JP2001069978A - Nitrile hydratase gene and amidase gene which are derived from phodococcus - Google Patents

Nitrile hydratase gene and amidase gene which are derived from phodococcus

Info

Publication number
JP2001069978A
JP2001069978A JP24816299A JP24816299A JP2001069978A JP 2001069978 A JP2001069978 A JP 2001069978A JP 24816299 A JP24816299 A JP 24816299A JP 24816299 A JP24816299 A JP 24816299A JP 2001069978 A JP2001069978 A JP 2001069978A
Authority
JP
Japan
Prior art keywords
ala
val
xaa
gly
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24816299A
Other languages
Japanese (ja)
Inventor
Harumi Kamaike
晴美 蒲池
Yasushi Aoki
裕史 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24816299A priority Critical patent/JP2001069978A/en
Publication of JP2001069978A publication Critical patent/JP2001069978A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new nitrile hydratase gene which is derived from rhodococcus, contains a DNA sequence coding for a specific amino acid sequence, and is useful for producing the enzyme having position selectivity to an aromatic polynitrile, etc. SOLUTION: This is a new nitrile hydratase gene which is derived from rhodococcus, contains a DNA sequence coding for the amino acid sequence shown by the formula, or a DNA sequence coding for an amino acid sequence modified by deleting, substituting, or adding one amino acid or more from, in, or to the amino acid sequence, and is useful for producing the enzyme which has especially excellent position selectivity to an aromatic polynitrile and allows producing an amide compound and carboxylic acid compound useful as raw materials for medicines and agrochemicals from a nitrile compound, etc. This gene is obtained by preparing a library from chromosomal DNA of Rhodococcus rhodochrous ATCC 39484, followed by carrying out PCR using it as a template and using primers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は芳香族ポリニトリル
化合物のニトリル基に対し、特に優れた位置選択性を示
すロドコッカス属細菌由来のニトリル分解酵素系である
ニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子の
DNA配列に関する。
The present invention relates to a DNA sequence of a nitrile hydratase gene and an amidase gene, which are nitrile-degrading enzyme systems derived from a genus Rhodococcus exhibiting particularly excellent regioselectivity for a nitrile group of an aromatic polynitrile compound. .

【0002】[0002]

【従来の技術】ニトリルヒドラターゼおよびアミダーゼ
はそれぞれニトリル化合物をアミド化合物に、アミド化
合物をカルボン酸化合物に変換する反応を触媒する酵素
である。ニトリルヒドラターゼおよびアミダーゼを用い
ることによって、ニトリル化合物から医農薬原料等に有
用なアミド化合物またはカルボン酸化合物を得ることが
できる。
2. Description of the Related Art Nitrile hydratase and amidase are enzymes that catalyze reactions for converting a nitrile compound into an amide compound and an amide compound into a carboxylic acid compound, respectively. By using nitrile hydratase and amidase, an amide compound or a carboxylic acid compound useful as a raw material for medical and agricultural chemicals can be obtained from the nitrile compound.

【0003】ニトリル化合物をそれぞれ相当するアミド
化合物またはカルボン酸化合物に変換する方法が生体触
媒の利用によって開発され、このような触媒能をもつ微
生物が数多く報告されている(特公昭56−17918
号公報、特公昭59−37951号公報、特公昭61−
162193号公報、特公昭61−21519号公報、
特公昭64−86889号公報、特公平4−19718
9号公報、特開平2−470号公報、EP044464
0号など)。
A method for converting a nitrile compound into a corresponding amide compound or carboxylic acid compound has been developed by utilizing a biocatalyst, and many microorganisms having such a catalytic ability have been reported (JP-B-56-19918).
JP, JP-B-59-37951, JP-B-61-
No. 162193, Japanese Patent Publication No. 61-21519,
JP-B 64-86889, JP-B 4-19718
No. 9, JP-A-2-470, EP0444464
No. 0).

【0004】また、これらの微生物からはニトリルヒド
ラターゼ、アミダーゼあるいはニトリラーゼが精製さ
れ、さらにはこれらの酵素の遺伝子工学的利用を図るた
め、その遺伝子が単離され一次構造が決定されている。
[0004] Further, nitrile hydratase, amidase or nitrilase is purified from these microorganisms, and their genes have been isolated and their primary structures have been determined in order to utilize these enzymes for genetic engineering.

【0005】ニトリルヒドラターゼ遺伝子については、
例えばロドコッカス属細菌由来の遺伝子が米国特許番号
第2840253号やEP0445646号(特開平4
−211379号公報)において、シュードモナス属細
菌由来の遺伝子が特開平3−251184号公報におい
て、リゾビウム属細菌由来の遺伝子が特開平6−252
96号公報や特開平6−303971号公報において、
またアミダーゼ遺伝子については、例えばブレビバクテ
リウム属細菌とロドコッカス属細菌由来の遺伝子がEP
0433117号において開示されている。
[0005] Regarding the nitrile hydratase gene,
For example, a gene derived from a bacterium belonging to the genus Rhodococcus is disclosed in U.S. Pat. No. 2,840,253 or EP04445646 (Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 3-251184) discloses a gene derived from Pseudomonas genus bacteria and Japanese Patent Application Laid-Open No. Hei 6-252 discloses a gene derived from Rhizobium bacteria.
No. 96 and JP-A-6-302971,
For the amidase gene, for example, genes derived from Brevibacterium sp. And Rhodococcus sp.
No. 0433117.

【0006】また、ロドコッカス・エリスロポリス由来
の遺伝子がEur.J.Biochem. 217
(1),327−336(1993)において、シュードモ
ナス属細菌由来の遺伝子がFEBS Lett. 36
7,275−279(1995)において報告されてい
る。さらにロドコッカス属細菌由来のニトリルヒドラタ
ーゼ遺伝子およびアミダーゼ両遺伝子を含む組換え体プ
ラスミドに関する発明が特開平5−68566号公報に
おいて開示されている。
A gene derived from Rhodococcus erythropolis is Eur. J. Biochem. 217
(1), 327-336 (1993), a gene derived from a bacterium belonging to the genus Pseudomonas is FEBS Lett. 36
7, 275-279 (1995). Further, an invention relating to a recombinant plasmid containing both nitrile hydratase gene and amidase gene derived from a Rhodococcus bacterium is disclosed in JP-A-5-68566.

【0007】近年、このような微生物がもつニトリル化
合物の変換能を応用する試みがなされている。特に付加
価値の高い化合物の製造に利用するために、立体選択性
や位置選択性に優れた酵素が望まれている。例えば、特
開平2−84198号公報には光学活性なα−置換有機
酸の製造に用いる微生物について、特開平4−3411
85号公報には光学活性な2−ヒドロキシカルボン酸の
製造に用いる微生物について、EP0433117号に
は光学活性なケトプロフェンの製造に用いる微生物につ
いてそれぞれ開示されている。
In recent years, attempts have been made to apply the ability of such microorganisms to convert nitrile compounds. In particular, an enzyme having excellent stereoselectivity and regioselectivity has been desired for use in producing a compound having high added value. For example, JP-A-2-84198 discloses a microorganism used for producing an optically active α-substituted organic acid.
No. 85 discloses a microorganism used for producing an optically active 2-hydroxycarboxylic acid, and EP 0433117 discloses a microorganism used for producing an optically active ketoprofen.

【0008】このような微生物のうち、ロドコッカス
ロドクロス(Rhodococcus rhodoch
rous)ATCC39484株は複数のニトリル基を
有する芳香族ポリニトリル化合物に対し、優れた位置選
択的加水分解能をもつことが報告されている(米国特許
第556625号)。この選択的なニトリル分解酵素系
によって生成されるニトリル基とアミド基の両官能基あ
るいはニトリル基とカルボキシル基の両官能基を分子内
に持つ化合物は医農薬製造の合成ブッロクとして極めて
有効である。本菌のもつこの特性を工業的に利用するた
めには、反応を触媒する酵素の生産性、安定性や反応特
性の向上が望まれる。しかし、これらの改変に必要不可
欠な本菌のニトリルヒドラターゼ、アミダーゼの遺伝子
は、いずれについても明らかにされていなかった。
[0008] Among such microorganisms, Rhodococcus
Rhodocross (Rhodococcus rhodoch)
(Rous) ATCC39484 strain has been reported to have an excellent regioselective hydrolysis ability to an aromatic polynitrile compound having a plurality of nitrile groups (US Pat. No. 5,566,625). A compound having both a nitrile group and an amide functional group or a nitrile group and a carboxyl functional group in a molecule generated by this selective nitrile-decomposing enzyme system is extremely effective as a synthetic block for the production of medical and agricultural chemicals. In order to industrially utilize this property of this bacterium, it is desired to improve the productivity, stability and reaction characteristics of the enzyme that catalyzes the reaction. However, the genes of nitrile hydratase and amidase of the bacterium essential for these modifications have not been clarified.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的はロドコ
ッカス属細菌由来のニトリルヒドラターゼおよびアミダ
ーゼを、遺伝子工学的手法を用いて効率良く生産した
り、タンパク質工学的手法を用いて改良するために必要
なロドコッカス属細菌由来のニトリルヒドラターゼ遺伝
子およびアミダーゼ遺伝子のDNA配列を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently produce nitrile hydratase and amidase from a Rhodococcus bacterium using genetic engineering techniques or to improve them using protein engineering techniques. It is an object of the present invention to provide a necessary DNA sequence of a nitrile hydratase gene and an amidase gene derived from Rhodococcus bacteria.

