JPH0799911B2 - Electronic switch circuit for charging control - Google Patents

Electronic switch circuit for charging control

Info

Publication number
JPH0799911B2
JPH0799911B2 JP22291786A JP22291786A JPH0799911B2 JP H0799911 B2 JPH0799911 B2 JP H0799911B2 JP 22291786 A JP22291786 A JP 22291786A JP 22291786 A JP22291786 A JP 22291786A JP H0799911 B2 JPH0799911 B2 JP H0799911B2
Authority
JP
Japan
Prior art keywords
transistor
resistor
voltage
circuit
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22291786A
Other languages
Japanese (ja)
Other versions
JPS6377332A (en
Inventor
裕一 加藤
多喜夫 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP22291786A priority Critical patent/JPH0799911B2/en
Publication of JPS6377332A publication Critical patent/JPS6377332A/en
Publication of JPH0799911B2 publication Critical patent/JPH0799911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は充電器の充電制御用電子スイッチ回路に係り、
特に電圧変動によるスイッチングのバラツキ防止に関す
る。
The present invention relates to a charging control electronic switch circuit of a charger,
Particularly, it relates to prevention of variation in switching due to voltage fluctuation.

(従来技術) 一般に、充電制御用電子スイッチ回路は、安定した充電
制御をするために、充電制御を行なうトランジスタがオ
ンからオフにスイッチング動作を起こすときの被充電用
電池の端子電圧の値、すなわち、しきい電圧および前記
トランジスタがオフからオンにスイッチング動作を起こ
す被充電用電池の端子電圧と前記しきい値との差、すな
わち前記トランジスタのスイッチング電圧の差(ヒステ
リシス幅)のバラツキを小さくすることが必要であり、
このために特公昭55−42577号公報に示すものが提案さ
れている。
(Prior Art) Generally, in order to perform stable charge control, an electronic switch circuit for charge control has a value of a terminal voltage of a battery to be charged when a transistor performing charge control causes a switching operation from on to off, that is, A threshold voltage and a difference between a terminal voltage of a battery to be charged which causes a switching operation of the transistor from off to on and the threshold value, that is, a variation in a switching voltage difference (hysteresis width) of the transistor. Is required
For this purpose, the one disclosed in Japanese Patent Publication No. 55-42577 has been proposed.

これは第2図に示す回路構成を有し、電源接続端子a,b
間に第1の抵抗R1とツエナダイオードDzとの直列回路を
接続し、ツエナダイオードDzの両端に第2の抵抗R2とダ
イオードD3と第1のトランジスタ2のベース・エミッタ
と第3の抵抗R5と図外の充電回路(これは端子a,b間に
接続される)により充電される被充電用電池1との直列
回路と、ダイオード群D1と抵抗R7との直列回路で構成さ
れる第1の分圧要素と抵抗R8とダイオード群D2との直列
回路で構成される第2の分圧要素との直列回路とを並列
に接続し、第2の抵抗R2とダイオードD3との接続点と第
1のトランジスタ2のエミッタと第3の抵抗R5との接続
点との間に第2のトランジスタ3のコレクタ・エミッタ
と第4の抵抗R6とを直列に接続し、第1の分圧要素と第
2の分圧要素との接続点に第2のトランジスタ3のベー
スを接続し、第1の抵抗R1と電源接続端子の接続点と第
1のトランジスタ2のコレクタに抵抗R3を接続し、第1
のトランジスタ2のコレクタと第3の抵抗R5と被充電用
電池1の接続点に抵抗R4を接続してある。
This has the circuit configuration shown in FIG. 2 and has power connection terminals a and b.
A series circuit of a first resistor R 1 and a zener diode Dz is connected between them, and a second resistor R 2 , a diode D 3 , a base / emitter of the first transistor 2 and a third resistor R 3 are connected across the zener diode Dz. A series circuit of a resistor R 5 and a battery to be charged 1 which is charged by a charging circuit (which is connected between terminals a and b) not shown in the figure, and a series circuit of a diode group D 1 and a resistor R 7. A first voltage dividing element configured, a resistor R 8 and a series circuit of a second voltage dividing element configured by a series circuit of a diode group D 2 are connected in parallel to form a second resistor R 2 and Between the connection point with the diode D 3 and the connection point between the emitter of the first transistor 2 and the third resistor R 5 , the collector / emitter of the second transistor 3 and the fourth resistor R 6 are connected in series. And the base of the second transistor 3 is connected to the connection point between the first voltage dividing element and the second voltage dividing element. The resistor R 3 is connected to the connection point between the anti-R 1 and the power supply connection terminal and the collector of the first transistor 2,
The resistor R 4 is connected to the connection point between the collector of the transistor 2, the third resistor R 5, and the battery 1 to be charged.

