, and a fragment of about 9.5 kbp of the Pst I degradation product,
It was confirmed that these three DNA fragments hybridized with the above DNA probe. The three DNA fragments are
It was found to have a nucleic acid base sequence encoding an 11 amino acid sequence from the N-terminal of the bacterium-derived nitrilase shown in SEQ ID NO: 3 in the Sequence Listing, and each was isolated.

【0017】(3)組換え体DNAライブラリーの作製 前記のEcoR I分解物の約0.9kbpの断片、BamH I分解物の
約2.6kbpの断片、及びPst I 分解物の約9.5kbpの断片、
即ち上記工程(2)で分取した3つのDNA断片を、そ
れぞれ制限酵素EcoR I、BamH I、Pst I で処理後、大腸
菌アルカリフオスファターゼで処理したプラスミドベク
ターpUC19 にリゲーションキット (宝酒造社製) で組み
込んだ。この操作により、EcoR I分解物の約0.9kbpの断
片、BamHI分解物の約2.6kbpの断片、及びPst I 分解物
の約9.5kbpの断片がそれぞれ組み込まれた組換え体プラ
スミドベクター、図1に示すpNLE、pNLB及びpNLPの3種
の組換え体をそれぞれ調製した。これらの操作及び以下
に記す組換え体プラスミドベクターを用いるDNAライ
ブラリーを作製する操作は、文献(Molecular cloning:
a laboratory manual, 2nd edition. Cold Spring Harb
or, New York(1989)) に従って行った。調製した組換え
体プラスミドベクターで大腸菌 E.coli HB101 を形質転
換し、その形質転換菌株をプレート上に生育して得られ
るアンピシリン耐性コロニーから、コロニーハイブリダ
イゼーションにより組換え体プラスミドベクターを持つ
コロニーのみを選別した。次いで、選別したコロニーか
ら組換え体プラスミドベクターに含まれるDNAを抽出
し、上記工程(2)に記載する方法で準じてサザンハイ
ブリダイゼーションを行って、目的の組換え体DNA、
即ち配列表配列番号3に記す当該菌 Rhodococcus rhod
ochrous PA-34 由来のニトリラーゼのN末端から11個の
アミノ酸配列をコードする該酸塩基配列を有し、且つそ
れぞれEcoR I分解物の約0.9kbpの断片、BamH I分解物の
約2.6kbpの断片、及びPst I 分解物の約9.5kbpの断片で
あることを確認した。この操作により調製した組換え体
DNAを用いて、各組換え体プラスミドベクターの制限
酵素地図を調べ、pNLE、pNLB及びpNLPの3種の組換え体
はそれぞれ図1の制限酵素地図を有することが分かっ
た。プラスミドpNLEはEcoR I分解物の約0.9kbpの断片を
含むプラスミド、プラスミドpNLBはBamH I分解物の約2.
6kbpの断片を含むプラスミド、プラスミドpNLPはPst I
分解物の約9.5kbpの断片を含むプラスミドであり、更に
は図1に示す制限酵素地図に従い、プラスミドpNLPに含
まれるPst I 分解物の約9.5kbpの断片を制限酵素Ecor I
及びBamH Iで消化して得られる2種の断片は、それぞれ
プラスミドpNLEに含まれるEcor I分解物の約0.9kbpの断
片及びpNLBに含まれるBamH I分解物の約2.6kbpの断片と
同じであることがハイブリダイゼーションにより分かっ
た。前記操作により、3種の組換え体プラスミドpNLE、
pNLB及びpNLPより得られる組換え体DNAライブラリー
が作製された。
(3) Preparation of recombinant DNA library About 0.9 kbp fragment of the EcoR I degradation product, about 2.6 kbp fragment of BamH I degradation product, and about 9.5 kbp fragment of Pst I degradation product,
That is, the three DNA fragments collected in the above step (2) were treated with restriction enzymes EcoR I, BamH I and Pst I, respectively, and then ligated to a plasmid vector pUC19 treated with Escherichia coli alkaline phosphatase (Takara Shuzo). Built in. As a result of this operation, a recombinant plasmid vector into which the approximately 0.9 kbp fragment of the EcoR I degradation product, the approximately 2.6 kbp fragment of the BamHI degradation product, and the approximately 9.5 kbp fragment of the Pst I degradation product were respectively incorporated is shown in FIG. The three recombinants of pNLE, pNLB and pNLP shown were prepared respectively. These operations and the operation for preparing a DNA library using the recombinant plasmid vector described below are described in the literature (Molecular cloning:
a laboratory manual, 2nd edition. Cold Spring Harb
or, New York (1989)). Escherichia coli E. coli HB101 was transformed with the prepared recombinant plasmid vector, and from the ampicillin-resistant colonies obtained by growing the transformed strain on a plate, only colonies having the recombinant plasmid vector were obtained by colony hybridization. Selected. Next, the DNA contained in the recombinant plasmid vector is extracted from the selected colonies, and Southern hybridization is performed according to the method described in the above step (2) to obtain the target recombinant DNA,
That is, the fungus Rhodococcus rhod described in SEQ ID NO: 3 in the Sequence Listing
ochrous PA-34-derived nitrilase having the acid-base sequence encoding 11 amino acid sequences from the N-terminus, and a fragment of EcoR I degradation product of about 0.9 kbp and a BamH I degradation product of about 2.6 kbp, respectively. , And a Pst I degradation product was confirmed to be a fragment of about 9.5 kbp. Using the recombinant DNA prepared by this operation, the restriction enzyme map of each recombinant plasmid vector was examined. It was confirmed that the three recombinants of pNLE, pNLB and pNLP each had the restriction enzyme map of FIG. Do you get it. Plasmid pNLE is a plasmid containing a fragment of about 0.9 kbp of EcoR I degradation product, and plasmid pNLB is about 2.
The plasmid containing the 6 kbp fragment, plasmid pNLP is Pst I
It is a plasmid containing a fragment of about 9.5 kbp of the degradation product, and further, according to the restriction enzyme map shown in FIG. 1, the fragment of about 9.5 kbp of the Pst I degradation product contained in the plasmid pNLP was digested with the restriction enzyme Ecor I.
The two types of fragments obtained by digestion with BamH I and BamH I are the same as the approximately 0.9 kbp fragment of the Ecor I degradation product contained in the plasmid pNLE and the approximately 2.6 kbp fragment of the BamH I degradation product contained in pNLB, respectively. It was found by hybridization. By the above operation, three recombinant plasmids pNLE,
A recombinant DNA library obtained from pNLB and pNLP was prepared.