【0010】[0010]

【課題を解決するための手段】本発明は、下記(1)〜
(6)の構成を有する。 (1) 配列表の配列番号2で示されるアミノ酸配列を
コードするDNA配列を含むロドコッカス属細菌由来の
ニトリルヒドラターゼ遺伝子。 (2) 配列表の配列番号2で示されるアミノ酸配列に
おいて1若しくは数個のアミノ酸が欠失、置換若しくは
付加されたアミノ酸配列をコードするDNA配列を含む
ロドコッカス属細菌由来のニトリルヒドラターゼ遺伝
子。 (3) 配列表の配列番号4で示されるアミノ酸配列を
コードするDNA配列を含むロドコッカス属細菌由来の
アミダーゼ遺伝子。 (4) 配列表の配列番号4で示されるアミノ酸配列に
おいて1若しくは数個のアミノ酸が欠失、置換若しくは
付加されたアミノ酸配列をコードするDNA配列を含む
ロドコッカス属細菌由来のアミダーゼ遺伝子。
Means for Solving the Problems The present invention provides the following (1) to
It has the configuration of (6). (1) A nitrile hydratase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing. (2) A nitrile hydratase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing. (3) An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding the amino acid sequence represented by SEQ ID NO: 4 in the sequence listing. (4) An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4 in the sequence listing.

【0011】(5) 配列表の配列番号6で示されるア
ミノ酸配列をコードするDNA配列を含むロドコッカス
属細菌由来のアミダーゼ遺伝子。 (6) 配列表の配列番号6で示されるアミノ酸配列に
おいて1若しくは数個のアミノ酸が欠失、置換若しくは
付加されたアミノ酸配列をコードするDNA配列を含む
ロドコッカス属細菌由来のアミダーゼ遺伝子。 (7) ロドコッカス属細菌がロドコッカス ロドクロ
ス(Rhodococcus rhodochrous)
ATCC39484株である(1)または(2)記載の
ニトリルヒドラターゼ遺伝子。 (8) ロドコッカス属細菌がロドコッカス ロドクロ
ス(Rhodococcus rhodochrou
s)ATCC39484株である(3)または(4)記
載のアミダーゼ遺伝子。 (9) ロドコッカス属細菌がロドコッカス ロドクロ
ス(Rhodococcus rhodochrou
s)ATCC39484株である(5)または(6)記
載のアミダーゼ遺伝子。
(5) An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding the amino acid sequence represented by SEQ ID NO: 6 in the sequence listing. (6) An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 6 in the sequence listing. (7) The bacterium belonging to the genus Rhodococcus is Rhodococcus rhodochrous.
The nitrile hydratase gene according to (1) or (2), which is ATCC 39484 strain. (8) The genus Rhodococcus bacterium is Rhodococcus rhodochrous.
s) The amidase gene according to (3) or (4), which is the ATCC 39484 strain. (9) Rhodococcus bacterium belonging to the genus Rhodococcus rhodochrous
s) The amidase gene according to (5) or (6), which is strain ATCC39484.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
ロドコッカス ロドクロス(Rhodococcus
rhodochrous)ATCC39484株染色体
DNAは、例えばSaitoらの方法(Bioche
m. Biophys. Acta.72, 619
(1963))を応用して調製することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Rhodococcus Rhodococcus
rhodochrous) ATCC39484 strain chromosomal DNA can be obtained, for example, by the method of Saito et al. (Bioche).
m. Biophys. Acta. 72, 619
(1963)).

【0013】遺伝子のクローニングに用いる染色体DN
Aライブラリーは、例えばpUC18などのプラスミド
ベクターを用いて作製することができる。ニトリルヒド
ラターゼ遺伝子とアミダーゼ遺伝子のクローニングは、
例えばSaikiらのPolymerase Chai
n Reaction(PCR)法(Science23
0, 1350(1985))を用いておこなうことが
できる。この時、使用するPCR用プライマーの一方
は、ユニバーサルプライマー(フォワードまたはリバー
ス)とし、他方は目的酵素タンパク質N末端配列、ある
いは目的酵素タンパク質を加水分解して得られるペプチ
ド末端配列を解析し、それをコードする配列から適当な
配列を選抜する。
Chromosome DN used for gene cloning
The A library can be prepared using a plasmid vector such as pUC18. Cloning of nitrile hydratase gene and amidase gene
For example, Saiki et al., Polymerase Chai
n Reaction (PCR) method (Science23)
0, 1350 (1985)). At this time, one of the PCR primers to be used is a universal primer (forward or reverse), and the other is to analyze the N-terminal sequence of the target enzyme protein or the peptide terminal sequence obtained by hydrolyzing the target enzyme protein, and analyze it. An appropriate sequence is selected from the sequence to be encoded.

【0014】これらのプライマーを組み合わせて、染色
体DNAライブラリーを鋳型としてPCR法を行うこと
によって、目的酵素のコード配列断片を得ることができ
る。このアンカーPCR法で得たニトリルヒドラターゼ
コード配列あるいはアミダーゼコード配列DNA断片を
全遺伝子領域スクリーニング用プローブとして使用する
ことにより、Rhodococcus rhodoch
rous(R.rhodochrous)ATCC39
484株の染色体DNAライブラリーからニトリルヒド
ラターゼ遺伝子とアミダーゼ遺伝子を含む組換え体DN
Aを得ることができる。
By combining these primers and performing PCR using a chromosomal DNA library as a template, a coding sequence fragment of the target enzyme can be obtained. By using the DNA fragment of the nitrile hydratase coding sequence or the amidase coding sequence obtained by the anchor PCR method as a probe for screening the entire gene region, Rhodococcus rhodoch can be obtained.
rous (R. rhodochrous) ATCC39
Recombinant DN containing nitrile hydratase gene and amidase gene from chromosome DNA library of strain 484
A can be obtained.

【0015】ニトリルヒドラターゼコード配列断片およ
びアミダーゼコード配列断片のDNA配列は、Sang
erらによるdideoxy法(Proc. Nat
l.Acad. Sci. U.S.A. 74, 5
463(1997))など公知の手法を用いて決定する
ことができる。
The DNA sequences of the nitrile hydratase coding sequence fragment and the amidase coding sequence fragment are Sang.
er et al. (Proc. Nat).
l. Acad. Sci. U. S. A. 74, 5
463 (1997)).

【0016】[0016]

【実施例】以下実施例にて本発明を具体的に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0017】(実施例1)染色体DNAの調製 栄養
(Lブロス)寒天平板培地で一昼夜培養したR.rho
dochrous ATCC39484株一白金耳を基
本培地(KH2PO41.5g/l、Na2HPO4・2H
2O 0.75g/l、MgSO4・7H2O 0.2g
/l、CaSO4・2H2O 10mg/l、FeSO4
・7H2O5mg/l、酵母エキス 20mg/l)に
グルコース1g/l、尿素1g/lを加えた培地300
mlで30℃、1日間培養した。
(Example 1) Preparation of chromosomal DNA R. cultivated on nutrient (L broth) agar plate medium for 24 hours. rho
dochrous ATCC39484 strain loopful basal medium (KH 2 PO 4 1.5g / l , Na 2 HPO 4 · 2H
2 O 0.75g / l, MgSO 4 · 7H 2 O 0.2g
/ L, CaSO 4 · 2H 2 O 10mg / l, FeSO 4
・ A medium 300 containing 5 mg / l of 7H 2 O, 20 mg / l of yeast extract and 1 g / l of glucose and 1 g / l of urea.
The cells were cultured at 30 ° C. for 1 day.

【0018】培養後の菌体を集菌し、5mMのEDTA
溶液100mlで菌体を洗浄した。この菌体を30ml
の緩衝液(20mMトリス−塩酸緩衝液(pH7.
1))に懸濁し、60mgのリゾチームを加え37℃で
2時間インキュベートした。この懸濁液を遠心(5,0
00rpm,7分間)して菌体を回収し、11.34m
lのTE Bufferに再懸濁し、10%SDS0.
6mlを加え、さらに100μg/mlの濃度となるよ
うにプロテナーゼK(メルク社製)を加え、1時間、5
5℃でゆるやかに振盪した。この溶液をフェノール抽
出、エタノール沈殿することによって染色体DNAを調
製した。
The cultured cells are collected, and 5 mM EDTA is added.
The cells were washed with 100 ml of the solution. 30 ml of this cell
Buffer (20 mM Tris-HCl buffer (pH 7.
1)), 60 mg of lysozyme was added, and the mixture was incubated at 37 ° C. for 2 hours. The suspension is centrifuged (5,0
(00 rpm, 7 minutes) to collect the cells.
l of TE Buffer and resuspended in 10% SDS0.
6 ml, and proteinase K (manufactured by Merck) to a concentration of 100 μg / ml.
Shake gently at 5 ° C. This solution was extracted with phenol and precipitated with ethanol to prepare chromosomal DNA.