第2図中、c,dは図外の充電回路を制御するための端子
であって第1のトランジスタ2のオン,オフにより制御
端子c,d間の電圧が変化し、この変化により図外の充電
回路を制御するようになっている。
In FIG. 2, c and d are terminals for controlling the charging circuit (not shown), and the voltage between the control terminals c and d changes depending on whether the first transistor 2 is turned on or off. It is designed to control the charging circuit of.

すなわち、制御端子dと、電源接続端子bとの間には図
外の充電回路の充電電流を流すようにし、両端子d,b間
に接続した被充電用電池1を充電する。かかる従来の回
路では端子d,b間の電圧Vxを零から徐々に上昇させる
と、制御端子c,d間の電圧VYは次のように変化する。す
なわち第3図に示すように被充電用電池1の端子電圧Vx
がVx<Vth−Hw〔但しVthは第2のトランジスタ3がオン
からオフにスイッチ動作を起こす時の被充電用電池1の
端子電圧(しきい値)、Hwは前記第2のトランジスタ3
がオフからオンにスイッチング動作を起こす被充電用電
池1の端子電圧と前記しきい値Vthとの差つまり、ヒス
テリシス幅をそれぞれ示す〕であるように低いときは、
第2のトランジスタ3がオンで第1のトランジスタ2が
オフで、電圧VYは図示のようにVYHとなり、前記端子
電圧Vxが徐々に上がり、前記しきい値Vthを越えると、
第2のトランジスタ3がオフ、第1のトランジスタ2が
オンとなって、VYが図示のようにVYHからVYLとな
る。ここで逆に電圧Vxを下げると、Vx=Vth−Hw(Hwは
スイッチング電圧の差)で第2のトランジスタ3がオフ
からオンとなって、第1のトランジスタ2がオンからオ
フになり、制御端子c,d間の電圧VYはVYLからVYHとな
る。
That is, the charging current of the charging circuit (not shown) is made to flow between the control terminal d and the power supply connection terminal b, and the battery 1 to be charged connected between both terminals d and b is charged. In such a conventional circuit, when the voltage Vx between the terminals d and b is gradually increased from zero, the voltage VY between the control terminals c and d changes as follows. That is, as shown in FIG. 3, the terminal voltage Vx of the battery 1 to be charged
Is Vx <Vth−Hw (where Vth is the terminal voltage (threshold value) of the battery 1 to be charged when the second transistor 3 causes a switching operation from on to off, and Hw is the second transistor 3
Is a difference between the terminal voltage of the battery to be charged 1 that causes a switching operation from off to on and the threshold value Vth, that is, the hysteresis width].
When the second transistor 3 is turned on and the first transistor 2 is turned off, the voltage VY becomes VYH as shown in the figure, and the terminal voltage Vx gradually increases and exceeds the threshold value Vth.
The second transistor 3 turns off and the first transistor 2 turns on, causing VY to change from VYH to VYL as shown. Conversely, when the voltage Vx is lowered, Vx = Vth−Hw (Hw is the difference between the switching voltages), the second transistor 3 is switched from off to on, and the first transistor 2 is switched from on to off. The voltage VY between the terminals c and d changes from VYL to VYH.