【0018】(4)塩基配列の決定 工程(3)で得られた組換え体プラスミド中のDNA断
片より、その核酸塩基配列の一部をディデオキシ法(Pro
c. Natl. Acad. Sci., 74, 5463-5467(1977))により決
定した。前記組換え体プラスミドpNLPより得られるPst
I 分解物の約9.5kbpの断片を制限酵素Hind IIIで切断し
て得られるDNA断片に、配列表配列番号5に示す塩基
配列が存在し、工程(I)で決定したアミノ酸配列から
予測される核酸塩基配列が確認された。即ち、配列表配
列番号5に示す塩基配列中に含まれる配列表配列番号2
に示す核基配列部分が、配列表配列番号1に示すアミノ
酸配列をコードすることが確認され、 Rhodococcus rh
odochrous PA-34 由来のニトリラーゼの遺伝子であるこ
とが分った。
(4) Determination of nucleotide sequence From the DNA fragment in the recombinant plasmid obtained in step (3), a part of the nucleic acid nucleotide sequence was analyzed by the dideoxy method (Prode).
c. Natl. Acad. Sci., 74, 5463-5467 (1977)). Pst obtained from the recombinant plasmid pNLP
The DNA fragment obtained by cleaving an about 9.5 kbp fragment of the I degradation product with the restriction enzyme Hind III has the nucleotide sequence shown in SEQ ID NO: 5 in the Sequence Listing, which is predicted from the amino acid sequence determined in step (I). The nucleic acid base sequence was confirmed. That is, the sequence listing SEQ ID NO: 2 contained in the base sequence shown in the sequence listing SEQ ID NO: 5
It was confirmed that the nucleobase sequence portion shown in SEQ ID NO: 1 encodes the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing, and Rhodococcus rh
It was found to be a gene for nitrilase derived from odochrous PA-34.

【0019】(5)ニトリラーゼ遺伝子の発現 プラスミドpNLP中の断片からニトリラーゼ遺伝子全体を
含むHind III-Pst I断片 (約4.7kbp) をサブクローニン
グし、得られた断片を制限酵素Bal 31で処理後、約2.2k
bpの断片を制限酵素Sma I で処理した発現ベクターpMK2
(特開昭64-51088号公報) に組み込み、プラスミドpNLK
2 と命名した。図6にプラスミドpNLK2の制限酵素地図
とニトリラーゼ遺伝子の所在位置を示した。次いで大腸
菌E.coliHB 101 及びE.coli JM 109 を形質転換し、そ
れぞれからアンピシリン耐性を示すコロニーを取得し
た。取得したコロニーを2xYT培地で30℃で一晩培養後集
菌し、5mM のディチオスライトールを含む0.1M燐酸緩衝
液で2回洗浄後、同じ緩衝液に懸濁した。文献(Appl. M
icrobiol. Biotechnol., 37, 184-190(1992)) 記載の方
法に従い、得られた菌懸濁液1ml に75mMのα−アミノイ
ソカプロニトリルを加え、30℃で1時間反応させて、基
質α−アミノイソカプロニトリルより生成されるL-ロイ
シンの量を計量することで、各コロニーより得た休止菌
体のニトリラーゼ活性を測定し、E.coli HB 101 及びE.
coli JM 109 の形質転換株から1株づつ最も高いニトリ
ラーゼ活性を示すコロニーの各1株づつを選定した。こ
の選別された微生物は、通産省工業技術院生命工学工業
技術研究所にブタペスト条約に基づき、E.coli HB 101
の形質転換株 E. coli HB 101 (pNLK2) はFERM BP-4404
号として、またE. coli JM 109の形質転換株 E. Ccoli
JM 109 (pNLK2)はFERM BP-4405号として寄託されてい
る。
(5) Expression of nitrilase gene A Hind III-Pst I fragment (about 4.7 kbp) containing the entire nitrilase gene was subcloned from the fragment in the plasmid pNLP, and the obtained fragment was treated with restriction enzyme Bal 31 and then 2.2k
Expression vector pMK2 in which the bp fragment was treated with the restriction enzyme Sma I
(JP-A 64-51088), the plasmid pNLK
Named 2. FIG. 6 shows the restriction map of the plasmid pNLK2 and the location of the nitrilase gene. Then, Escherichia coli E. coli HB 101 and E. coli JM 109 were transformed, and colonies showing ampicillin resistance were obtained from each of them. The obtained colonies were cultured in 2xYT medium at 30 ° C overnight, and then the cells were collected, washed twice with 0.1 M phosphate buffer containing 5 mM dithiothreitol, and then suspended in the same buffer. Reference (Appl. M
icrobiol. Biotechnol., 37, 184-190 (1992)), 75 mM α-aminoisocapronitrile was added to 1 ml of the obtained bacterial suspension, and the mixture was reacted at 30 ° C. for 1 hour to give a substrate. By measuring the amount of L-leucine produced from α-aminoisocapronitrile, the nitrilase activity of resting cells obtained from each colony was measured, and E. coli HB 101 and E. coli HB 101 and E.
From the transformed strains of E. coli JM 109, one strain was selected and one colony showing the highest nitrilase activity was selected. Based on the Budapest Treaty, E.coli HB 101
Transformant E. coli HB 101 (pNLK2) is FERM BP-4404
E. Ccoli, a transformant of E. coli JM 109
JM 109 (pNLK2) has been deposited as FERM BP-4405.