【0019】(実施例2) 染色体ライブラリーの作製 得られた染色体DNA20μgに対し制限酵素Sau3
AIを用いて部分消化を行った。即ち、染色体DNAを
4μgづつ5本のチューブにとり、100μlの反応容
量中で、制限酵素Sau3AI(宝酒造社製、4〜12
U/μl)を添加し37℃で反応させ、10秒毎にチュー
ブの一本を取り、終濃度20mMとなるようEDTAを
加え反応を停止させた。
Example 2 Preparation of Chromosome Library 20 μg of the obtained chromosomal DNA was subjected to restriction enzyme Sau3.
Partial digestion was performed using AI. That is, 4 μg of chromosomal DNA is placed in each of five tubes, and a restriction enzyme Sau3AI (Takara Shuzo Co., Ltd., 4 to 12) is placed in a reaction volume of 100 μl.
(U / μl) was added and the reaction was carried out at 37 ° C., one tube was taken every 10 seconds, and EDTA was added to a final concentration of 20 mM to stop the reaction.

【0020】このようにして調製した染色体DNAの部
分消化断片溶液をアガロースゲル電気泳動に供し、5〜
10kbのDNA断片を沈殿抽出およびエタノール沈殿
にて回収し、30μlのTE溶液に溶解させた。この試
料の9μlと1μgのBamHI消化後BAP処理した
pUC18(宝酒造社製、pUC18/BamHI)と
をT4DNAリガーゼ(宝酒造社製、ライゲーションキ
ット ver.2)を用いて20μlの計でライゲーシ
ョンした後、大腸菌JM109株を形質転換した。この
ライブラリーの増幅ライブラリーを作製するために、大
腸菌形質転換体をアンピシリン50ppmを含むLブロ
ス(pH7.0)に植菌し、一昼夜培養した。菌体から
アルカリ−SDS法により鋳型として用いるプラスミド
を抽出した。
The partially digested fragment solution of the chromosomal DNA thus prepared was subjected to agarose gel electrophoresis,
A 10 kb DNA fragment was recovered by precipitation extraction and ethanol precipitation, and dissolved in 30 μl of a TE solution. After ligation of 9 μl of this sample and 1 μg of BUCHI-digested BAP-treated pUC18 (pUC18 / BamHI manufactured by Takara Shuzo Co., Ltd.) using T4 DNA ligase (Takara Shuzo Ligation Kit ver. 2) in a total volume of 20 μl, E. coli The JM109 strain was transformed. In order to prepare an amplification library of this library, E. coli transformants were inoculated into L broth (pH 7.0) containing 50 ppm of ampicillin, and cultured overnight. A plasmid used as a template was extracted from the cells by the alkali-SDS method.

【0021】(実施例3) ニトリルヒドラターゼおよびアミダーゼの精製 アンカーPCRに必要な酵素配列に由来する一方のプラ
イマーは、以下のようにして調整した酵素ペプチドの末
端配列から、適当なTmを持つように配列を選択して作
成した。
(Example 3) Purification of nitrile hydratase and amidase One primer derived from an enzyme sequence necessary for anchor PCR has an appropriate Tm from the terminal sequence of the enzyme peptide prepared as follows. The sequence was selected and created.

【0022】ニトリルヒドラターゼ活性またはアミダー
ゼ活性は、それぞれベンゾニトリル10mMまたはベン
ズアミド10mM、リン酸カリウムバッファー(pH
7.0)30mM、および所定量の菌体抽出液を含む反
応混合液1mlについて、25℃で30分間反応を行わ
せてから、生成したベンズアミドあるいは安息香酸をH
PLCにより検出することにより定性的に行った。
The nitrile hydratase activity or the amidase activity was measured using benzonitrile 10 mM or benzamide 10 mM, potassium phosphate buffer (pH
7.0) 1 ml of the reaction mixture containing 30 mM and a predetermined amount of the bacterial cell extract was reacted at 25 ° C. for 30 minutes, and the produced benzamide or benzoic acid was converted to H.
Performed qualitatively by detection by PLC.

【0023】R.rhodochrous ATCC3
9484株を実施例1の基本培地に誘導基質として1g
/lのベンゾニトリルを添加したニトリル分解酵素群誘
導培地6lに植菌し、30℃で振とう培養した。
R. rhodochrous ATCC3
9484 strain was added to the basal medium of Example 1 as an induction substrate at 1 g.
The cells were inoculated into 6 l of a nitrile-degrading enzyme group induction medium supplemented with 1 / l of benzonitrile and cultured with shaking at 30 ° C.

【0024】一昼夜培養した培養液を遠心(8000r
pm,15分間)に供して菌体を回収し、得られた菌体
湿重量32gを100mMリン酸カリウムバッファー
(pH7.0、1mM EDTAおよび2mM DDT
を含む)50mlで洗浄した後、同バッファー200m
lに懸濁した。これを湿式ミルに供して菌体を破砕した
後、遠心(12,000rpm、20分間)して上清
(粗酵素抽出液)180mlを得た。
The culture solution cultured overnight is centrifuged (8000 rpm).
pm, 15 minutes) to collect the cells, and wet 32 g of the obtained cells with a 100 mM potassium phosphate buffer (pH 7.0, 1 mM EDTA and 2 mM DDT).
After washing with 50 ml, the same buffer 200 m
l. This was subjected to a wet mill to disrupt the cells, and then centrifuged (12,000 rpm, 20 minutes) to obtain 180 ml of a supernatant (crude enzyme extract).

【0025】この無細胞抽出液に45%飽和濃度になる
よう硫酸アンモニウムを添加し、4℃で1時間撹拌後生
成した沈殿を遠心分離によって除去した。分離した上清
にさらに硫酸アンモニウムを60%飽和濃度になるよう
添加し、4℃で1時間撹拌した後、遠心分離により沈殿
を回収した。生成した沈殿にはニトリルヒドラターゼ活
性およびアミダーゼ活性が確認できた。得られた沈殿を
100mMリン酸カリウムバッファー(pH7.0、1
mM EDTAおよび2mM DDTを含む)10ml
に溶解し、同バッファーに対して透析を行なった。
Ammonium sulfate was added to the cell-free extract to a 45% saturation concentration, and the mixture was stirred at 4 ° C. for 1 hour, and the formed precipitate was removed by centrifugation. Ammonium sulfate was further added to the separated supernatant to a concentration of 60% saturation, and the mixture was stirred at 4 ° C. for 1 hour, and the precipitate was recovered by centrifugation. The resulting precipitate was confirmed to have nitrile hydratase activity and amidase activity. The obtained precipitate is washed with a 100 mM potassium phosphate buffer (pH 7.0, 1
10 ml containing mM EDTA and 2 mM DDT)
And dialyzed against the same buffer.

【0026】100mMリン酸カリウムバッファー(p
H7.0、1mM EDTAおよび2mM DDTを含
む)で平衡化したDEAEーSephacelカラム
(2cm×20cm)に透析した粗酵素溶液を供し、平
衡化バッファーで溶出液のUV280nmが低下するま
で洗浄した。続いて、0.1M KClを添加した同バ
ッファーで溶出液のUV280nmが低下するまで洗浄
し、さらに0.2MにKCl濃度を上げたバッファーで
同様に溶出液のUV280nmが低下するまで洗浄し
た。
A 100 mM potassium phosphate buffer (p
The dialyzed crude enzyme solution was applied to a DEAE-Sephacel column (2 cm × 20 cm) equilibrated with H7.0, 1 mM EDTA and 2 mM DDT, and washed with the equilibration buffer until the UV 280 nm of the eluate was reduced. Subsequently, the eluate was washed with the same buffer to which 0.1 M KCl was added until the UV280 nm of the eluate was lowered, and further washed with a buffer having a KCl concentration increased to 0.2 M until the UV280 nm of the eluate was lowered.

【0027】その後、0.3MにKCl濃度を上げた1
00mMリン酸カリウムバッファー(pH7.0、1m
M EDTAおよび2mM DDTを含む)でニトリル
ヒドラターゼとアミダーゼを溶出した。活性を示すフラ
クションを集め、限外濾過膜(除外分子量限界30,0
00)を用いて酵素タンパク質を濃縮した。
Thereafter, the KCl concentration was increased to 0.3M.
00 mM potassium phosphate buffer (pH 7.0, 1 m
(Including M EDTA and 2 mM DDT) to elute nitrile hydratase and amidase. The fractions showing the activity were collected and subjected to ultrafiltration (excluding the molecular weight limit of 30,0).
00) was used to concentrate the enzyme protein.