かかる充電制御用電子スイッチ回路は過充電防止付急速
充電回路に使用されており、端子d,b間に被充電用電池
1が接続されると電圧Vxが電池電圧となり、VY=VYH
のとき充電されて、VY=VYLのとき図外の充電回路か
らの充電電流が遮断される。一方、被充電用電池には、
特に充電末期に大きな内部抵抗があり、充電電流が流れ
ているときには電池電圧が高く、充電電流が流れていな
いときには電池電圧が低くなるため、電池電圧の高低に
より充電電流を制御する電圧検出方式にあっては、充電
電流遮断と、充電とを不必要に繰り返さず、上述の如く
スイッチング電圧の差Hwを設定して安定した充電電流制
御を行なわせる。
Such an electronic switch circuit for charge control is used in a quick charge circuit with overcharge prevention. When the battery 1 to be charged is connected between the terminals d and b, the voltage Vx becomes the battery voltage and VY = VYH.
When VY = VYL, the charging current from the charging circuit (not shown) is cut off. On the other hand, in the battery to be charged,
In particular, there is a large internal resistance at the end of charging, the battery voltage is high when the charging current is flowing, and the battery voltage is low when the charging current is not flowing.Therefore, the voltage detection method that controls the charging current by the high and low battery voltage is used. In that case, the charging current cutoff and the charging are not unnecessarily repeated, and the difference Hw between the switching voltages is set as described above to perform stable charging current control.

また第4図に示す充電電流特性において初期充電電流
が、時間t0にて制御されるとき、その後の充電電流の変
化がイのように緩やかとなるか、ロのように急激になる
かは、電池内部抵抗の充電末期における大きさとのかね
あいがあるが、前記スイッチング電圧の差Hwの大きさに
より決定され、このHwが大きいと、ロのように急激に充
電電流を制御する。さらに充電制御後、長時間、一定の
微小電流で充電するが、充電末期電流の大きさは充電完
了後の電池内部抵抗の大きさと、前記しきい値Vthが一
定のときのスイッチング電圧の差Hwの大きさとにより決
定される。このように充電末期電流や充電制御の急緩に
よって最適のしきい値Vthとスイッチング電圧の差Hwが
存在する。
Further, in the charging current characteristic shown in FIG. 4, when the initial charging current is controlled at the time t 0 , whether the subsequent change in the charging current is gradual as in (a) or abrupt as in (b). , The internal resistance of the battery is in agreement with the size at the end of charging, but it is determined by the size of the switching voltage difference Hw. When this Hw is large, the charging current is rapidly controlled as shown in (b). Further, after charging control, the battery is charged with a constant small current for a long time. And the size of. In this way, the difference Hw between the optimum threshold value Vth and the switching voltage exists due to the end-of-charge current and the sudden change in the charge control.

かくして、しきい値Vthは被充電用電池の充電容量を決
定するために設定し、スイッチング電圧の差Hwは充電完
了後の充電電流を被充電用電池の安全電流に保ち、過充
電による容量劣化を防止するために最適な値に設定する
ことが必要である。
Thus, the threshold value Vth is set to determine the charge capacity of the battery to be charged, and the switching voltage difference Hw keeps the charging current after completion of charging at the safe current of the battery to be charged, resulting in capacity deterioration due to overcharging. It is necessary to set the optimum value in order to prevent this.

さて、第2図の従来例の回路にあっては、しきい値Vt
h、スイッチング電圧の差Hwは Vth=Vb(3)−VBE(3)−(R5+R6)ie(3) …
[1]式 Hw=R5・ie(2)−(R5+R6)ie(3) …[2]式 但し、 Vb(3):トランジスタ3のベース電位 VBE(3):トランジスタ3の順方向ベース・エミッタ
間電圧 R5:抵抗R5の抵抗値 R6:抵抗R6の抵抗値 ie(3):トランジスタ3のオン状態でのエミッタ電流 ie(2):トランジスタ2のオン状態でのエミッタ電流 R2:抵抗R2の抵抗値 Von(3):トランジスタ3のオン電圧(オン時のコレ
クタ・エミッタ間の電圧) Von(2):トランジスタ2のオン電圧(オン時のコレ
クタ・エミッタ間の電圧) Vcc:電源接続端子間電圧 VDz:ダイオードDzの端子電圧 VDz,Von(3),Von(2)はほぼ一定 [3]式よりie(3)は抵抗R2,R6,R5で決まり、ほぼ一
定であり、よって[1]式よりVthは抵抗R2,R6,R5で決
まりほぼ一定であるが、ie(2)はVccがばらつくため
一定とならないので、Hwはie(2)の変動により一定と
ならない。
Now, in the conventional circuit of FIG. 2, the threshold value Vt
h, the difference between the switching voltage Hw is Vth = Vb (3) -VBE ( 3) - (R 5 + R 6) ie (3) ...
[1] Equation Hw = R 5 · ie (2) − (R 5 + R 6 ) ie (3) Equation [2] where Vb (3): base potential of transistor 3 VBE (3): transistor 3 in this order Direction Base-emitter voltage R 5 : Resistance value of resistance R 5 R 6 : Resistance value of resistance R 6 ie (3): Emitter current when transistor 3 is on ie (2): Emitter current when transistor 2 is on R 2: the resistance R 2 of the resistance value Von (3): (the voltage between the collector and emitter with the ON) ON voltage of the transistor 3 Von (2): the collector-to-emitter voltage at the time of the ON voltage (ON transistor 2 ) Vcc: power supply connection terminal voltage VDZ: diode Dz terminal voltage VDz, Von (3), Von (2) is ie (3 from approximately constant [3] formula) is determined by the resistor R 2, R 6, R 5 , Vth is almost constant because of the resistances R 2 , R 6 and R 5 according to the formula [1], but ie (2) is not constant because Vcc varies, so Hw is ie (2 It does not become constant due to fluctuations in).