【0020】次いで、これらの2種の菌株それぞれをコ
ロニーを100ml のイソプロピル -β-D- チオガラクトピ
ラノシド(ITPG)をtac インデューサーとして加えた2xYT
培地中30℃で一晩培養後集菌し、5mM のディチオスライ
トールを含む0.1M燐酸緩衝液で2回洗浄後、同じ緩衝液
に懸濁した。菌懸濁液をフレンチプレスで処理して粗酵
素液とし、文献(Appl. Microbiol. Biotechnol., 37, 1
84-190(1992)) 記載の方法でα−アミノイソカプロニト
リルを基質として休止菌体のニトリラーゼ活性を測定し
た。結果を表1に示した。表1には参考例としてロドコ
ッカス ロドクロス(Rhodococcus rhodochrous)PA-34の
粗酵素抽出液を用いた結果も示した。表1より、該2種
の形質転換株は、それぞれ Rhodococcus rhodochrous
PA-34 由来のニトリラーゼを休止菌体内に産生してお
り、本来ホスト菌株は有していないニトリラーゼ活性を
示すことが判る。更には、該2種の形質転換株に内在せ
しめた組換え体DNAより、目的とする Rhodococcus
rhodochrous PA-34 由来のニトリラーゼのポリペプチド
が産生されていることが分かる。なお、このポリペプチ
ドの有する酵素活性により生産される、α−アミノニト
リルより対応するα−アミノ酸は、文献(Appl. Microbi
ol. Biotechnol., 37, 184-190(1992)) に記載する Rho
dococcus rhodochrous PA-34 由来のニトリラーゼと同
様に、光学活性体の一つのみが生産されるものである。
即ち、光学純度の高いα−アミノ酸が生産されるもので
ある。
Next, colonies of each of these two strains were added to 100 ml of 2xYT containing isopropyl-β-D-thiogalactopyranoside (ITPG) as a tac inducer.
After culturing in the medium at 30 ° C. overnight, the cells were collected, washed twice with 0.1 M phosphate buffer containing 5 mM dithiothreitol, and then suspended in the same buffer. The bacterial suspension was treated with a French press to obtain a crude enzyme solution, which was then prepared in the literature (Appl. Microbiol. Biotechnol., 37, 1
84-190 (1992)), the nitrilase activity of resting cells was measured using α-aminoisocapronitrile as a substrate. The results are shown in Table 1. Table 1 also shows the results using a crude enzyme extract of Rhodococcus rhodochrous PA-34 as a reference example. From Table 1, it can be seen that the two transformants are Rhodococcus rhodochrous.
It is found that PA-34-derived nitrilase is produced in resting cells and exhibits nitrilase activity that the host strain originally does not have. Furthermore, from the recombinant DNAs incorporated in the two transformants, the target Rhodococcus
It can be seen that a nitrilase polypeptide derived from rhodochrous PA-34 is produced. The α-amino acid corresponding to α-aminonitrile produced by the enzymatic activity of this polypeptide is described in the literature (Appl. Microbi
ol. Biotechnol., 37, described 184-190 (1992)) Rho
Like the nitrilase derived from dococcus rhodochrous PA-34, only one of the optically active substances is produced.
That is, an α-amino acid with high optical purity is produced.

【0021】[0021]

【表1】 E.coli HB 101組換え体及び E.coli JM 109組換え体によるニトリラーゼ生産 菌株 蛋白質 Units 比活性 (mg/l) HB 101(pNLK2) 3266 19.6 0.006 JM 109(pNLK2) 949 7.6 0.008 PA-34 994 242.5 68.9 参考例 1 unitはα−アミノイソカプロニトリルから1分間に1
μmol のロイシンが生産されることを示す。
[Table 1] Nitrilase production by E. coli HB 101 recombinant and E. coli JM 109 recombinant Strain Protein Units Specific activity (mg / l) HB 101 (pNLK2) 3266 19.6 0.006 JM 109 (pNLK2) 949 7.6 0.008 PA-34 994 242.5 68.9 Reference example 1 unit is 1 minute from α-aminoisocapronitrile
It shows that μmol of leucine is produced.

【0022】[0022]

【発明の効果】本発明によりα−アミノニトリルからア
ミノ酸を生産するニトリラーゼ活性を有するポリペプチ
ドをコードするDNA配列、及び該DNA配列を有する
発現ベクターで形質転換された微生物が該ポリペプチド
を生産すること、また生産された該ポリペプチドがα−
アミノニトリルからアミノ酸を製造することが明らかに
された。
INDUSTRIAL APPLICABILITY According to the present invention, a DNA sequence encoding a polypeptide having a nitrilase activity for producing an amino acid from α-aminonitrile, and a microorganism transformed with an expression vector having the DNA sequence produce the polypeptide. And the produced polypeptide is α-
It has been shown to produce amino acids from amino nitriles.

【0023】[0023]

【配列表】[Sequence list]