【0028】100mMリン酸カリウムバッファー(p
H7.0、10%飽和濃度の硫酸アンモニウムを含む)
で平衡化したPhenyl−Sepharose CL
−4Bカラム(2cm×40cm)に、濃縮した活性画
分に10%飽和濃度の硫酸アンモニウムを添加したもの
を供し、酵素を吸着させた。平衡化バッファーで溶出液
のUV280nmが低下するまで洗浄した。その後、溶
出バッファー(100mMリン酸カリウムバッファー
(pH7.0))でニトリルヒドラターゼおよびアミダ
ーゼを溶出した。活性フラクションを集め、限外濾過膜
(除外分子量限界30,000)を用いて酵素タンパク
質を濃縮した。
A 100 mM potassium phosphate buffer (p
H7.0, containing 10% saturated ammonium sulfate)
Phenyl-Sepharose CL equilibrated with
The concentrated active fraction to which a 10% saturated concentration of ammonium sulfate was added was supplied to a -4B column (2 cm × 40 cm) to adsorb the enzyme. The eluate was washed with the equilibration buffer until the UV 280 nm of the eluate was reduced. Thereafter, nitrile hydratase and amidase were eluted with an elution buffer (100 mM potassium phosphate buffer (pH 7.0)). The active fraction was collected and the enzyme protein was concentrated using an ultrafiltration membrane (exclusion molecular weight limit: 30,000).

【0029】この濃縮したニトリルヒドラターゼ活性画
分を100mMリン酸カリウムバッファー(pH7.
0、0.5M NaClを含む)で平衡化したSeph
acryl S−300 スーパーファインカラム(2
cm×60cm)に供し、同バッファーを用いて分離を
行い、溶出液を約0.5mlずつフラクションした。ニ
トリルヒドラターゼとアミダーゼ活性が最も高いフラク
ションおよびその前後のフラクションをそれぞれ回収し
た。それぞれ約1.5mlのフラクションを限外濾過膜
(除外分子量限界30,000)を用いて濃縮した。
The concentrated nitrile hydratase active fraction was subjected to a 100 mM potassium phosphate buffer (pH 7.0).
Seph equilibrated with 0, 0.5 M NaCl)
acryl S-300 super fine column (2
cm × 60 cm), separation was performed using the same buffer, and the eluate was fractionated by about 0.5 ml each. The fraction having the highest nitrile hydratase and amidase activities and the fractions before and after the fraction were collected. About 1.5 ml of each fraction was concentrated using an ultrafiltration membrane (exclusion molecular weight limit: 30,000).

【0030】それぞれの濃縮液の一部をSDS−PAG
E(12.5%ポリアクリルアミドゲル)で分析したと
ころ、1本の主たるバンドと複数のマイナーバンドが確
認された。そこでPVDFメンブレンにタンパク質をブ
ロッティングし、主バンドのN末端配列をエドマン分解
法により解析しようとしたが、複数のアミノ酸が検出さ
れ、配列を決定することができなかった。そこで以下の
ように酵素タンパク質の加水分解を行い、ペプチドとし
てから解析を行うことにした。
A part of each concentrated solution was subjected to SDS-PAG
When analyzed by E (12.5% polyacrylamide gel), one main band and a plurality of minor bands were confirmed. Therefore, the protein was blotted on a PVDF membrane, and the N-terminal sequence of the main band was analyzed by Edman degradation, but a plurality of amino acids were detected and the sequence could not be determined. Therefore, hydrolysis of the enzyme protein was performed as follows, and analysis was performed after the peptide was formed.

【0031】(実施例4) ペプチド末端配列の決定 得られたニトリルヒドラターゼおよびアミダーゼ酵素タ
ンパク質を臭化シアン(BrCN)法により加水分解し
た。続いて、生成したペプチドを以下の条件で分離し
た。
Example 4 Determination of Peptide Terminal Sequence The obtained nitrile hydratase and amidase enzyme proteins were hydrolyzed by the cyanogen bromide (BrCN) method. Subsequently, the generated peptide was separated under the following conditions.

【0032】 本体; LC-9A(島津製作所) カラム; Asahipak ODP-50 6D(Shodex) 溶離液; アセトニトリル0〜80%(直線濃度勾配、60分間) 0.1%トリフルオロ酢酸、流速0.5 ml/分 検出; SPD-6AV UV−VIS Spectro−photometer(島津製作所)、215nm カラム温度; 25℃ ニトリルヒドラターゼ活性画分から得られた複数のペプ
チドのうち、比較的分離の良いサンプルを選択し、エド
マン分解によるN末端配列分析を行ったところ、既存の
ニトリルヒドラターゼの配列と相同性の高い以下の配列
を確認した。 Glu(E)・Tyr(Y)・Arg(R)・Ser(S)・Arg(R)・Val(V)・
Val(V) この配列とRhodococcus属細菌のCodon
Usageを考慮して、ニトリルヒドラターゼ用プラ
イマーを作成した。 5’−GAG TAC CGG TCC CGA−3’(およびその相補鎖) 同様に、アミダーゼ活性画分から得られた複数のペプチ
ドのうち、比較的分離の良いサンプルを選択し、エドマ
ン分解によるN末端配列分析を行ったところ、既存のア
ミダーゼの配列と相同性の高い以下の配列が確認でき
た。 Ala(A)・Val(V)・Gly(G)・Gly(G)・Asp(D)・Gln(Q)・Gl
y(G) この配列とRhodococcus属細菌のCodon
Usageを考慮して、アミダーゼ用プライマーを作
成した。 5’−GCA GTC GGC GGC GAC-3’(およびその相補鎖)
Main unit; LC-9A (Shimadzu Corporation) Column; Asahipak ODP-50 6D (Shodex) Eluent: Acetonitrile 0 to 80% (linear concentration gradient, 60 minutes) 0.1% trifluoroacetic acid, flow rate 0.5 ml / min SPD-6AV UV-VIS Spectro-photometer (Shimadzu Corp.), 215 nm Column temperature; 25 ° C. Among a plurality of peptides obtained from the nitrile hydratase active fraction, a relatively well-separated sample was selected, and N was determined by Edman degradation. When the terminal sequence was analyzed, the following sequences having high homology to the sequence of the existing nitrile hydratase were confirmed. Glu (E) ・ Tyr (Y) ・ Arg (R) ・ Ser (S) ・ Arg (R) ・ Val (V) ・
Val (V) This sequence and the Rhodococcus genus Codon
In consideration of Usage, a primer for nitrile hydratase was prepared. 5′-GAG TAC CGG TCC CGA-3 ′ (and its complementary chain) Similarly, among a plurality of peptides obtained from the amidase active fraction, a sample with relatively good separation was selected, and N-terminal sequence analysis by Edman degradation was performed. As a result, the following sequences having high homology to the existing amidase sequence were confirmed. Ala (A) ・ Val (V) ・ Gly (G) ・ Gly (G) ・ Asp (D) ・ Gln (Q) ・ Gl
y (G) This sequence and Rhodococcus spp.
In consideration of Usage, primers for amidase were prepared. 5'-GCA GTC GGC GGC GAC-3 '(and its complementary strand)

【0033】(実施例5) アンカーPCR PCR法は以下の反応条件でおこなった。 反応液組成: R.rhodochrous ATCC39484染色体DNAライブラリー 1μg ユニバーサルプライマー 100pmol 酵素ペプチド末端プライマー 100pmol dNTP溶液 各1mM 10x反応バッファー 10μl ExTaqDNAポリメラーゼ(宝酒造社製) 2.5Unit 計50μl 反応条件: 熱変性 94℃、45秒 アニーリング 42〜57℃、60秒 伸張 72℃、60〜90秒 サイクル数 24回 Example 5 Anchor PCR The PCR was performed under the following reaction conditions. Reaction solution composition: rhodochrous ATCC39484 chromosomal DNA library 1 μg Universal primer 100 pmol Enzyme peptide terminal primer 100 pmol dNTP solution 1 mM each 10 × reaction buffer 10 μl ExTaq DNA polymerase (Takara Shuzo) 2.5 Unit Total 50 μl Reaction conditions: heat denaturation 94 ° C., 45 seconds annealing 42-57 ° C. , 60 seconds extension 72 ° C, 60-90 seconds Number of cycles 24

【0034】このようにして行った様々な条件での反応
のうち、特異的に増幅される断片が見られた反応液を2
%アガロースゲル電気泳動に供し、断片を含む部分のゲ
ルを切り出し、ESAYTRAP ver.2(宝酒造
社製)を用いて精製した。
Of the reactions under various conditions performed in this manner, the reaction solution in which a fragment to be specifically amplified was
% Agarose gel electrophoresis, cut out the gel containing the fragment, and used ESAYTRAP ver. 2 (Takara Shuzo).

【0035】このDNA断片について、dideoxy
法によりDNA配列を決定した。翻訳されたアミノ酸配
列が酵素タンパク質の末端配列および既知のニトリルヒ
ドラターゼおよびアミダーゼと相同性があることを確認
した結果、得られた断片4、14、56中に、それぞれ
配列表の配列番号1、3、5に示すようなオープンリー
ディングフレームの存在が確認された。
With respect to this DNA fragment,
The DNA sequence was determined by the method. As a result of confirming that the translated amino acid sequence has homology to the terminal sequence of the enzyme protein and the known nitrile hydratase and amidase, the resulting fragments 4, 14, and 56 contained, The presence of the open reading frames as shown in 3, 5 was confirmed.