第2図の従来の回路を充電回路に接続した例を第5図に
示す。同図において、Aはトランジスタインバータで、
このトランジスタインバータAはいわゆるブロッキング
発振回路をなし、交流電源を整流回路Cにて整流し、そ
の整流された直流を電源として発振動作するもので、整
流回路Cの両出力端子にコレクタ巻線7と、出力トラン
ジスタ4と、エミッタ抵抗7と、ダイオード8と出力巻
線5の直列回路と、上述した充電制御用電子スイッチ回
路Bの電源接続端子a,bを接続する。端子dは抵抗7と
ダイオード8の接続点に接続する。端子cと出力トラン
ジスタ4のベースとの間にベース帰還巻線9を接続し、
端子c,d間にコンデンサ10を接続する。また、端子d,b間
には被充電用電池1を接続する。なお、図中、11はスパ
イク電圧吸収用コンデンサ、12はスパイク電圧吸収用抵
抗、13は整流回路C用の限流抵抗、14は整流ダイオー
ド、15は雑音防止用チョークコイル、16,17はコンデン
サである。
An example of connecting the conventional circuit of FIG. 2 to a charging circuit is shown in FIG. In the figure, A is a transistor inverter,
The transistor inverter A forms a so-called blocking oscillation circuit, rectifies an AC power supply by a rectification circuit C, and oscillates using the rectified DC power as a power supply. A collector winding 7 is provided at both output terminals of the rectification circuit C. , The output transistor 4, the emitter resistor 7, the series circuit of the diode 8 and the output winding 5, and the power supply connection terminals a and b of the charging control electronic switch circuit B described above are connected. The terminal d is connected to the connection point of the resistor 7 and the diode 8. A base feedback winding 9 is connected between the terminal c and the base of the output transistor 4,
Connect capacitor 10 between terminals c and d. The battery 1 to be charged is connected between the terminals d and b. In the figure, 11 is a spike voltage absorbing capacitor, 12 is a spike voltage absorbing resistor, 13 is a current limiting resistor for rectifying circuit C, 14 is a rectifying diode, 15 is a noise preventing choke coil, and 16 and 17 are capacitors. Is.

ここで整流回路Cの出力端子波形は第6図に示すごとき
波形であるため、電子スイッチ回路Bの電源端子a,b間
の電圧Vccは変動し安定しないためie(2)がばらつ
き、Hwが一定とならない。
Since the output terminal waveform of the rectifier circuit C has a waveform as shown in FIG. 6, the voltage Vcc between the power supply terminals a and b of the electronic switch circuit B varies and is not stable, so ie (2) varies and Hw is It is not constant.

つまり電子スイッチ回路Bに加わる電圧が変動しないも
のにおいては問題ないのであるが、実際には第6図に示
すような電圧変動があるため、ヒステリシス幅に相当す
るトランジスタのスイッチング電圧の差Hwがばらついて
安定した充電制御ができない問題がある。
That is, there is no problem in the case where the voltage applied to the electronic switch circuit B does not fluctuate, but in reality, since there is a voltage fluctuation as shown in FIG. 6, the switching voltage difference Hw of the transistors corresponding to the hysteresis width varies. There is a problem that stable charging control cannot be performed.