配列番号:1 配列の長さ:380 配列の型:アミノ酸 トポロシー:直鎖状 配列の種類:ペプチド 配列 1 5 10 15 Met Val Glu Tyr Thr Asn Thr Phe Lys Val Ala Ala Val Gln Ala 20 25 30 Gln Pro Val Trp Phe Asp Ala Ala Lys Thr Val Asp Lys Thr Val 35 40 45 Ser Ile Ile Ala Glu Ala Ala Arg Asn Gly Cys Glu Leu Val Ala 50 55 60 Phe Pro Glu Val Phe Ile Pro Gly Tyr Pro Tyr His Ile Trp Val 65 70 75 Asp Ser Pro Leu Ala Gly Met Ala Lys Phe Ala Val Arg Tyr His 80 85 90 Glu Asn Ser Leu Thr Met Asp Ser Pro His Val Gln Arg Leu Leu 95 100 105 Asp Ala Ala Arg Asp His Asn Ile Ala Val Val Val Gly Ile Ser 110 115 120 Glu Arg Asp Gly Gly Ser Leu Tyr Met Thr Gln Leu Ile Ile Asp 125 130 135 Ala Asp Gly Gln Leu Val Ala Arg Arg Arg Lys Leu Lys Pro Thr 140 145 150 His Val Glu Arg Ser Val Tyr Gly Glu Gly Asn Gly Ser Asp Ile 155 160 165 Ser Val Tyr Asp Met Pro Phe Ala Arg Leu Gly Ala Leu Asn Cys 170 175 180 Trp Glu His Phe Gln Thr Leu Thr Lys Tyr Ala Met Tyr Ser Met 185 190 195 His Glu Gln Val His Val Ala Ser Trp Pro Gly Met Ser Leu Tyr 200 205 210 Gln Pro Glu Val Pro Ala Phe Gly Val Asp Ala Gln Leu Thr Ala 215 220 225 Thr Arg Met Tyr Ala Leu Glu Gly Gln Thr Phe Val Val Cys Thr 230 235 240 Thr Gln Val Val Thr Pro Glu Ala His Glu Phe Phe Cys Glu Asn 245 250 255 Glu Glu Gln Arg Lys Leu Ile Gly Arg Gly Gly Gly Phe Ala Arg 260 265 270 Ile Ile Gly Pro Asp Gly Arg Asp Leu Ala Thr Pro Leu Ala Glu 275 280 285 Asp Glu Glu Gly Ile Leu Tyr Ala Asp Ile Asp Leu Ser Ala Ile 290 295 300 Thr Leu Ala Lys Gln Ala Ala Asp Pro Val Gly His Tyr Ser Arg 305 310 315 Pro Asp Val Leu Ser Leu Asn Phe Asn Gln Arg Arg Thr Thr Pro 320 325 330 Val Asn Thr Pro Leu Ser Thr Ile His Ala Thr His Thr Phe Val 335 340 345 Pro Gln Phe Gly Ala Leu Asp Gly Val Arg Glu Leu Asn Gly Ala 350 355 360 Asp Glu Gln Arg Ala Leu Pro Ser Thr His Ser Asp Glu Thr Asp 365 370 375 Arg Ala Thr Ala Pro Ser Asp Ser Gly Ala Pro Val Ala Pro Pro 380 Lys Arg His Gly Val  SEQ ID NO: 1 Sequence Length: 380 Sequence Type: Amino Acid Topology: Linear Sequence Type: Peptide Sequence 1 5 10 15 Met Val Glu Tyr Thr Asn Thr Phe Lys Val Ala Ala Val Gln Ala 20 25 30 Gln Pro Val Trp Phe Asp Ala Ala Lys Thr Val Asp Lys Thr Val 35 40 45 Ser Ile Ile Ala Glu Ala Ala Arg Asn Gly Cys Glu Leu Val Ala 50 55 60 Phe Pro Glu Val Phe Ile Pro Gly Tyr Pro Tyr His Ile Trp Val 65 70 75 Asp Ser Pro Leu Ala Gly Met Ala Lys Phe Ala Val Arg Tyr His 80 85 90 Glu Asn Ser Leu Thr Met Asp Ser Pro His Val Gln Arg Leu Leu 95 100 105 Asp Ala Ala Arg Asp His Asn Ile Ala Val Val Val Gly Ile Ser 110 115 120 Glu Arg Asp Gly Gly Ser Leu Tyr Met Thr Gln Leu Ile Ile Asp 125 130 135 Ala Asp Gly Gln Leu Val Ala Arg Arg Arg Lys Leu Lys Pro Thr 140 145 150 His Val Glu Arg Ser Val Tyr Gly Glu Gly Asn Gly Ser Asp Ile 155 160 165 Ser Val Tyr Asp Met Pro Phe Ala Arg Leu Gly Ala Leu Asn Cys 170 175 180 Trp Glu His Phe Gln Thr Leu Thr Lys Tyr Ala Met Tyr Ser Met 185 190 195 His Glu Gln Val His Val Ala Ser Trp Pro Gly Met Ser Leu Tyr 200 205 210 Gln Pro Glu Val Pro Ala Phe Gly Val Asp Ala Gln Leu Thr Ala 215 220 225 Thr Arg Met Tyr Ala Leu Glu Gly Gln Thr Phe Val Val Cys Thr 230 235 240 Thr Gln Val Val Thr Pro Glu Ala His Glu Phe Phe Cys Glu Asn 245 250 255 Glu Glu Gln Arg Lys Leu Ile Gly Arg Gly Gly Gly Phe Ala Arg 260 265 270 Ile Ile Gly Pro Asp Gly Arg Asp Leu Ala Thr Pro Leu Ala Glu 275 280 285 Asp Glu Glu Gly Ile Leu Tyr Ala Asp Ile Asp Leu Ser Ala Ile 290 295 300 Thr Leu Ala Lys Gln Ala Ala Asp Pro Val Gly His Tyr Ser Arg 305 310 315 Pro Asp Val Leu Ser Leu Asn Phe Asn Gln Arg Arg Thr Thr Pro 320 325 330 Val Asn Thr Pro Leu Ser Thr Ile His Ala Thr His Thr Phe Val 335 340 345 Pro Gln Phe Gly Ala Leu Asp Gly Val Arg Glu Leu Asn Gly Ala 350 355 360 Asp Glu Gln Arg Ala Leu Pro Ser Thr His Ser Asp Glu Thr Asp 365 370 375 Arg Ala Thr Ala Pro Ser Asp Ser Gly Ala Pro Val Ala Pro Pro 380 Lys Arg His Gly Val

【0024】配列番号:2 配列の長さ:1130 配列の型:核酸 鎖の数:二本鎖 トポロシー:直鎖状 配列の種類:他の核酸 配列 ATG GTC GAA TAC ACA AAC ACA TTC AAA GTT GCT GCG GTG CAG GCA 45 CAG CCT GTG TGG TTC GAC GCG GCC AAA ACG GTC GAC AAG ACC GTG 90 TCC ATC ATC GCG GAA GCA GCC CGG AAC GGG TGC GAG CTC GTT GCG 135 TTT CCC GAG GTA TTC ATC CCG GGG TAC CCG TAC CAC ATC TGG GTC 180 GAC AGC CCG CTC GCC GGA ATG GCG AAG TTC GCC GTG CGC TAC CAC 225 GAG AAT TCC CTG ACG ATG GAC AGC CCG CAC GTA CAG CGG TTG CTC 270 GAT GCC GCC CGC GAC CAC AAC ATC GCC GTA GTG GTG GGA ATC AGC 315 GAG CGG GAT GGC GGC AGC TTG TAC ATG ACC CAG CTC ATC ATC GAC 360 GCC GAT GGG CAA CTG GTC GCC CGA CGC CGC AAG CTC AAG CCC ACC 405 CAC GTC GAG CGT TCG GTA TAC GGA GAA GGA AAC GGC TCG GAT ATC 450 TCC GTG TAC GAC ATG CCT TTC GCA CGG CTT GGC GCG CTC AAC TGC 495 TGG GAG CAT TTC CAG ACG CTC ACC AAG TAC GCA ATG TAC TCG ATG 540 CAC GAG CAG GTG CAC GTC GCG AGC TGG CCT GGC ATG TCG CTG TAC 585 CAG CCG GAG GTC CCC GCA TTC GGT GTC GAT GCC CAG CTC ACG GCC 630 ACG CGT ATG TAC GCA CTC GAG GGA CAA ACC TTC GTG GTC TGC ACC 675 ACC CAG GTG GTC ACA CCG GAG GCC CAC GAG TTC TTC TGC GAG AAC 720 GAG GAA CAG CGA AAG TTG ATC GGC CGA GGC GGA GGT TTC GCG CGC 765 ATC ATC GGG CCC GAC GGC CGC GAT CTC GCA ACT CCT CTC GCC GAA 810 GAT GAG GAG GGG ATC CTC TAC GCC GAC ATC GAT CTG TCT GCG ATC 855 ACC TTG GCG AAG CAG GCC GCT GAC CCC GTG GGC CAC TAC TCA CGG 900 CCG GAT GTG CTG TCG CTG AAC TTC AAC CAG CGC CGC ACC ACG CCC 945 GTC AAC ACC CCA CTT TCC ACC ATC CAT GCC ACG CAC ACG TTC GTG 990 CCG CAG TTC GGG GCA CTC GAC GGC GTC CGT GAG CTC AAC GGA GCG 1035 GAC GAA CAG CGC GCA TTG CCC TCC ACA CAT TCC GAC GAG ACG GAC 1080 CGG GCG ACA GCA CCC TCT GAC TCG GGC GCA CCC GTG GCG CCT CCG 1125 AAG CGC CAC GGT GTG SEQ ID NO: 2 Sequence length: 1130 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Sequence ATG GTC GAA TAC ACA AAC ACA TTC AAA GTT GCT GCG GTG CAG GCA 45 CAG CCT GTG TGG TTC GAC GCG GCC AAA ACG GTC GAC AAG ACC GTG 90 TCC ATC ATC GCG GAA GCA GCC CGG AAC GGG TGC GAG CTC GTT GCG 135 TTT CCC GAG GTA TTC ATC CCG GGG TAC CCG TAC CAC ATC TGG GTC 180 GAC AGC CCG CTC GCC GGA ATG GCG AAG TTC GCC GTG CGC TAC CAC 225 GAG AAT TCC CTG ACG ATG GAC AGC CCG CAC GTA CAG CGG TTG CTC 270 GAT GCC GCC CGC GAC CAC AAC ATC GCC GTA GTG GTG GGA ATC AGC GAG CGG GAT GGC GGC AGC TTG TAC ATG ACC CAG CTC ATC ATC GAC 360 GCC GAT GGG CAA CTG GTC GCC CGA CGC CGC AAG CTC AAG CCC ACC 405 CAC GTC GAG CGT TCG GTA TAC GGA GAA GGA AAC GGC TCG GAT ATC 450 TCC GTC TAC GAC ATG CCT TTC GCA CGG CTT GGC GCG CTC AAC TGC 495 TGG GAG CAT TTC CAG ACG CTC ACC AAG TAC GCA ATG TAC TCG ATG 540 CAC GAG CAG GTG CAC GTC GCG AGC TGG CCT GGC ATG TCG CTG TAC 585 CAG CCG GAG GTC CCC GCA TTC GGT GTC GAT GCC CAG CTC ACG GCC 630 ACG CGT ATG TAC GCA CTC GAG GGA CAA ACC TTC GTG GTC TGC ACC 675 ACC CAG GTG GTC ACA CCG GAG GCC CAC GAG TTC TTC TGC GAG AAC 720 GAG CAG CGA AAG TTG ATC GGC CGA GGC GGA GGT TTC GCG CGC 765 ATC ATC GGG CCC GAC GGC CGC GAT CTC GCA ACT CCT CTC GCC GAA 810 GAT GAG GAG GGG ATC CTC TAC GCC GAC ATC GAT CTG TCT GCG ATC 855 AACC GTG CAG GCC GCT GAC CCC GTG GGC CAC TAC TCA CGG 900 CCG GAT GTG CTG TCG CTG AAC TTC AAC CAG CGC CGC ACC ACG CCC 945 GTC AAC ACC CCA CTT TCC ACC ATC CAT GCC ACG CAC ACG TTC GTG 990 CCG CAG TTC GGG GCA GAC GGC GTC CGT GAG CTC AAC GGA GCG 1035 GAC GAA CAG CGC GCA TTG CCC TCC ACA CAT TCC GAC GAG ACG GAC 1080 CGG GCG ACA GCA CCC TCT GAC TCG GGC GCA CCC GTG GCG CCT CCG 1125 AAG CGC CAC GGT GTG

【0025】配列番号:3 配列の長さ:11 配列の型:アミノ酸 トポロシー:直鎖状 配列の種類:ペプチド配列 Met Val Glu Tyr Thr Asn Thr Phe Lys Val Ala 1 5 10SEQ ID NO: 3 Sequence length: 11 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence Met Val Glu Tyr Thr Asn Thr Phe Lys Val Ala 1 5 10

【0026】配列番号:4 配列の長さ:32 配列の型:核酸 鎖の数:一本鎖 トポロシー:直鎖状 配列の種類:他の核酸 合成DNA SEQ ID NO: 4 Sequence length: 32 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acids Synthetic DNA

【0027】配列番号:5 配列の長さ:1341 配列の型:核酸 鎖の数:二本鎖 トポロシー:直鎖状 配列の種類:Senomic DNA 起源 生物名:ロドコッカス ロドクロス(Rhodococcus rhod
ochrous) 株 名:PA-34 配列 CAC GGG TGG CGC AGA ATG CCA GGA CCC GTG TCA TTC CAC GTC AAT 45 TCA CGC GCC TTT TCA CCT CGT ACT GTC CTG CCA AAC ACA AGC AAC 90 GGA GGT ACG GAC ATG GTC GAA TAC ACA AAC ACA TTC AAA GTT GCT 135 Met Val Glu Tyr Thr Asn Thr Phe Lys Val Ala GCG GTG CAG GCA CAG CCT GTG TGG TTC GAC GCG GCC AAA ACG GTC 180 Ala Val Gln Ala Gln Pro Val Trp Phe Asp Ala Ala Lys Thr Val GAC AAG ACC GTG TCC ATC ATC GCG GAA GCA GCC CGG AAC GGG TGC 225 Asp Lys Thr Val Ser Ile Ile Ala Glu Ala Ala Arg Asn Gly Cys GAG CTC GTT GCG TTT CCC GAG GTA TTC ATC CCG GGG TAC CCG TAC 270 Glu Leu Val Ala Phe Pro Glu Val Phe Ile Pro Gly Tyr Pro Tyr CAC ATC TGG GTC GAC AGC CCG CTC GCC GGA ATG GCG AAG TTC GCC 315 His Ile Trp Val Asp Ser Pro Leu Ala Gly Met Ala Lys Phe Ala GTG CGC TAC CAC GAG AAT TCC CTG ACG ATG GAC AGC CCG CAC GTA 360 Val Arg Tyr His Glu Asn Ser Leu Thr Met Asp Ser Pro His Val CAG CGG TTG CTC GAT GCC GCC CGC GAC CAC AAC ATC GCC GTA GTG 405 Gln Arg Leu Leu Asp Ala Ala Arg Asp His Asn Ile Ala Val Val GTG GGA ATC AGC GAG CGG GAT GGC GGC AGC TTG TAC ATG ACC CAG 450 Val Gly Ile Ser Glu Arg Asp Gly Gly Ser Leu Tyr Met Thr Gln CTC ATC ATC GAC GCC GAT GGG CAA CTG GTC GCC CGA CGC CGC AAG 495 Leu Ile Ile Asp Ala Asp Gly Gln Leu Val Ala Arg Arg Arg Lys CTC AAG CCC ACC CAC GTC GAG CGT TCG GTA TAC GGA GAA GGA AAC 540 Leu Lys Pro Thr His Val Glu Arg Ser Val Tyr Gly Glu Gly Asn GGC TCG GAT ATC TCC GTG TAC GAC ATG CCT TTC GCA CGG CTT GGC 585 Gly Ser Asp Ile Ser Val Tyr Asp Met Pro Phe Ala Arg Leu Gly GCG CTC AAC TGC TGG GAG CAT TTC CAG ACG CTC ACC AAG TAC GCA 630 Ala Leu Asn Cys Trp Glu His Phe Gln Thr Leu Thr Lys Tyr Ala ATG TAC TCG ATG CAC GAG CAG GTG CAC GTC GCG AGC TGG CCT GGC 675 Met Tyr Ser Met His Glu Gln Val His Val Ala Ser Trp Pro Gly ATG TCG CTG TAC CAG CCG GAG GTC CCC GCA TTC GGT GTC GAT GCC 720 Met Ser Leu Tyr Gln Pro Glu Val Pro Ala Phe Gly Val Asp Ala CAG CTC ACG GCC ACG CGT ATG TAC GCA CTC GAG GGA CAA ACC TTC 765 Gln Leu Thr Ala Thr Arg Met Tyr Ala Leu Glu Gly Gln Thr Phe GTG GTC TGC ACC ACC CAG GTG GTC ACA CCG GAG GCC CAC GAG TTC 810 Val Val Cys Thr Thr Gln Val Val Thr Pro Glu Ala His Glu Phe TTC TGC GAG AAC GAG GAA CAG CGA AAG TTG ATC GGC CGA GGC GGA 855 Phe Cys Glu Asn Glu Glu Gln Arg Lys Leu Ile Gly Arg Gly Gly GGT TTC GCG CGC ATC ATC GGG CCC GAC GGC CGC GAT CTC GCA ACT 900 Gly Phe Ala Arg Ile Ile Gly Pro Asp Gly Arg Asp Leu Ala Thr CCT CTC GCC GAA GAT GAG GAG GGG ATC CTC TAC GCC GAC ATC GAT 945 Pro Leu Ala Glu Asp Glu Glu Gly Ile Leu Tyr Ala Asp Ile Asp CTG TCT GCG ATC ACC TTG GCG AAG CAG GCC GCT GAC CCC GTG GGC 990 Leu Ser Ala Ile Thr Leu Ala Lys Gln Ala Ala Asp Pro Val Gly CAC TAC TCA CGG CCG GAT GTG CTG TCG CTG AAC TTC AAC CAG CGC 1035 His Tyr Ser Arg Pro Asp Val Leu Ser Leu Asn Phe Asn Gln Arg CGC ACC ACG CCC GTC AAC ACC CCA CTT TCC ACC ATC CAT GCC ACG 1080 Arg Thr Thr Pro Val Asn Thr Pro Leu Ser Thr Ile His Ala Thr CAC ACG TTC GTG CCG CAG TTC GGG GCA CTC GAC GGC GTC CGT GAG 1125 His Thr Phe Val Pro Gln Phe Gly Ala Leu Asp Gly Val Arg Glu CTC AAC GGA GCG GAC GAA CAG CGC GCA TTG CCC TCC ACA CAT TCC 1170 Leu Asn Gly Ala Asp Glu Gln Arg Ala Leu Pro Ser Thr His Ser GAC GAG ACG GAC CGG GCG ACA GCA CCC TCT GAC TCG GGC GCA CCC 1215 Asp Glu Thr Asp Arg Ala Thr Ala Pro Ser Asp Ser Gly Ala Pro GTG GCG CCT CCG AAG CGC CAC GGT GTG TGA AGG GGC GAG ACA GGG 1260 Val Ala Pro Pro Lys Arg His Gly Val * GAA TCG GAG GAT CAC CGA GTA CAC CAT CGT CGA TCG CAG CGA GTA 1305 GCC CGC CCG TAC CCC GAT AGG TCC ACC CCA CGT ATC
SEQ ID NO: 5 Sequence length: 1341 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Senomic DNA Origin organism name: Rhodococcus rhod
ochrous) strain name: PA-34 sequence CAC GGG TGG CGC AGA ATG CCA GGA CCC GTG TCA TTC CAC GTC AAT 45 TCA CGC GCC TTT TCA CCT CGT ACT GTC CTG CCA AAC ACA AGC AAC 90 GGA GGT ACG GAC ATG GTC GAA TAC ACA AAC ACA TTC AAA GTT GCT 135 Met Val Glu Tyr Thr Asn Thr Phe Lys Val Ala GCG GTG CAG GCA CAG CCT GTG TGG TTC GAC GCG GCC AAA ACG GTC 180 Ala Val Gln Ala Gln Pro Val Trp Phe Asp Ala Ala Lys Thr Val GAC AAG ACC GTG TCC ATC ATC GCG GAA GCA GCC CGG AAC GGG TGC 225 Asp Lys Thr Val Ser Ile Ile Ala Glu Ala Ala Arg Asn Gly Cys GAG CTC GTT GCG TTT CCC GAG GTA TTC ATC CCG GGG TAC CCG TAC 270 Glu Leu Val Ala Phe Pro Glu Val Phe Ile Pro Gly Tyr Pro Tyr CAC ATC TGG GTC GAC AGC CCG CTC GCC GGA ATG GCG AAG TTC GCC 315 His Ile Trp Val Asp Ser Pro Leu Ala Gly Met Ala Lys Phe Ala GTG CGC TAC CAC GAG AAT TCC CTG ACG ATG GAC AGC CCG CAC GTA 360 Val Arg Tyr His Glu Asn Ser Leu Thr Met Asp Ser Pro His Val CAG CGG TTG CTC GAT GCC GCC CGC GAC CAC AAC ATC GCC GTA GTG 405 Gln Arg Leu Leu Asp Ala Ala Arg Asp His Asn Ile Ala Val Val GTG GGA ATC AGC GAG CGG GAT GGC GGC AGC TTG TAC ATG ACC CAG 450 Val Gly Ile Ser Glu Arg Asp Gly Gly Ser Leu Tyr Met Thr Gln CTC ATC ATC GAC GCC GAT GGG CAA CTG GTC GCC CGA CGC CGC AAG 495 Leu Ile Ile Asp Ala Asp Gly Gln Leu Val Ala Arg Arg Arg Lys CTC AAG CCC ACC CAC GTC GAG CGT TCG GTA TAC GGA GAA GGA AAC 540 Leu Lys Pro Thr His Val Glu Arg Ser Val Tyr Gly Glu Gly Asn GGC TCG GAT ATC TCC GTG TAC GAC ATG CCT TTC GCA CGG CTT GGC 585 Gly Ser Asp Ile Ser Val Tyr Asp Met Pro Phe Ala Arg Leu Gly GCG CTC AAC TGC TGG GAG CAT TTC CAG ACG CTC ACC AAG TAC GCA 630 Ala Leu Asn Cys Trp Glu His Phe Gln Thr Leu Thr Lys Tyr Ala ATG TAC TCG ATG CAC GAG CAG GTG CAC GTC GCG AGC TGG CCT GGC 675 Met Tyr Ser Met His Glu Gln Val His Val Ala Ser Trp Pro Gly ATG TCG CTG TAC CAG CCG GAG GTC CCC GCA TTC GGT GTC GAT GCC 720 Met Ser Leu Tyr Gln Pro Glu Val Pro Ala Phe Gly Val Asp Ala CAG CTC ACG GCC ACG CGT ATG TAC GCA CTC GAG GGA CAA ACC TTC 765 Gln Leu Thr Ala Thr Arg Met Tyr Ala Leu Glu Gly Gln Thr Phe GTG GTC TGC ACC ACC CAG GTG GTC ACA CCG GAG GCC CAC GAG TTC 810 Val Val Cys Thr Thr Gln Val Val Thr Pro Glu Ala His Glu Phe TTC TGC GAG AAC GAG GAA CAG CGA AAG TTG ATC GGC CGA GGC GGA 855 Phe Cys Glu Asn Glu Glu Gln Arg Lys Leu Ile Gly Arg Gly Gly GGT TTC GCG CGC ATC ATC GGG CCC GAC GGC CGC GAT CTC GCA ACT 900 Gly Phe Ala Arg Ile Ile Gly Pro Asp Gly Arg Asp Leu Ala Thr CCT CTC GCC GAA GAT GAG GAG GGG ATC CTC TAC GCC GAC ATC GAT 945 Pro Leu Ala Glu Asp Glu Glu Gly Ile Leu Tyr Ala Asp Ile Asp CTG TCT GCG ATC ACC TTG GCG AAG CAG GCC GCT GAC CCC GTG GGC 990 Leu Ser Ala Ile Thr Leu Ala Lys Gln Ala Ala Asp Pro Val Gly CAC TAC TCA CGG CCG GAT GTG CTG TCG CTG AAC TTC AAC CAG CGC 1035 His Tyr Ser Arg Pro Asp Val Leu Ser Leu Asn Phe Asn Gln Arg CGC ACC ACG CCC GTC AAC ACC CCA CTT TCC ACC ATC CAT GCC ACG 1080 Arg Thr Thr Pro Val Asn Thr Pro Leu Ser Thr Ile His Ala Thr CAC ACG TTC GTG CCG CAG TTC GGG GCA CTC GAC GGC GTC CGT GAG 1125 His Thr Phe Val Pro Gln Phe Gly Ala Leu Asp Gly Val Arg Glu CTC AAC GGA GCG GAC GAA CAG CGC GCA TTG CCC TCC ACA CAT TCC 1170 Leu Asn Gly Ala Asp Glu Gln Arg Ala Leu Pro Ser Thr His Ser GAC GAG ACG GAC CGG GCG ACA GCA CCC TCT GAC TCG GGC GCA CCC 1215 Asp Glu Thr Asp Arg Ala Thr Ala Pro Ser Asp Ser Gly Ala Pro GTG GCG CCT CCG AAG CGC CAC GGT GTG TGA AGG GGC GAG ACA GGG 1260 Val Ala Pro Pro Lys Arg His Gly Val * GAA TCG GAG GAT CAC CGA GTA CAC CAT CGT CGA TCG CAG CGA GTA 1305 GCC CGC CCG TAC CCC GAT AGG TCC ACC CCA CGT ATC

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例によって得られた3種類の組換え体プラ
スミドpNLE、pNLB、pNLPの制限酵素地図を示す。
FIG. 1 shows restriction enzyme maps of three recombinant plasmids pNLE, pNLB, and pNLP obtained in the examples.

【図2】実施例で得られた発現プラスミドpNLK2 の制限
酵素地図を示す。
FIG. 2 shows a restriction enzyme map of the expression plasmid pNLK2 obtained in the example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 13/04 2121−4B //(C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12P 13/04 C12R 1:19) C12R 1:01) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C12P 13/04 2121-4B // (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12P 13/04 C12R 1:19) C12R 1:01)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ニトリラーゼ活性を有する配列表配列番
号1のアミノ酸配列で表されるポリペプチドをコードす
る遺伝子DNA。
1. A gene DNA encoding a polypeptide represented by the amino acid sequence of SEQ ID NO: 1 in the sequence listing having nitrilase activity.
【請求項2】 ニトリラーゼをコードするDNA配列が
配列表配列番号2のDNA配列である請求項1記載の遺
伝子DNA。
2. The gene DNA according to claim 1, wherein the DNA sequence encoding nitrilase is the DNA sequence of SEQ ID NO: 2 in the Sequence Listing.
【請求項3】 請求項1または2記載の遺伝子DNAを
ベクターに組み込んだ組換え体DNA。
3. A recombinant DNA in which the gene DNA according to claim 1 or 2 is incorporated into a vector.
【請求項4】 請求項3記載の組換え体DNAで形質転
換された形質転換体。
4. A transformant transformed with the recombinant DNA according to claim 3.
【請求項5】 形質転換体がFERM BP-4404またはFERM B
P-4405である請求項4記載の形質転換体。
5. The transformant is FERM BP-4404 or FERM B.
The transformant according to claim 4, which is P-4405.
【請求項6】 請求項4または5記載の形質転換体を培
養し、生成する菌体あるいはその処理物をニトリル類に
作用させ対応するカルボン酸類を製造することを特徴と
するカルボン酸類の製造方法。
6. A method for producing a carboxylic acid, which comprises culturing the transformant according to claim 4 or 5 and allowing the resulting bacterial cell or a treated product thereof to act on nitriles to produce a corresponding carboxylic acid. .
【請求項7】 ニトリルがα−アミノニトリルであり、
カルボン酸がα−アミノ酸である請求項6記載のカルボ
ン酸類の製造方法。
7. The nitrile is α-aminonitrile,
The method for producing a carboxylic acid according to claim 6, wherein the carboxylic acid is an α-amino acid.
JP5273078A 1993-10-05 1993-10-05 Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same Pending JPH0799980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5273078A JPH0799980A (en) 1993-10-05 1993-10-05 Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273078A JPH0799980A (en) 1993-10-05 1993-10-05 Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same

Publications (1)

Publication Number Publication Date
JPH0799980A true JPH0799980A (en) 1995-04-18

Family

ID=17522841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273078A Pending JPH0799980A (en) 1993-10-05 1993-10-05 Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same

Country Status (1)

Country Link
JP (1) JPH0799980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030994A1 (en) * 1999-10-26 2001-05-03 Showa Denko K.K. Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
WO2001064857A1 (en) * 2000-03-03 2001-09-07 Basf Aktiengesellschaft Nitrilase from rhodococcus rhodochrous ncimb 11216
WO2003014355A1 (en) * 2001-08-03 2003-02-20 Nippon Soda Co., Ltd. Nitrilase gene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030994A1 (en) * 1999-10-26 2001-05-03 Showa Denko K.K. Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
US7118898B1 (en) 1999-10-26 2006-10-10 Showa Denko K.K. Rhodococcus bacterium, nitrilase gene, nitrylhydratase gene and amidase gene from Rhondococcus bacterium, and process for producing carboxylic acids by using them
WO2001064857A1 (en) * 2000-03-03 2001-09-07 Basf Aktiengesellschaft Nitrilase from rhodococcus rhodochrous ncimb 11216
WO2003014355A1 (en) * 2001-08-03 2003-02-20 Nippon Soda Co., Ltd. Nitrilase gene

Similar Documents

Publication Publication Date Title
US11535839B2 (en) Encoding genes of nitrilase mutants and application thereof
JP5080240B2 (en) Nitrile hydratase from Rhodococcus
Hanson et al. Preparation of (R)‐amines from racemic amines with an (S)‐amine transaminase from Bacillus megaterium
US7943359B2 (en) Polynucleotides which code for cyanide-tolerant nitrile hydratase and compositions thereof
EP0445646B1 (en) DNA fragment encoding a polypeptide having nitrile hydratase activity, a transformant containing the DNA fragment and a process for the production of amides using the transformant
RU2736086C1 (en) Mutant nitrile hydratase, nucleic acid which encodes said mutant nitrile hydratase, expression vector and transformant containing said nucleic acid, method of producing said mutant nitrile hydratase and method of producing amide compound
KR100540991B1 (en) Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
CA2233868A1 (en) Nucleic acid fragments encoding stereospecific nitrile hydratase and amidase enzymes and recombinant microorganisms expressing those enzymes useful for the production of chiral amides and acides
JP2002325587A (en) Nitrile hydratase and method for producing amide
JP3401271B2 (en) DNA encoding the enzyme
JP2840253B2 (en) Genetic DNA encoding a polypeptide having nitrile hydratase activity, and method for producing amides from nitriles using transformants containing the same
JP3073037B2 (en) Recombinant plasmid having halohydrin epoxidase gene and microorganism transformed with the plasmid
AU727092B2 (en) Protein participating in activation of nitrile hydratase and gene encoding same
AU734397B2 (en) Method for cleaving chimeric protein using processing enzyme
JPH0799980A (en) Gene dna encoding polypeptide having nitrilase activity and production of carboxylic acid from nitriles by transformant containing the same
EP0444639B1 (en) A gene encoding a polypeptide having nitrile hydratase activity, a transformant containing the gene and a process for the production of amides using the transformant
JPH1189575A (en) Production of amide compound by using microorganism
JPH08504599A (en) Enzymes having nitrile hydratase activity, genetic tools and host microorganisms for their production, and hydrolysis processes using said enzymes
WO2004108942A1 (en) Novel nitrile hydratase
JP2001292772A (en) Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus
US5753472A (en) DNA fragment encoding a polypeptide having nitrile hydratase activity, a transformant containing the gene and a process for the production of amides using the transformant
CN86107809A (en) New recombination and application thereof
JP2001069978A (en) Nitrile hydratase gene and amidase gene which are derived from phodococcus
KR101945925B1 (en) Protein for isobutylene synthesis and isobutylene preparation method using the same
KR20160042254A (en) Process for preparing lipase derived from Candida antarctica using Pichia pastoris