【0036】配列表の配列番号1の80アミノ酸をコー
ドするオープンリーディングフレームがニトリルヒドラ
ーターゼのαサブユニットをコードするDNA配列であ
ること、配列番号3の287アミノ酸をコードするオー
プンリーディングフレームがアミダーゼをコードするD
NA配列であること、配列番号5の157アミノ酸をコ
ードするオープンリーディングフレームが配列番号3と
は異なるアミダーゼをコードするDNA配列であること
がわかった。
The open reading frame encoding 80 amino acids of SEQ ID NO: 1 in the sequence listing is a DNA sequence encoding the α subunit of nitrile hydratase, and the open reading frame encoding 287 amino acids of SEQ ID NO: 3 contains amidase. D to code
It was found to be an NA sequence, and that the open reading frame encoding 157 amino acids of SEQ ID NO: 5 was a DNA sequence encoding an amidase different from SEQ ID NO: 3.

【0037】[0037]

【発明の効果】本発明は複数のニトリル基を有する芳香
族ポリニトリル化合物に対し、優れた位置選択的加水分
解能をもつロドコッカス属細菌のニトリルヒドラターゼ
およびアミダーゼ遺伝子のDNA部分配列を提供するも
のである。これらのDNA配列は、ニトリルヒドラター
ゼ、アミダーゼの遺伝子工学的手法を用いた効率的生産
やタンパク質工学的手法を用いた酵素の改良などに不可
欠なものであり、このようにして得た酵素は有用化合物
の工業的生産への応用に期待できる。
Industrial Applicability The present invention provides a DNA partial sequence of nitrile hydratase and amidase genes of Rhodococcus bacteria having excellent regioselective hydrolytic ability for an aromatic polynitrile compound having a plurality of nitrile groups. . These DNA sequences are indispensable for efficient production of nitrile hydratase and amidase using genetic engineering techniques and improvement of enzymes using protein engineering techniques, and the enzymes thus obtained are useful. The compound can be expected to be applied to industrial production.

【0038】[0038]

【配列表】 SEQUENCE LISTING <110> SHOWA DENKO K.K. <120> Nucleic acid encoding nitrile hydratase and amidase from Rhodococcus sp. <130> 11H110213 <160> 6 <170> PatentIn Ver. 2.0[Sequence List] SEQUENCE LISTING <110> SHOWA DENKO K.K. <120> Nucleic acid encoding nitrile hydratase and amidase from Rhodococcus sp. <130> 11H110213 <160> 6 <170> PatentIn Ver. 2.0

【0039】 <210> 1 <211> 578 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1)..(243) <400> 1 gag tac cgg tcc cga gtg gta gca gac cct cgt gga gta ctc aag cgc 48 Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg Gly Val Leu Lys Arg 1 5 10 15 gat ttc ggg ttc gac atc ccc gat gag gtg gag gtc agg gtt tgg gac 96 Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu Val Arg Val Trp Asp 20 25 30 agc agc tcc gaa atc cgc tac atc gtc atc ccg gaa cgg ccg gcc ggc 144 Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile Pro Glu Arg Pro Ala Gly 35 40 45 acc gac ggt tgg tcc gag gac gag ctg gcg aag ctg gtg agt cgg gac 192 Thr Asp Gly Trp Ser Glu Asp Glu Leu Ala Lys Leu Val Ser Arg Asp 50 55 60 tcg atg atc ggt gtc agt aat gcg ctc aca ccg cag gaa gtg atc gta 240 Ser Met Ile Gly Val Ser Asn Ala Leu Thr Pro Gln Glu Val Ile Val 65 70 75 80 tga gtgaagacac actcactgat cggctcccgg cgactgggac cgccgcaccg 293 ccccgcgaca atggcgagct tgtattcacc gagccttggg aagcaacggc attcggggtc 353 gccatcgcgc tttcggatca gaagtcgtac gaatgggagt tcttccggca gcgtctcatt 413 cactcgatcg ctgaggccaa cggttgcgag gcatactacg agagctggac aaaggcgctc 473 gaggccagcg tggtcgattc ggggctgatc agcgaagatg agatccgcga gcgcatggaa 533 tcgatggcca tcatcgactg acattcccag cgtttccatc cagca 578<210> 1 <211> 578 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1) .. (243) <400> 1 gag tac cgg tcc cga gtg gta gca gac cct cgt gga gta ctc aag cgc 48 Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg Gly Val Leu Lys Arg 1 5 10 15 gat ttc ggg ttc gac atc ccc gat gag gtg gag gtc agg gtt tgg gac 96 Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu Val Arg Val Trp Asp 20 25 30 agc agc tcc gaa atc cgc tac atc gtc atc ccg gaa cgg ccg gcc ggc 144 Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile Pro Glu Arg Pro Ala Gly 35 40 45 acc gac ggt tgg tcc gag gac gag ctg gcg aag ctg gtg agt cgg gac 192 Thr Asp Gly Trp Ser Glu Asp Glu Leu Ala Lys Leu Val Ser Arg Asp 50 55 60 tcg atg atc ggt gtc agt aat gcg ctc acacc ca gaa gtg atc gta 240 Ser Met Ile Gly Val Ser Asn Ala Leu Thr Pro Gln Glu Val Ile Val 65 70 75 80 tga gtgaagacac actcactgat cggctcccgg cgactgggac cgccgcgccaccg 293 ccccgcgaca atggcgagct tgtattc gagcgcgcgc gcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgccggccgggcgcgcgccggcgcgccggccggcgccggcggcggcgccggccggcgccggcgggcggcggcgggcggcggcgg ggca gcgtctcatt 413 cactcgatcg ctgaggccaa cggttgcgag gcatactacg agagctggac aaaggcgctc 473 gaggccagcg tggtcgattc ggggctgatc accgaagatg agatccgcga gcgcat cgg tcgccatgc gcgca tgc gcg cg tg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg tg cg cg cg tg

【0040】 <210> 2 <211> 80 <212> PRT <213> Rhodococcus sp. <400> 2 Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg Gly Val Leu Lys Arg 1 5 10 15 Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu Val Arg Val Trp Asp 20 25 30 Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile Pro Glu Arg Pro Ala Gly 35 40 45 Thr Asp Gly Trp Ser Glu Asp Glu Leu Ala Lys Leu Val Ser Arg Asp 50 55 60 Ser Met Ile Gly Val Ser Asn Ala Leu Thr Pro Gln Glu Val Ile Val 65 70 75 80 <210> 2 <211> 80 <212> PRT <213> Rhodococcus sp. <400> 2 Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg Gly Val Leu Lys Arg 1 5 10 15 Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu Val Arg Val Trp Asp 20 25 30 Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile Pro Glu Arg Pro Ala Gly 35 40 45 Thr Asp Gly Trp Ser Glu Asp Glu Leu Ala Lys Leu Val Ser Arg Asp 50 55 60 Ser Met Ile Gly Val Ser Asn Ala Leu Thr Pro Gln Glu Val Ile Val 65 70 75 80

【0041】 <210> 3 <211> 861 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1)..(861) <400> 3 gca gtc ggc ggc gac cag ggc ggt tcg atc cgc atc ccc gcc gcg ttc 48 Ala Val Gly Gly Asp Gln Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe 1 5 10 15 tgc ggc atc gtc gga cac aaa ccc acc cac gga ctg gtc ccc tat acg 96 Cys Gly Ile Val Gly His Lys Pro Thr His Gly Leu Val Pro Tyr Thr 20 25 30 gga gca ttt ccc atc gaa cga acc atc gac cac ctc ggt ccg atg acg 144 Gly Ala Phe Pro Ile Glu Arg Thr Ile Asp His Leu Gly Pro Met Thr 35 40 45 cgc acg gtc agc gac gcc gcc gca atg ctc acc gtc ctc gcc ggc acc 192 Arg Thr Val Ser Asp Ala Ala Ala Met Leu Thr Val Leu Ala Gly Thr 50 55 60 gac ggc ctc gat ccc cga cag acc cac cgg atc gaa ccg gtg gac tac 240 Asp Gly Leu Asp Pro Arg Gln Thr His Arg Ile Glu Pro Val Asp Tyr 65 70 75 80 ctc gcg gcg ctg gcc gaa ccc gca tcg ggt ctg cgc gtg ggt gtg gtc 288 Leu Ala Ala Leu Ala Glu Pro Ala Ser Gly Leu Arg Val Gly Val Val 85 90 95 acc gaa ggc ttc gac acc cct gtc tcc gac gct gcc gtc gac aat gcc 336 Thr Glu Gly Phe Asp Thr Pro Val Ser Asp Ala Ala Val Asp Asn Ala 100 105 110 gtg cgc acc gcc atc ggc gta ctg cgc tcg gcc gga ctt acc gtc gaa 384 Val Arg Thr Ala Ile Gly Val Leu Arg Ser Ala Gly Leu Thr Val Glu 115 120 125 gag gtc tcg atc ccc tgg cac ctc gat gcg atg gcc gtc tgg aac gtg 432 Glu Val Ser Ile Pro Trp His Leu Asp Ala Met Ala Val Trp Asn Val 130 135 140 atc gcc acc gag gga gcg gcc tac cag atg ctc gac ggc aat gcc tac 480 Ile Ala Thr Glu Gly Ala Ala Tyr Gln Met Leu Asp Gly Asn Ala Tyr 145 150 155 160 ggc atg aac act gat ggc ttc tac gat ccc gaa ctg atc gcc cac ttc 528 Gly Met Asn Thr Asp Gly Phe Tyr Asp Pro Glu Leu Ile Ala His Phe 165 170 175 tcc cgt caa cga ctc gag cac ggt cac caa ctg tcg aag acg gtc aaa 576 Ser Arg Gln Arg Leu Glu His Gly His Gln Leu Ser Lys Thr Val Lys 180 185 190 ctc gtc ggg atg tcc ggg cgc tac aca ttg gag gta ggc ggc ggc aag 624 Leu Val Gly Met Ser Gly Arg Tyr Thr Leu Glu Val Gly Gly Gly Lys 195 200 205 tac tac gcc atg gcc cgc caa ctc gtc ccc gaa gtc cgc gcc gcc tac 672 Tyr Tyr Ala Met Ala Arg Gln Leu Val Pro Glu Val Arg Ala Ala Tyr 210 215 220 gac gcc gcc ttg gct cgg tac gac gtg ctg gtg atg ccc acc ctc ccc 720 Asp Ala Ala Leu Ala Arg Tyr Asp Val Leu Val Met Pro Thr Leu Pro 225 230 235 240 tac acc gcc acc aag atc ccg acc acg gac att ccg ttg gcc gac tat 768 Tyr Thr Ala Thr Lys Ile Pro Thr Thr Asp Ile Pro Leu Ala Asp Tyr 245 250 255 ctg gac acc gca ctg tcg atg atc atc aac acc gca cca ttc gac gtc 816 Leu Asp Thr Ala Leu Ser Met Ile Ile Asn Thr Ala Pro Phe Asp Val 260 265 270 acc ggt cac ccc gcc tgc agt gtc ccc gct gac ctg gtc cac ggg 861 Thr Gly His Pro Ala Cys Ser Val Pro Ala Asp Leu Val His Gly 275 280 285 <210> 3 <211> 861 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1) .. (861) <400> 3 gca gtc ggc ggc gac cag ggc ggt tcg atc cgc atc ccc gcc gcg ttc 48 Ala Val Gly Gly Asp Gln Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe 1 5 10 15 tgc ggc atc gtc gga cac aaa ccc acc cac gga ctg gtc ccc tat acg Gly I Val Gly His Lys Pro Thr His Gly Leu Val Pro Tyr Thr 20 25 30 gga gca ttt ccc atc gaa cga acc atc gac cac ctc ggt ccg atg acg 144 Gly Ala Phe Pro Ile Glu Arg Thr Ile Asp His Leu Gly Pro Met Thr 35 40 45 cgc acg gtc agc gac gcc gcc gca atg ctc acc gtc ctc gcc ggc acc 192 Arg Thr Val Ser Asp Ala Ala Ala Met Leu Thr Val Leu Ala Gly Thr 50 55 60 gac ggc ctc gat ccc cga cag acc cac cgg atc gaa ccg gtg gac tac 240 Asp Gly Leu Asp Pro Arg Gln Thr His Arg Ile Glu Pro Val Asp Tyr 65 70 75 80 ctc gcg gcg ctg gcc gaa ccc gca tcg ggt ctg cgc gtg ggt gtg gtc 288 Leu Ala Ala Lela Ala Ser Gly Leu Arg Val Gly Val Val 85 90 95 acc gaa ggc ttc gac acc cct gtc tcc gac gc t gcc gtc gac aat gcc 336 Thr Glu Gly Phe Asp Thr Pro Val Ser Asp Ala Ala Val Asp Asn Ala 100 105 110 gtg cgc acc gcc atc ggc gta ctg cgc tcg gcc gga ctt acc gtc gaa 384 Val Arg Thr Ala Ile Gly Val Leu Arg Ser Ala Gly Leu Thr Val Glu 115 120 125 gag gtc tcg atc ccc tgg cac ctc gat gcg atg gcc gtc tgg aac gtg 432 Glu Val Ser Ile Pro Trp His Leu Asp Ala Met Ala Val Trp Asn Val 130 135 140 atc gcc acc gag gga gcg gcc tac cag atg ctc gac ggc aat gcc tac 480 Ile Ala Thr Glu Gly Ala Ala Tyr Gln Met Leu Asp Gly Asn Ala Tyr 145 150 155 160 ggc atg aac act gat ggc ttc tac gat ccc gaa ctg ttc 528 Gly Met Asn Thr Asp Gly Phe Tyr Asp Pro Glu Leu Ile Ala His Phe 165 170 175 tcc cgt caa cga ctc gag cac ggt cac caa ctg tcg aag acg gtc aaa 576 Ser Arg Gln Arg Leu Glu His Gly His Gln Leu Ser Lys Thr Val Lys 180 185 190 ctc gtc ggg atg tcc ggg cgc tac aca ttg gag gta ggc ggc ggc aag 624 Leu Val Gly Met Ser Gly Arg Tyr Thr Leu Glu Val Gly Gly Gly Lys 195 200 205 tac tac gcc atg gcc cgca c tc gtc ccc gaa gtc cgc gcc gcc tac 672 Tyr Tyr Ala Met Ala Arg Gln Leu Val Pro Glu Val Arg Ala Ala Tyr 210 215 220 gac gcc gcc ttg gct cgg tac gac gtg ctg gtg atg ccc acc ctc ccc Leap Ala Alapla Ala Arg Tyr Asp Val Leu Val Met Pro Thr Leu Pro 225 230 235 240 tac acc gcc acc aag atc ccg acc acg gac att ccg ttg gcc gac tat 768 Tyr Thr Ala Thr Lys Ile Pro Thr Thr Asp Ile Pro Leu Ala Asp Tyr 245 250 255 ctg gac acc gca ctg tcg atg atc atc aac acc gca cca ttc gac gtc 816 Leu Asp Thr Ala Leu Ser Met Ile Ile Asn Thr Ala Pro Phe Asp Val 260 265 270 acc ggt cac ccc gcc tgc agt gtc ccc gct gac ctg gtc cac ggg 861 Thr Gly His Pro Ala Cys Ser Val Pro Ala Asp Leu Val His Gly 275 280 285

【0042】 <210> 4 <211> 287 <212> PRT <213> Rhodococcus sp. <400> 4 Ala Val Gly Gly Asp Gln Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe 1 5 10 15 Cys Gly Ile Val Gly His Lys Pro Thr His Gly Leu Val Pro Tyr Thr 20 25 30 Gly Ala Phe Pro Ile Glu Arg Thr Ile Asp His Leu Gly Pro Met Thr 35 40 45 Arg Thr Val Ser Asp Ala Ala Ala Met Leu Thr Val Leu Ala Gly Thr 50 55 60 Asp Gly Leu Asp Pro Arg Gln Thr His Arg Ile Glu Pro Val Asp Tyr 65 70 75 80 Leu Ala Ala Leu Ala Glu Pro Ala Ser Gly Leu Arg Val Gly Val Val 85 90 95 Thr Glu Gly Phe Asp Thr Pro Val Ser Asp Ala Ala Val Asp Asn Ala 100 105 110 Val Arg Thr Ala Ile Gly Val Leu Arg Ser Ala Gly Leu Thr Val Glu 115 120 125 Glu Val Ser Ile Pro Trp His Leu Asp Ala Met Ala Val Trp Asn Val 130 135 140 Ile Ala Thr Glu Gly Ala Ala Tyr Gln Met Leu Asp Gly Asn Ala Tyr 145 150 155 160 Gly Met Asn Thr Asp Gly Phe Tyr Asp Pro Glu Leu Ile Ala His Phe 165 170 175 Ser Arg Gln Arg Leu Glu His Gly His Gln Leu Ser Lys Thr Val Lys 180 185 190 Leu Val Gly Met Ser Gly Arg Tyr Thr Leu Glu Val Gly Gly Gly Lys 195 200 205 Tyr Tyr Ala Met Ala Arg Gln Leu Val Pro Glu Val Arg Ala Ala Tyr 210 215 220 Asp Ala Ala Leu Ala Arg Tyr Asp Val Leu Val Met Pro Thr Leu Pro 225 230 235 240 Tyr Thr Ala Thr Lys Ile Pro Thr Thr Asp Ile Pro Leu Ala Asp Tyr 245 250 255 Leu Asp Thr Ala Leu Ser Met Ile Ile Asn Thr Ala Pro Phe Asp Val 260 265 270 Thr Gly His Pro Ala Cys Ser Val Pro Ala Asp Leu Val His Gly 275 280 285 <210> 4 <211> 287 <212> PRT <213> Rhodococcus sp. <400> 4 Ala Val Gly Gly Asp Gln Gly Gly Ser Ile Arg Ile Pro Ala Ala Phe 1 5 10 15 Cys Gly Ile Val Gly His Lys Pro Thr His Gly Leu Val Pro Tyr Thr 20 25 30 Gly Ala Phe Pro Ile Glu Arg Thr Ile Asp His Leu Gly Pro Met Thr 35 40 45 Arg Thr Val Ser Asp Ala Ala Ala Met Leu Thr Val Leu Ala Gly Thr 50 55 60 Asp Gly Leu Asp Pro Arg Gln Thr His Arg Ile Glu Pro Val Asp Tyr 65 70 75 80 Leu Ala Ala Leu Ala Glu Pro Ala Ser Gly Leu Arg Val Gly Val Val 85 90 95 Thr Glu Gly Phe Asp Thr Pro Val Ser Asp Ala Ala Val Asp Asn Ala 100 105 110 Val Arg Thr Ala Ile Gly Val Leu Arg Ser Ala Gly Leu Thr Val Glu 115 120 125 Glu Val Ser Ile Pro Trp His Leu Asp Ala Met Ala Val Trp Asn Val 130 135 140 Ile Ala Thr Glu Gly Ala Ala Tyr Gln Met Leu Asp Gly Asn Ala Tyr 145 150 155 160 Gly Met Asn Thr Asp Gly Phe Tyr Asp Pro Glu Leu Ile Ala His Phe 165 170 175 Ser Arg Gln Arg Leu Glu His Gly His Gln Leu Ser Lys Thr Val Lys 180 185 190 Leu Val Gly Met Ser Gly Arg Tyr Thr Leu Glu Val Gly Gly Gly Lys 195 200 205 Tyr Tyr Ala Met Ala Arg Gln Leu Val Pro Glu Val Arg Ala Ala Tyr 210 215 220 Asp Ala Ala Ala Leu Ala Arg Tyr Asp Val Leu Val Met Pro Thr Leu Pro 225 230 235 240 Tyr Thr Ala Thr Lys Ile Pro Thr Thr Asp Ile Pro Leu Ala Asp Tyr 245 250 255 Leu Asp Thr Ala Leu Ser Met Ile Ile Asn Thr Ala Pro Phe Asp Val 260 265 270 Thr Gly His Pro Ala Cys Ser Val Pro Ala Asp Leu Val His Gly 275 280 285