(発明の目的) 本発明は上述の点に鑑みてなされたものであって、充電
電流制御用のトランジスタのエミッタ・ベース間にコレ
クタ・エミッタを接続したトランジスタのスイッチング
電圧の差(ヒステリシス幅)が電源電圧変動に影響され
ず、安定し最適の値を設定できる充電制御用電子スイッ
チ回路を提供することを目的とする。
(Object of the invention) The present invention has been made in view of the above-mentioned points, and a switching voltage difference (hysteresis width) of a transistor in which a collector-emitter is connected between an emitter and a base of a charging current control transistor is reduced. It is an object of the present invention to provide a charge control electronic switch circuit that is stable and can set an optimum value without being affected by power supply voltage fluctuations.

(発明の構成) 本発明は、電源接続端子間に第1の抵抗とツエナダイオ
ードとの直列回路を接続し、第2の抵抗とダイオードと
第1のトランジスタのベース・エミッタと第3の抵抗と
充電回路により充電される被充電用電池との直列回路
と、第1の分圧要素と第2の分圧要素との直列回路とを
前記ツエナダイオードの両端に並列に接続し、第2の抵
抗とダイオードの接続点と第1のトランジスタのエミッ
タと第3の抵抗との接続点との間に第2のトランジスタ
のコレクタ・エミッタと第4の抵抗とを直列に接続し、
第1の分圧要素と第2の分圧要素の接続点に第2のトラ
ンジスタのベースを接続し、第1の抵抗とツエナダイオ
ードとの接続点と第1のトランジスタのコレクタとの間
に制御トランジスタのエミッタ・ベースと第5の抵抗と
を直列に接続し、制御トランジスタのコレクタにスイッ
チング手段を接続してなる充電制御用電子スイッチ回路
にある。
(Structure of the Invention) According to the present invention, a series circuit of a first resistor and a zener diode is connected between power supply connection terminals, and a second resistor, a diode, a base / emitter of a first transistor, and a third resistor are connected. A series circuit with a battery to be charged, which is charged by a charging circuit, and a series circuit with a first voltage dividing element and a second voltage dividing element are connected in parallel to both ends of the Zener diode, and a second resistor is connected. And a collector / emitter of the second transistor and a fourth resistor are connected in series between the connection point of the diode and the connection point of the emitter of the first transistor and the third resistor,
The base of the second transistor is connected to the connection point of the first voltage dividing element and the second voltage dividing element, and control is performed between the connection point of the first resistor and the Zener diode and the collector of the first transistor. An electronic switch circuit for charge control is formed by connecting the emitter / base of a transistor and a fifth resistor in series, and connecting the switching means to the collector of the control transistor.

(実施例) 以下、本発明を第1図に示す実施例により説明する。こ
の実施例回路は第2図の従来例回路において、まず抵抗
R4を取り除き、第1のトランジスタ2のコレクタは抵抗
R3と切り離す。抵抗R1とツエナダイオードDzとの接続点
と第1のトランジスタ2のコレクタとの間に制御トラン
ジスタ4のエミッタ・ベースと抵抗R9の直列回路を接続
する。また、電源接続端子間に抵抗R3とトランジスタ18
のコレクタとエミッタの直列回路を接続し、トランジス
タ18のベースに抵抗R10を接続し、これらでもってスイ
ッチング手段Dを構成している。
(Example) Hereinafter, the present invention will be described with reference to an example shown in FIG. This embodiment circuit is the same as the conventional example circuit of FIG.
R 4 is removed and the collector of the first transistor 2 is a resistor
Separate from R 3 . A series circuit of the emitter / base of the control transistor 4 and the resistor R 9 is connected between the connection point of the resistor R 1 and the Zener diode Dz and the collector of the first transistor 2. In addition, a resistor R 3 and a transistor 18 are connected between the power connection terminals.
A series circuit of the collector and the emitter is connected, and a resistor R 10 is connected to the base of the transistor 18, and these constitute a switching means D.

このスイッチング手段Dの抵抗10は制御トランジスタ4
のコレクタに接続する。
The resistor 10 of this switching means D is a control transistor 4
Connect to the collector.