【0043】 <210> 5 <211> 471 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1)..(471) <400> 5 aag gcc gnc gtg ctc gac aac gca cga gcn atn gcc aac atg ntg ntc 48 Lys Ala Xaa Val Leu Asp Asn Ala Arg Xaa Xaa Ala Asn Met Xaa Xaa 1 5 10 15 ggn atg aag gcg ggn ctg ccn ggn ctg gan ctg gtg gtg ttc ccn gag 96 Xaa Met Lys Ala Xaa Leu Xaa Xaa Leu Xaa Leu Val Val Phe Xaa Glu 20 25 30 tan tcg act ctg gga atc atg tan gac aan cac gag atg tan gcc acn 144 Xaa Ser Thr Leu Gly Ile Met Xaa Asp Xaa His Glu Met Xaa Ala Xaa 35 40 45 gcn gcn acc atc ccc ggn gac gaa acn gac atc ttt tcg nag gcn tgc 192 Xaa Xaa Thr Ile Pro Xaa Asp Glu Xaa Asp Ile Phe Ser Xaa Xaa Cys 50 55 60 cgg gan gcc aac acg tgg ggc gtc ttc tcg atc acc ggn gag cgc cat 240 Arg Xaa Ala Asn Thr Trp Gly Val Phe Ser Ile Thr Xaa Glu Arg His 65 70 75 80 gan gan cac ccg nac aag ccn ccn tac aac acc ctg ntn ctg ntn aac 288 Xaa Xaa His Pro Xaa Lys Xaa Xaa Tyr Asn Thr Leu Xaa Leu Xaa Asn 85 90 95 aat cag ggn gan atc gtg cag aag tac cgn aag att ctg ccc tgg anc 336 Asn Gln Xaa Xaa Ile Val Gln Lys Tyr Xaa Lys Ile Leu Pro Trp Xaa 100 105 110 ccg atc gan ggc tgg tan ccn ggg gnc nnc acc nan gtg acc gac ggt 384 Pro Ile Xaa Gly Trp Xaa Xaa Gly Xaa Xaa Thr Xaa Val Thr Asp Gly 115 120 125 ccc aag gga ctg aag atc tcc ctg atc atc tgc gac gac ggc aac tac 432 Pro Lys Gly Leu Lys Ile Ser Leu Ile Ile Cys Asp Asp Gly Asn Tyr 130 135 140 ccg gan atc tgg cgn gan tgc gcg atg aag ggc gcc gac 471 Pro Xaa Ile Trp Xaa Xaa Cys Ala Met Lys Gly Ala Asp 145 150 155 <210> 5 <211> 471 <212> DNA <213> Rhodococcus sp. <220> <221> CDS <222> (1) .. (471) <400> 5 aag gcc gnc gtg ctc gac aac gca cga gcn atn gcc aac atg ntg ntc 48 Lys Ala Xaa Val Leu Asp Asn Ala Arg Xaa Xaa Ala Asn Met Xaa Xaa 1 5 10 15 ggn atg aag gcg ggn ctg ccn ggn ctg gan ctg gtg gtg ttc ccn gag Xaa 96a Ala Xaa Leu Xaa Xaa Leu Xaa Leu Val Val Phe Xaa Glu 20 25 30 tan tcg act ctg gga atc atg tan gac aan cac gag atg tan gcc acn 144 Xaa Ser Thr Leu Gly Ile Met Xaa Asp Xaa His Glu Met Xaa Ala Xaa 35 40 45 gcn gcn acc atc ccc ggn gac gaa acn gac atc ttt tcg nag gcn tgc 192 Xaa Xaa Thr Ile Pro Xaa Asp Glu Xaa Asp Ile Phe Ser Xaa Xaa Cys 50 55 60 cgg gan gcc aac acg tgg ggc gtc ttc tcg atc acc ggn gag cgc cat 240 Arg Xaa Ala Asn Thr Trp Gly Val Phe Ser Ile Thr Xaa Glu Arg His 65 70 75 80 gan gan cac ccg nac aag ccn ccn tac aac acc ctg ntn ctg ntn aac 288 Xaa Xaa His Pro Xaa Lys Xaa Xaa Tyr Asn Thr Leu Xaa Leu Xaa Asn 85 90 95 aat cag ggn gan atc gtg cag aag tac cgn aa g att ctg ccc tgg anc 336 Asn Gln Xaa Xaa Ile Val Gln Lys Tyr Xaa Lys Ile Leu Pro Trp Xaa 100 105 110 ccg atc gan ggc tgg tan ccn ggg gnc nnc acc nan gtg acc gac ggt 384 Pro Ile Xaa Gly Trp Xaa Xaa Gly Xaa Xaa Thr Xaa Val Thr Asp Gly 115 120 125 ccc aag gga ctg aag atc tcc ctg atc atc tgc gac gac ggc aac tac 432 Pro Lys Gly Leu Lys Ile Ser Leu Ile Ile Cys Asp Asp Gly Asn Tyr 130 135 140 ccg gan atc tgg cgn gan tgc gcg atg aag ggc gcc gac 471 Pro Xaa Ile Trp Xaa Xaa Cys Ala Met Lys Gly Ala Asp 145 150 155

【0044】 <210> 6 <211> 157 <212> PRT <213> Rhodococcus sp. <400> 6 Lys Ala Xaa Val Leu Asp Asn Ala Arg Xaa Xaa Ala Asn Met Xaa Xaa 1 5 10 15 Xaa Met Lys Ala Xaa Leu Xaa Xaa Leu Xaa Leu Val Val Phe Xaa Glu 20 25 30 Xaa Ser Thr Leu Gly Ile Met Xaa Asp Xaa His Glu Met Xaa Ala Xaa 35 40 45 Xaa Xaa Thr Ile Pro Xaa Asp Glu Xaa Asp Ile Phe Ser Xaa Xaa Cys 50 55 60 Arg Xaa Ala Asn Thr Trp Gly Val Phe Ser Ile Thr Xaa Glu Arg His 65 70 75 80 Xaa Xaa His Pro Xaa Lys Xaa Xaa Tyr Asn Thr Leu Xaa Leu Xaa Asn 85 90 95 Asn Gln Xaa Xaa Ile Val Gln Lys Tyr Xaa Lys Ile Leu Pro Trp Xaa 100 105 110 Pro Ile Xaa Gly Trp Xaa Xaa Gly Xaa Xaa Thr Xaa Val Thr Asp Gly 115 120 125 Pro Lys Gly Leu Lys Ile Ser Leu Ile Ile Cys Asp Asp Gly Asn Tyr 130 135 140 Pro Xaa Ile Trp Xaa Xaa Cys Ala Met Lys Gly Ala Asp 145 150 155 <210> 6 <211> 157 <212> PRT <213> Rhodococcus sp. <400> 6 Lys Ala Xaa Val Leu Asp Asn Ala Arg Xaa Xaa Ala Asn Met Xaa Xaa 1 5 10 15 Xaa Met Lys Ala Xaa Leu Xaa Xaa Leu Xaa Leu Val Val Phe Xaa Glu 20 25 30 Xaa Ser Thr Leu Gly Ile Met Xaa Asp Xaa His Glu Met Xaa Ala Xaa 35 40 45 Xaa Xaa Thr Ile Pro Xaa Asp Glu Xaa Asp Ile Phe Ser Xaa Xaa Cys 50 55 60 Arg Xaa Ala Asn Thr Trp Gly Val Phe Ser Ile Thr Xaa Glu Arg His 65 70 75 80 Xaa Xaa His Pro Xaa Lys Xaa Xaa Tyr Asn Thr Leu Xaa Leu Xaa Asn 85 90 95 Asn Gln Xaa Xaa Ile Val Gln Lys Tyr Xaa Lys Ile Leu Pro Trp Xaa 100 105 110 Pro Ile Xaa Gly Trp Xaa Xaa Gly Xaa Xaa Thr Xaa Val Thr Asp Gly 115 120 125 Pro Lys Gly Leu Lys Ile Ser Leu Ile Ile Cys Asp Asp Gly Asn Tyr 130 135 140 Pro Xaa Ile Trp Xaa Xaa Cys Ala Met Lys Gly Ala Asp 145 150 155

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12N 9/80 C12R 1:19) (C12N 9/88 C12R 1:19) Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) (C12N 9/80 C12R 1:19) (C12N 9/88 C12R 1:19)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号2で示されるアミノ酸
配列をコードするDNA配列を含むロドコッカス属細菌
由来のニトリルヒドラターゼ遺伝子。
1. A nitrile hydratase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
【請求項2】 配列表の配列番号2で示されるアミノ酸
配列において1若しくは数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列をコードするDNA配列
を含むロドコッカス属細菌由来のニトリルヒドラターゼ
遺伝子。
2. A nitrile hydratase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing. .
【請求項3】 配列表の配列番号4で示されるアミノ酸
配列をコードするDNA配列を含むロドコッカス属細菌
由来のアミダーゼ遺伝子。
3. An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence represented by SEQ ID NO: 4 in the sequence listing.
【請求項4】 配列表の配列番号4で示されるアミノ酸
配列において1若しくは数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列をコードするDNA配列
を含むロドコッカス属細菌由来のアミダーゼ遺伝子。
4. An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4 in the sequence listing.
【請求項5】 配列表の配列番号6で示されるアミノ酸
配列をコードするDNA配列を含むロドコッカス属細菌
由来のアミダーゼ遺伝子。
5. An amidase gene derived from a bacterium belonging to the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence represented by SEQ ID NO: 6 in the sequence listing.
【請求項6】 配列表の配列番号6で示されるアミノ酸
配列において1若しくは数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列をコードするDNA配列
を含むロドコッカス属細菌由来のアミダーゼ遺伝子。
6. An amidase gene derived from a bacterium of the genus Rhodococcus, comprising a DNA sequence encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 6 in the sequence listing.
【請求項7】 ロドコッカス属細菌がロドコッカス ロ
ドクロス(Rhodococcus rhodochr
ous)ATCC39484株である請求項1または2
記載のニトリルヒドラターゼ遺伝子。
7. The microorganism of the genus Rhodococcus rhodococcus rhodochr.
ou) ATCC39484 strain.
The nitrile hydratase gene described.
【請求項8】 ロドコッカス属細菌がロドコッカス ロ
ドクロス(Rhodococcus rhodochr
ous)ATCC39484株である請求項3または4
記載のアミダーゼ遺伝子。
8. The method according to claim 8, wherein the bacterium belonging to the genus Rhodococcus is Rhodococcus rhodochr.
ow) The strain is ATCC39484 strain.
The described amidase gene.
【請求項9】 ロドコッカス属細菌がロドコッカス ロ
ドクロス(Rhodococcus rhodochr
ous)ATCC39484株である請求項5または6
記載のアミダーゼ遺伝子。
9. The bacterium belonging to the genus Rhodococcus rhodococcus rhodochr.
ous) ATCC39484 strain.
The described amidase gene.
JP24816299A 1999-09-02 1999-09-02 Nitrile hydratase gene and amidase gene which are derived from phodococcus Pending JP2001069978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816299A JP2001069978A (en) 1999-09-02 1999-09-02 Nitrile hydratase gene and amidase gene which are derived from phodococcus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816299A JP2001069978A (en) 1999-09-02 1999-09-02 Nitrile hydratase gene and amidase gene which are derived from phodococcus

Publications (1)

Publication Number Publication Date
JP2001069978A true JP2001069978A (en) 2001-03-21

Family

ID=17174149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816299A Pending JP2001069978A (en) 1999-09-02 1999-09-02 Nitrile hydratase gene and amidase gene which are derived from phodococcus

Country Status (1)

Country Link
JP (1) JP2001069978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118898B1 (en) * 1999-10-26 2006-10-10 Showa Denko K.K. Rhodococcus bacterium, nitrilase gene, nitrylhydratase gene and amidase gene from Rhondococcus bacterium, and process for producing carboxylic acids by using them
US9518279B2 (en) 2012-12-27 2016-12-13 Kemira Oyj Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide
CN113122526A (en) * 2021-04-14 2021-07-16 浙江工业大学 Nitrile hydratase lysine mutant HBA-K1, coding gene and application
CN114934006A (en) * 2022-06-02 2022-08-23 无锡新晨宇生物工程有限公司 Application of nitrile hydratase to catalyze acetonitrile to generate acetamide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118898B1 (en) * 1999-10-26 2006-10-10 Showa Denko K.K. Rhodococcus bacterium, nitrilase gene, nitrylhydratase gene and amidase gene from Rhondococcus bacterium, and process for producing carboxylic acids by using them
US9518279B2 (en) 2012-12-27 2016-12-13 Kemira Oyj Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide
US10138459B2 (en) 2012-12-27 2018-11-27 Kemira Oyj Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide
CN113122526A (en) * 2021-04-14 2021-07-16 浙江工业大学 Nitrile hydratase lysine mutant HBA-K1, coding gene and application
CN113122526B (en) * 2021-04-14 2023-09-22 浙江工业大学 Nitrile hydratase lysine mutant HBA-K1, encoding gene and application
CN114934006A (en) * 2022-06-02 2022-08-23 无锡新晨宇生物工程有限公司 Application of nitrile hydratase to catalyze acetonitrile to generate acetamide

Similar Documents

Publication Publication Date Title
Kobayashi et al. Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue.
US11525131B2 (en) Recombinant vector constructed from an encoding gene of a nitrilase mutant, a recombinant genetic engineered strain and application thereof
Kim et al. Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli
KR20190080948A (en) A nucleic acid encoding the mutant nitrile hydratase, an expression vector containing the nucleic acid, and a transformant, a method for producing the mutant nitrile hydratase, and a method for producing an amide compound Way
JPH11513255A (en) Nucleic acid fragments encoding stereospecific nitrile hydratase and amidase enzymes, and recombinant microorganisms expressing those enzymes useful for the production of chiral amides and acids
JP3408737B2 (en) Protein involved in nitrile hydratase activation and gene encoding the same
CN110423787B (en) Preparation method of uniform brown algae trisaccharide
JP2001069978A (en) Nitrile hydratase gene and amidase gene which are derived from phodococcus
US8017356B2 (en) Endoribonuclease
JP2011155932A (en) Alkali keratinase, dna encoding the same and method for using the same
JPH08504599A (en) Enzymes having nitrile hydratase activity, genetic tools and host microorganisms for their production, and hydrolysis processes using said enzymes
Hasegawa et al. Cloning and expression of the N, N-dimethylformamidase gene from Alcaligenes sp. strain KUFA-1
Ryabchenko et al. Cloning the amidase gene from Rhodococcus rhodochrous M8 and its expression in Escherichia coli
JP2001292772A (en) Nitrile hydratase gene and amidase gene derived from bacterium belonging to the genus rhodococcus
JP2003250588A (en) Tannase, gene of the same and method for producing tannase
US20100330616A1 (en) Novel endoribonuclease
WO2007099994A1 (en) Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials
EP1608746B1 (en) Thermally stable amidases
JP4631436B2 (en) Metalloendopeptidase
KR101778878B1 (en) Highly active GABA-producing glutamate decarboxylase from Bacteroides sp. and use thereof
Wink et al. Comparison between two Erwinia carotovora L-Asparaginase II constructions: cloning, heterologous expression, purification, and kinetic characterization
JP3463951B2 (en) Thermostable pyroglutamyl peptidase and its gene
Baek et al. Characteristics of a new enantioselective thermostable dipeptidase from Brevibacillus borstelensis BCS-1 and its application to synthesis of a D-amino-acid-containing dipeptide
JPH06303971A (en) New protein having nitrile hydratase activity, gene coding the protein and production of amide from nitrile using transformant containing the gene
US20230265409A1 (en) Polypeptide having cephalosporin c acylase activity and use thereof