本実施例の動作は、第2図の従来例に比べ、トランジス
タ2がオンのとき、制御トランジスタ4がオンし、スイ
ッチング手段Dを動作させる点が相違する。すなわち、
制御トランジスタ4がオンするとトランジスタ18がオン
しトランジスタ18のコレクタすなわち端子cが、端子b
からみてVon(4)(トランジスタ18のオン電圧)とな
り、逆にトランジスタ2がオフとなると制御トランジス
タ4がオフとなりトランジスタ18もオフとなる。
The operation of this embodiment is different from the conventional example of FIG. 2 in that when the transistor 2 is on, the control transistor 4 is on and the switching means D is operated. That is,
When the control transistor 4 is turned on, the transistor 18 is turned on and the collector of the transistor 18, that is, the terminal c is changed to the terminal b.
From the viewpoint, it becomes Von (4) (ON voltage of the transistor 18). Conversely, when the transistor 2 is turned off, the control transistor 4 is turned off and the transistor 18 is also turned off.

本発明における充電制御用電子スイッチ回路にあって
は、しきい値Vth、スイッチング電圧の差Hwは従来例と
同様[1]式、[2]式で与えられるが、ie(2)は 但しVEB(4):制御トランジスタ4のエミッタ・ベー
ス間電圧でほぼ一定 R9:抵抗R9の抵抗値 で与えられ、ie(2)は従来例に比べ電源端子電圧に関
係なく抵抗R9,R5で決定され、ほぼ一定となるので、ス
イッチング電圧の差Hwは一定となる。
In the charge control electronic switch circuit of the present invention, the threshold value Vth and the switching voltage difference Hw are given by the equations [1] and [2] as in the conventional example. However VEB (4): Control transistor substantially constant emitter-base voltage of 4 R 9: resistance given by the resistance value of R 9, ie (2) the resistance R 9 regardless of the supply pin voltage compared to the conventional example, Since it is determined by R 5 and becomes almost constant, the switching voltage difference Hw becomes constant.

(発明の効果) 以上のように本発明によれば、充電制御用のトランジス
タに流れる電流が電源端子電圧に関係なくほぼ一定とな
るため、充電制御用のトランジスタのオン,オフのスイ
ッチング電圧の差(ヒステリシス幅)が電源電圧の変動
に影響されることなく安定した最適な値に設定でき、安
定して被充電用電池への充電が可能となる。
(Effect of the Invention) As described above, according to the present invention, since the current flowing through the charging control transistor is substantially constant regardless of the power supply terminal voltage, the difference between the on / off switching voltage of the charging control transistor is large. The (hysteresis width) can be set to a stable and optimum value without being affected by the fluctuation of the power supply voltage, and the charged battery can be stably charged.

【図面の簡単な説明】 第1図は本発明の一実施例による充電制御用電子スイッ
チ回路の回路図、第2図は従来の充電制御用電子スイッ
チ回路の回路図、第3図は同上の動作説明図、第4図は
同上の充電電流特性図、第5図は従来の電子スイッチ回
路を接続した充電回路の回路図、第6図は同上の整流回
路の出力波形図である。 1……被充電用電池、2……第1のトランジスタ、3…
…第2のトランジスタ、4……制御トランジスタ、a,b
……電源接続端子、R1……第1の抵抗、R2……第2の抵
抗、R5……第3の抵抗、R6……第4の抵抗、R7……抵抗
(第1の分圧要素)、R8……抵抗(第2の分圧要素)、
R9……第5の抵抗、Dz……ツエナダイオード、D1……ダ
イオード(第1の分圧要素)、D2……(第2の分圧要
素)、D3……ダイオード、D……スイッチング手段。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a charge control electronic switch circuit according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a conventional charge control electronic switch circuit, and FIG. FIG. 4 is a charging current characteristic diagram of the same as above, FIG. 5 is a circuit diagram of a charging circuit to which a conventional electronic switch circuit is connected, and FIG. 6 is an output waveform diagram of the above rectifier circuit. 1 ... Battery to be charged, 2 ... First transistor, 3 ...
… Second transistor, 4 …… Control transistor, a, b
...... Power supply connection terminal, R 1 ...... First resistance, R 2 ...... Second resistance, R 5 ...... Third resistance, R 6 ...... Fourth resistance, R 7 ...... Resistance (First resistance Voltage dividing element), R 8 ... resistance (second voltage dividing element),
R 9 ... Fifth resistance, Dz ... Zener diode, D 1 ... Diode ( first voltage dividing element), D 2 ... (Second voltage dividing element), D 3 ... Diode, D ... … Switching means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電源接続端子間に第1の抵抗とツエナダイ
オードとの直列回路を接続し、第2の抵抗とダイオード
と第1のトランジスタのベース・エミッタと第3の抵抗
と充電回路により充電される被充電用電池との直列回路
と、第1の分圧要素と第2の分圧要素との直列回路とを
前記ツエナダイオードの両端に並列に接続し、第2の抵
抗とダイオードの接続点と第1のトランジスタのエミッ
タと第3の抵抗との接続点との間に第2のトランジスタ
のコレクタ・エミッタと第4の抵抗とを直列に接続し、
第1の分圧要素と第2の分圧要素の接続点に第2のトラ
ンジスタのベースを接続し、第1の抵抗とツエナダイオ
ードとの接続点と第1のトランジスタのコレクタとの間
に制御トランジスタのエミッタ・ベースと第5の抵抗と
を直列に接続し、制御トランジスタのコレクタにスイッ
チング手段を接続してなることを特徴とする充電制御用
電子スイッチ回路。
1. A series circuit of a first resistor and a zener diode is connected between power supply connection terminals and charged by a second resistor, a diode, a base / emitter of a first transistor, a third resistor and a charging circuit. A series circuit with the battery to be charged and a series circuit with the first voltage dividing element and the second voltage dividing element are connected in parallel to both ends of the Zener diode, and the second resistor and the diode are connected. The collector / emitter of the second transistor and the fourth resistor are connected in series between the point and the connection point of the emitter of the first transistor and the third resistor,
The base of the second transistor is connected to the connection point of the first voltage dividing element and the second voltage dividing element, and control is performed between the connection point of the first resistor and the Zener diode and the collector of the first transistor. An electronic switch circuit for charge control, characterized in that an emitter / base of a transistor and a fifth resistor are connected in series, and a collector of a control transistor is connected to a switching means.
JP22291786A 1986-09-19 1986-09-19 Electronic switch circuit for charging control Expired - Fee Related JPH0799911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22291786A JPH0799911B2 (en) 1986-09-19 1986-09-19 Electronic switch circuit for charging control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22291786A JPH0799911B2 (en) 1986-09-19 1986-09-19 Electronic switch circuit for charging control

Publications (2)

Publication Number Publication Date
JPS6377332A JPS6377332A (en) 1988-04-07
JPH0799911B2 true JPH0799911B2 (en) 1995-10-25

Family

ID=16789885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22291786A Expired - Fee Related JPH0799911B2 (en) 1986-09-19 1986-09-19 Electronic switch circuit for charging control

Country Status (1)

Country Link
JP (1) JPH0799911B2 (en)

Also Published As

Publication number Publication date
JPS6377332A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
EP0383382B1 (en) Power supply circuit
JPH0736672B2 (en) Power supply circuit
EP0806075B1 (en) Power-supply circuit
EP0806076B1 (en) Power-supply circuit
US4642548A (en) Control apparatus for charging generator
JPH0799911B2 (en) Electronic switch circuit for charging control
JPS6126302B2 (en)
JP3267730B2 (en) Automatic voltage switching power supply circuit
JP2522842Y2 (en) Multi-output switching regulator
JPS5852844Y2 (en) Charging generator control device
JPS585432Y2 (en) DC-DC converter
JP3242456B2 (en) Inverter power circuit
JP2629585B2 (en) Inrush current suppression circuit
JP3005316B2 (en) Power supply circuit
JP2566566B2 (en) Charging circuit with automatic voltage switching function
JPS6220773B2 (en)
JPH0731076A (en) Switching type charger
JPS6355298B2 (en)
JPH06335248A (en) High-voltage power supply device
JPS61139266A (en) Switching power source
JPH0318431B2 (en)
JPH04368434A (en) Charging circuit
JPH0515151A (en) Dc power supply
JPH065346U (en) Charge control circuit
JPH09121467A (en) Secondary battery charger and electric machine employing it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees