JPH0799652B2 - Method for forming niobium-3 / tin superconductor - Google Patents

Method for forming niobium-3 / tin superconductor

Info

Publication number
JPH0799652B2
JPH0799652B2 JP4166513A JP16651392A JPH0799652B2 JP H0799652 B2 JPH0799652 B2 JP H0799652B2 JP 4166513 A JP4166513 A JP 4166513A JP 16651392 A JP16651392 A JP 16651392A JP H0799652 B2 JPH0799652 B2 JP H0799652B2
Authority
JP
Japan
Prior art keywords
tin
niobium
tape
copper
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4166513A
Other languages
Japanese (ja)
Other versions
JPH05198227A (en
Inventor
マーク・ギルバート・ベンズ
リー・エバン・ルマナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH05198227A publication Critical patent/JPH05198227A/en
Publication of JPH0799652B2 publication Critical patent/JPH0799652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電流容量を改良した
ニオブ3・すず超電導体を形成する方法および改良した
ニオブ3・すずテープに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a niobium-3.tin superconductor having an improved current capacity and an improved niobium-3.tin tape.

【0002】[0002]

【従来の技術】超電導は、ある種の材料が抵抗なしで電
流を伝える特性である。超電導材料は、その温度が材料
の超電導臨界温度より低くなっていて、材料が材料の超
電導臨界磁界より大きい磁界あるいは材料の超電導臨界
電流より大きい電流を受けないときだけ、この特性を発
揮する。したがって、超電導素子が受ける温度、磁界ま
たは電流を臨界温度、磁界または電流より高くすること
により、超電導は失効する(クエンチする)、すなわ
ち、抵抗状態に戻る。超電導の失効は、特定の材料に応
じて、すなわち温度、磁界または電流についてのその超
電導遷移状態の相対的幅に応じて、急激に起こるか、も
っとゆっくり起こる。
Superconductivity is the property of certain materials to carry current without resistance. A superconducting material exhibits this property only when its temperature is below the superconducting critical temperature of the material and the material does not experience a magnetic field greater than the material's superconducting critical magnetic field or a current greater than the material's superconducting critical current. Therefore, by making the temperature, the magnetic field, or the current that the superconducting element receives higher than the critical temperature, the magnetic field, or the current, the superconductivity is deactivated (quenched), that is, returned to the resistance state. Depending on the particular material, ie the relative width of its superconducting transition state with respect to temperature, magnetic field or current, the superconducting deactivation occurs rapidly or more slowly.

【0003】周知のように、選ばれた親金属は、それが
純粋なものでも、少量の合金化元素を含有するものでも
(後者が好ましい)、他の金属と反応させて、大きな電
流容量を有する超電導化合物または合金を形成すること
ができる。親金属たとえばニオブ、タンタル、テクネチ
ウムおよびバナジウムを、反応性金属たとえばすず、ア
ルミニウム、けい素およびガリウムと反応すなわち合金
化させて、超電導合金たとえばニオブ3・すずを形成す
ることができる。ここで用いる用語「ニオブ3・すず」
は、1個のすず原子あたり約3個のニオブ原子を含有す
る金属間化合物の形態の超電導合金である。ニオブ3・
すずはこの発明が対象とする超電導体である。
As is well known, the parent metal of choice, whether pure or containing small amounts of alloying elements (the latter being preferred), is reacted with other metals to give a large ampacity. A superconducting compound or alloy having can be formed. Parent metals such as niobium, tantalum, technetium and vanadium can be reacted or alloyed with reactive metals such as tin, aluminum, silicon and gallium to form superconducting alloys such as niobium 3 tin. The term "niobium 3 tin" used here
Is a superconducting alloy in the form of an intermetallic compound containing about 3 niobium atoms per tin atom. Niobium 3
Tin is a superconductor targeted by the present invention.

【0004】また、ニオブ3・すずを改良できることが
知られており、第1の方法では、親金属すなわちニオブ
を、親金属原子の直径より0.29オングストローム以
上大きい原子直径を有する溶質金属の少量と合金化する
ことにより、ニオブ3・すずを改良する。米国特許第
3,429,032号に、約25%以下のジルコニウム
を含有するニオブを、過剰なすずおよび酸素、窒素およ
び炭素から選んだ非金属の存在下で加熱することにより
形成したニオブ3・すずは、臨界電流が向上しているこ
とが開示されている。また、反応性金属すずを銅と合金
化してニオブ3・すずを改良することも知られている。
J.S.Caslaw「低温学」(Cryogenic
s)(1971年2月)57−59頁の「ニオブ−すず
における臨界電流密度の向上」では、ニオブを約45重
量%以下の銅および残部量のすずからなる反応性金属と
反応させることにより、ニオブ3・すずの臨界電流密度
を改良している。
It is also known that niobium 3 tin can be improved. In the first method, the parent metal, that is, niobium, is added in a small amount of a solute metal having an atomic diameter larger than the diameter of the parent metal atom by 0.29 angstroms or more. Improves niobium-3 tin by alloying with. U.S. Pat. No. 3,429,032 discloses niobium containing about 25% or less zirconium by heating in the presence of excess tin and a non-metal selected from oxygen, nitrogen and carbon. It is disclosed that tin has an improved critical current. It is also known to alloy reactive metal tin with copper to improve niobium 3 tin.
J. S. Caslaw "Cryogenics" (Cryogenic)
s) (February 1971), pages 57-59, "Improvement of the critical current density in niobium-tin", by reacting niobium with a reactive metal consisting of up to about 45% by weight copper and the balance tin. , Niobium 3 · tin has improved the critical current density.

【0005】ニオブ3・すず合金は、高磁界超電導電磁
石のような装置を製造する目的で、種々の形態に、特に
ワイヤおよびテープの形態に作製されている。超電導テ
ープを連続的に製造する1方法では、ニオブまたはニオ
ブ合金テープを溶融した反応性金属、たとえばすずまた
はすず合金の浴に連続的に通過させる。溶融浴から反応
性金属の薄い皮膜がテープに付着し、このテープをその
後反応炉で加熱して、親金属テープの表面上に超電導合
金の形成を促す。
Niobium 3 tin alloys have been made in various forms, especially in the form of wires and tapes, for the purpose of making devices such as high field superconducting electromagnets. One method of continuously producing superconducting tape involves continuously passing a niobium or niobium alloy tape through a bath of molten reactive metal, such as tin or tin alloy. A thin film of reactive metal from the melting bath adheres to the tape, which is then heated in a reactor to promote the formation of a superconducting alloy on the surface of the parent metal tape.

【0006】テープ上に生成した超電導合金は弱くもろ
いので、非超電導金属の外側層(ラミナ)をテープに重
ねて積層型超電導体を形成する。この積層型超電導体は
強く、超電導材料を損傷することなくコイルに巻くこと
ができる。たとえば、ニオブホイルの比較的薄いテープ
をすずで処理して、テープの両表面にニオブ3・すずの
密着層を形成する。ほぼ同じ幅の銅テープを超電導テー
プの主面それぞれにはんだ付けして、対称な積層構造を
形成する。銅とニオブ−ニオブ3・すずテープの熱膨張
係数に差があるので、もろい金属間化合物は常温でも圧
縮下におかれ、コイル巻きの際の機械的破断の危険が小
さくなる。
Since the superconducting alloy formed on the tape is weak and brittle, the outer layer (lamina) of non-superconducting metal is laminated on the tape to form a laminated superconductor. This laminated superconductor is strong and can be wound into a coil without damaging the superconducting material. For example, a relatively thin tape of niobium foil is treated with tin to form a niobium 3 tin adhesion layer on both surfaces of the tape. Copper tapes of approximately the same width are soldered to each of the main surfaces of the superconducting tape to form a symmetrical laminated structure. Since there is a difference in the coefficient of thermal expansion between copper and niobium-niobium-3.tin tape, the brittle intermetallic compound remains under compression even at room temperature, and the risk of mechanical breakage during coil winding is reduced.

【0007】銅の外側層はテープにいくつかの他の重要
な機能を果たす。超電導テープへの電流負荷が臨界電流
密度Jcを越えると、テープは普通の抵抗状態に追いや
られ、多量の熱が発生するが、この熱を迅速に放散しな
いと、テープが損傷される。銅の外側層は、ニオブ3・
すずが非超電導になったときに、代わりの通常の電流通
路を与え、発生する熱を減らす。銅の外側層は熱的冷却
通路も与え、ニオブ3・すずを超電導体の臨界温度以下
に下げる。銅の外側層が超電導テープにそのような効果
を発揮するためには、ニオブ3・すずと銅外側層との間
に強い均一な結合が必要である。
The copper outer layer serves several other important functions in the tape. When the current load on the superconducting tape exceeds the critical current density Jc, the tape is forced into a normal resistance state and a large amount of heat is generated, but if this heat is not dissipated quickly, the tape will be damaged. The outer layer of copper is niobium 3.
When tin becomes non-superconducting, it provides an alternative normal current path to reduce the heat generated. The copper outer layer also provides thermal cooling passages to lower the niobium-3.tin below the critical temperature of the superconductor. In order for the copper outer layer to exert such an effect on the superconducting tape, a strong and uniform bond between the niobium-3.tin and the copper outer layer is required.

【0008】[0008]

【発明の目的】この発明の目的は、すぐれた電流容量を
有するニオブ3・すず超電導体を形成する方法を提供す
ることにある。この発明の他の目的は、積層したニオブ
3・すずテープの非超電導外側層とニオブ3・すず内側
層との間に良好なはんだ結合を提供することにある。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for forming a niobium-3.tin superconductor having excellent current capacity. Another object of the invention is to provide good solder bonding between the non-superconducting outer layer and the niobium 3 tin inner layer of the laminated niobium 3 tin tin tape.

【0009】[0009]

【発明の概要】この発明の方法は、すぐれた電流容量を
有するニオブ3・すず超電導体を形成する。ニオブテー
プをすず浴で被覆し、被覆テープを反応焼鈍(アニー
ル)してニオブ3・すずを形成することにより、超電導
ニオブ3・すずテープを形成する。この発明の方法で
は、ニオブテープを約5−25重量%の鉛、約5−25
重量%の銅および残部量のすずから実質的になるすず浴
で被覆する。鉛−銅−すず合金被覆は、被覆テープの反
応焼鈍中に微粒子ニオブ3・すずの迅速な形成を促進す
る。ニオブ3・すずの微細な結晶粒度は、超電導テープ
の電流容量を向上させる。反応焼鈍後にニオブ3・すず
上に残る鉛−銅−すず合金被覆は、非超電導外側層のニ
オブ3・すずへのはんだ結合も向上させる。
SUMMARY OF THE INVENTION The method of the present invention forms a niobium 3 tin superconductor having excellent current carrying capacity. The superconducting niobium-3.tin tape is formed by coating the niobium tape with a tin bath and subjecting the coated tape to reaction annealing to form niobium-3.tin. In the method of this invention, the niobium tape is about 5-25% by weight lead, about 5-25%.
Coat with a tin bath consisting essentially of copper by weight and the balance tin. The lead-copper-tin alloy coating promotes rapid formation of particulate niobium 3 tin during the reactive annealing of the coated tape. The fine grain size of niobium 3 tin improves the current capacity of the superconducting tape. The lead-copper-tin alloy coating that remains on the niobium 3 tin after reaction annealing also improves the solder bonding of the non-superconducting outer layer to the niobium 3 tin.

【0010】[0010]

【詳しい説明】ニオブ3・すずテープは当業界でよく知
られており、たとえば、アイ・イー・イー・イー・トラ
ンザクションズ・オブ・マグネティクス(I.E.E.
E. Transactions of Magnet
ics)MAG−2巻,4号,1966年12月,pp
760−764のエム.ベンツの論文「拡散処理したニ
オブ−すずテープの超電導特性」(Supercond
uctingProperties of Diffu
sion Processed Niobium−Ti
n Tape)に記載されている。
Detailed Description Niobium 3 tin tape is well known in the art, for example, IEE Transactions of Magnetics (IEE).
E. Transactions of Magnet
ics) MAG-2, No. 4, December 1966, pp.
760-764. Benz's paper "Superconducting properties of diffusion-treated niobium-tin tape" (Supercond)
uctingProperties of Diffu
sion Processed Niobium-Ti
n Tape).

【0011】連続な長尺のニオブ3・すずテープを形成
する方法が知られており、たとえば、英国特許第1,3
42,726号および第1,254,542号に記載さ
れている。この方法を図1−4を参照して説明する。ジ
ルコニウム、アルミニウム、ハフニウム、チタンおよび
バナジウムよりなる群から選んだ約5原子%以下の金属
と約5000ppm以下の酸素を含有するニオブテープ
2を、約45重量%以下の銅を含有する溶融すず浴と接
触させて皮膜4を形成する。あるいはまた、すずと銅を
別々にニオブワイヤまたはテープの上に、少なくとも部
分的にめっきにより堆積してもよい。さらに、すずと銅
をニオブワイヤまたはテープに電解法または化学法によ
り適用してもよい。
A method for forming a continuous long niobium 3 tin tape is known, for example, British Patent Nos. 1,3.
42,726 and 1,254,542. This method will be described with reference to FIGS. Niobium tape 2 containing about 5 atomic% or less of a metal selected from the group consisting of zirconium, aluminum, hafnium, titanium and vanadium and about 5000 ppm or less of oxygen, and a molten tin bath containing about 45% by weight or less of copper. The film 4 is formed by bringing them into contact with each other. Alternatively, tin and copper may be separately deposited at least partially on the niobium wire or tape by plating. In addition, tin and copper may be applied electrolytically or chemically to the niobium wire or tape.

【0012】被覆したニオブテープ10を約850−1
100°Cで反応焼鈍して、ニオブ基板を被覆と反応さ
せ、ニオブテープ2の両側にニオブ3・すずの層6を形
成する。図3に示すように過剰な皮膜4’がニオブ3・
すず層6をおおう。残りのニオブテープ2’の厚さは、
ニオブ3・すず層6を形成する皮膜との反応で減少す
る。非超電導性外側層8を反応済みテープに、たとえ
ば、はんだ付けにより結合し、強度と成形性の改良され
た積層ニオブ3・すずテープ14を形成する。たとえ
ば、はんだを外側層8およびニオブ3・すずテープ12
に付着させ、外側層8およびニオブ3・すずテープ12
を接触させ、適当なはんだ付け温度に加熱して積層ニオ
ブ3・すずテープ14を形成する。
About 850-1 coated niobium tape 10
Reactive annealing at 100 ° C. reacts the niobium substrate with the coating to form niobium 3 tin layer 6 on both sides of niobium tape 2. As shown in FIG. 3, the excess film 4'is niobium 3.
Cover tin layer 6. The thickness of the remaining niobium tape 2'is
It is reduced by the reaction with the film forming the niobium 3 / tin layer 6. The non-superconducting outer layer 8 is bonded to the reacted tape, for example by soldering, to form a laminated niobium 3 tin tape 14 with improved strength and formability. For example, solder may be applied to the outer layer 8 and the niobium 3 tin tape 12
To the outer layer 8 and niobium 3 tin tape 12
And are heated to an appropriate soldering temperature to form a laminated niobium-3.tin tape 14.

【0013】この発明の方法を、やはり図1−4を参照
しながら、説明する。本発明者は、ニオブテープ2を、
好ましくは約8−10重量%の鉛、約8−10重量%の
銅および残部量のすずから実質的になるすず浴で被覆し
て、皮膜4を形成する場合、被覆したテープを反応焼鈍
して、電流容量の改良されたニオブ3・すずの層6を形
成できることを見出した。ニオブテープ2上の鉛−銅−
すず合金皮膜4が均一で連続であり、被覆量約0.01
−0.03g/cm2 であるのが好ましい。その上、反
応焼鈍後にニオブ3・すず上に残っている鉛−銅−すず
合金の残留(余分な)皮膜4’は、ニオブ3・すずテー
プ12を外側層8にはんだ付けして積層ニオブ3・すず
テープ14を形成するときに、良好なはんだ結合を与え
る。
The method of the present invention will be described with reference also to FIGS. 1-4. The present inventor
When coated to form a coating 4, preferably a tin bath consisting essentially of about 8-10 wt% lead, about 8-10 wt% copper and the balance tin, the coated tape is reactive annealed. It has been found that a niobium 3 / tin layer 6 having an improved current capacity can be formed. Lead on Niobium Tape 2 -Copper-
The tin alloy film 4 is uniform and continuous, and the coating amount is about 0.01
It is preferably −0.03 g / cm 2 . Moreover, the residual (extra) coating 4'of the lead-copper-tin alloy remaining on the niobium 3 tin after reaction annealing is obtained by soldering the niobium 3 tin tape 12 to the outer layer 8 to form the laminated niobium 3 -Provides good solder joints when forming the tin tape 14.

【0014】ニオブテープ2は、ジルコニウム、ハフニ
ウム、モリブデン、ウラン、レニウムまたはこれらの混
合物よるなる群から選んだ約5原子%以下の溶質、約1
0原子%以下の酸素、残部量のニオブおよび不可避的不
純物から構成するのがよい。ニオブテープが、約1−2
原子%の溶質および約2−4原子%の酸素を含有するの
が好ましい。ニオブテープ表面の酸化およびニオブテー
プの内部酸化は、当業界で知られた通常の手段により、
たとえば、英国特許第1,342,726号に記載され
ているように、行うことができる。陽極酸化に続いて不
活性雰囲気中で焼鈍するのが、ニオブテープに酸素を導
入する手段として好適である。適当なニオブテープ2は
厚さ約10−50ミクロン、幅約0.076−5cmで
ある。
The niobium tape 2 contains about 5 atomic% or less of a solute selected from the group consisting of zirconium, hafnium, molybdenum, uranium, rhenium and mixtures thereof, about 1
It is preferably composed of 0 atomic% or less of oxygen, the balance of niobium, and inevitable impurities. Niobium tape is about 1-2
It preferably contains at.% Solute and about 2-4 at.% Oxygen. Oxidation of the niobium tape surface and internal oxidation of the niobium tape is accomplished by conventional means known in the art.
This can be done, for example, as described in British Patent No. 1,342,726. Annealing in an inert atmosphere following anodic oxidation is a suitable means for introducing oxygen into the niobium tape. A suitable niobium tape 2 is about 10-50 microns thick and about 0.076-5 cm wide.

【0015】適当な陽極酸化法では、導体、すなわちニ
オブテープを適当な電解浴中で陽極として接続する。電
解酸化の結果、テープの表面上に酸化ニオブNb2 5
フィルムが生成する。酸化物フィルムを保持するテープ
を不活性雰囲気、たとえばアルゴン中で加熱し、酸素を
テープ中に拡散させる。酸素の望ましい濃度、たとえば
約10原子%以下をテープ本体に拡散させ、テープ表面
を酸化物なしとする。酸素がテープ中の溶質元素と結合
すると考えられる。
In a suitable anodization process, a conductor, ie niobium tape, is connected as an anode in a suitable electrolytic bath. As a result of electrolytic oxidation, niobium oxide Nb 2 O 5 is formed on the surface of the tape.
A film is produced. The tape holding the oxide film is heated in an inert atmosphere such as argon to diffuse oxygen into the tape. A desired concentration of oxygen, eg, about 10 atomic% or less, is diffused into the tape body, leaving the tape surface free of oxides. It is believed that oxygen combines with the solute elements in the tape.

【0016】ニオブテープ2を被覆するには、テープを
鉛−銅−すず合金よりなる溶融すず浴に通す。好ましく
は、皮膜4を十分に厚くし、ニオブテープの約90%ま
でと反応し、残りの(余りの)皮膜4’をニオブ3・す
ず6上に残すようにする。被覆したテープ10を不活性
雰囲気中で、ニオブ3・すず超電導体6を形成するのに
十分な時間、たとえば約20−300秒熱処理する。好
ましくは、ニオブテープが完全に反応する前に、反応焼
鈍を停止して、ニオブテープに脆いニオブ3・すず6を
支えるニオブコア2’が残り、そして残存する皮膜4’
がニオブ3・すず6をおおうようにする。
To coat the niobium tape 2, the tape is passed through a molten tin bath of lead-copper-tin alloy. Preferably, the coating 4 is sufficiently thick so that it reacts with up to about 90% of the niobium tape, leaving the remaining (remaining) coating 4'on the niobium 3 tin 6. The coated tape 10 is heat treated in an inert atmosphere for a time sufficient to form the niobium-3.tin superconductor 6, eg, about 20-300 seconds. Preferably, before the niobium tape completely reacts, the reaction annealing is stopped to leave the niobium core 2'supporting the brittle niobium 3 and tin 6 on the niobium tape, and the remaining coating 4 '.
Cover niobium 3 and tin 6.

【0017】反応済みテープ12を、熱膨張係数がニオ
ブ3・すずより大きい金属、好ましくは銅の2つの非超
電導外側層8の間にはんだ付けする。外側層8はテープ
12とだいたい同じ幅で、厚さ約75−150μmであ
る。はんだ結合は、たとえば図5に示すように行うこと
ができる。ニオブ3・すずテープ12と2つの外側層8
を、約230−250°Cに加熱したはんだ浴20に導
入する。整合用ローラにより浴20内でテープ12を外
側層8と対称に整合させ、接触させる。ローラワイパ2
2により余分なはんだを除去するとともに、テープ12
と外側層8を圧力下で密着させ、両者間にはんだ結合を
形成し、こうして積層ニオブ3・すずテープ14を形成
する。
The reacted tape 12 is soldered between two non-superconducting outer layers 8 of a metal having a coefficient of thermal expansion greater than that of niobium-3.tin, preferably copper. The outer layer 8 is about the same width as the tape 12 and is about 75-150 μm thick. Solder bonding can be performed as shown in FIG. 5, for example. Niobium 3 tin tape 12 and two outer layers 8
Is introduced into the solder bath 20 heated to about 230-250 ° C. The alignment roller symmetrically aligns and contacts the tape 12 with the outer layer 8 in the bath 20. Roller wiper 2
2 to remove excess solder and tape 12
The outer layer 8 and the outer layer 8 are brought into close contact with each other under pressure to form a solder bond therebetween, thus forming a laminated niobium 3 / tin tape 14.

【0018】再び図3−4に戻ると、好ましくは、約3
7重量%の鉛および残部量のすずよりなる通常の鉛−す
ずはんだを用いて、外側層8をニオブ3・すずテープ1
2に結合する。鉛−銅−すず皮膜の残存層4’が、ニオ
ブ3・すずテープ12と外側層8との間に良好なはんだ
結合を達成する。はんだ結合の形成しやすさと、はんだ
結合の均一性および強度とを、鉛−銅−すず合金よりな
る残存皮膜4’により改良する。たとえば、鉛−銅−す
ず合金よりなる残存皮膜4’を用いると、すずまたは銅
−すず合金よりなる残存皮膜4’と較べて、はんだ結合
をより低い温度であるいはより短い時間で形成すること
ができる。その結果、外側層8がより高い強度に維持さ
れるので、ニオブ3・すず6はより高い圧縮レベルに維
持され、そして積層したニオブ3・すずテープ14は成
形性がより良好になる。
Returning again to FIGS. 3-4, preferably about 3
The outer layer 8 was made of niobium-3.tin tape 1 using a conventional lead-tin solder consisting of 7% by weight of lead and the balance of tin.
Combine to 2. The residual layer 4 ′ of the lead-copper-tin film achieves a good solder bond between the niobium 3 · tin tape 12 and the outer layer 8. The easiness of forming a solder bond and the uniformity and strength of the solder bond are improved by the residual film 4 ′ made of a lead-copper-tin alloy. For example, the use of a lead-copper-tin alloy residual coating 4'can form a solder bond at a lower temperature or in a shorter time than a tin or copper-tin alloy residual coating 4 '. it can. As a result, the outer layer 8 is maintained at a higher strength so that the niobium 3 tin 6 is maintained at a higher compression level, and the laminated niobium 3 tin tape 14 is better formable.

【0019】[0019]

【実施例の説明】この発明の方法のその他の特徴と効果
は以下の実施例に示す。以下の実施例で形成したニオブ
3・すずテープの電流密度は、当業界で周知の通常の4
プローブ抵抗測定法により測定した。簡単に説明する
と、2つの電圧プローブを超電導テープに短い距離離し
てはんだ付けした。電流リードを超電導テープに、電圧
プローブのそれぞれからさらに遠くではんだ付けした。
液体窒素で冷却し、ついで液体ヘリウムで冷却すること
により、ニオブ3・すずテープを4.2Kに冷却した。
磁界約5Tesla の磁石をテープ上に、磁界が超電導テー
プの電流通路に直角になるように、位置決めした。テー
プに電流を段階的に増加しながら流し、そしてテープ上
のプローブから電圧を記録した。この試験では、臨界電
流を、プローブ間に0.2μVの電圧差を生じる電流と
して定義した。
Description of Embodiments Other features and effects of the method of the present invention will be shown in the following embodiments. The current densities of the niobium 3 tin tapes formed in the following examples are normal 4 well known in the art.
It was measured by a probe resistance measuring method. Briefly, two voltage probes were soldered to the superconducting tape a short distance apart. The current leads were soldered to the superconducting tape further away from each of the voltage probes.
The niobium 3 tin tape was cooled to 4.2K by cooling with liquid nitrogen and then liquid helium.
A magnet with a magnetic field of about 5 Tesla was positioned on the tape so that the magnetic field was perpendicular to the current path of the superconducting tape. A current was ramped through the tape and the voltage recorded from a probe on the tape. In this test, the critical current was defined as the current that produced a voltage difference of 0.2 μV between the probes.

【0020】[0020]

【実施例1】幅約25mm、厚さ約25μmで、約1.
0重量%のジルコニウムを含有するニオブテープを、テ
レダイン・ワ・チャン(Teledyne WahCh
ang、米国オレゴン州アルバニー)から入手した。こ
のニオブテープを陽極酸化するため、約90°Cに加熱
した約7g/リットルの硫酸ナトリウムを含有する水性
浴にテープを通した。145Vの電位を陽極としてのテ
ープとステンレス鋼陰極との間に印加した。こうしてテ
ープを浴内で約約305cm/分(10フィート/分)
の速度で陽極酸化した。陽極酸化したテープを長さ約9
1cm/分(3フィート)の加熱区域を有する管炉に
61cm/分(2フィート/分)の速度で通し、アルゴ
ン雰囲気中で1000°Cに加熱した。テープ表面上の
酸化ニオブを分解して、金属ニオブの実質的に酸化物を
含まないテープ表面を形成し、酸素をテープの内部に拡
散させた。
Example 1 A width of about 25 mm, a thickness of about 25 μm, and a thickness of about 1.
Niobium tape containing 0% by weight of zirconium was applied to Teledyne WahCh
ang, Albany, Oregon, USA). To anodize the niobium tape, the tape was passed through an aqueous bath containing about 7 g / liter sodium sulfate heated to about 90 ° C. A potential of 145 V was applied between the tape as the anode and the stainless steel cathode. In this way the tape is about 305 cm / min (10 ft / min) in the bath
Anodized at a rate of. Length of anodized tape about 9
Approximately for tube furnaces with a heating area of 1 cm / min (3 ft)
It was passed at a rate of 61 cm / min (2 ft / min) and heated to 1000 ° C in an argon atmosphere. Niobium oxide on the tape surface was decomposed to form a substantially oxide-free tape surface of metallic niobium and oxygen was diffused inside the tape.

【0021】内部酸化テープのサンプルを、約16.6
重量%の銅、残部量のすずおよび不可避的不純物からな
るすず浴と接触させた。すず浴を約1050°Cに加熱
し、テープを浴に約305cm/分(10フィート/
分)の速度で通して、テープ表面に約0.03g/cm
2 のすず−銅合金の密着連続フィルムを生成した。すず
被覆テープをアルゴン雰囲気の管炉中で、1000−1
150°Cの範囲の温度で、25−600秒の種々の反
応時間熱処理した。反応済みテープは、テープの各側面
に約2.6−10.8μmのニオブ3・すず反応層を有
し、テープのコアに約1−22μmの未反応ニオブを有
した。各テープサンプルについて、反応温度、反応時
間、ニオブ3・すずの厚さ、臨界電流の測定特性すなわ
ち電流密度を表Iに示す。
A sample of the internal oxidation tape was used for about 16.6.
Contact was made with a tin bath consisting of copper by weight, balance tin and unavoidable impurities. The tin bath was heated to about 1050 ° C and the tape was placed in the bath at about 305 cm / min (10 ft / min).
Through at a rate of minute), about 0.03 g / cm on the tape surface
A continuous tin-copper alloy film of 2 was produced. Put the tin coated tape in a tube furnace in an argon atmosphere at 1000-1.
Heat treatment was performed at a temperature in the range of 150 ° C. for various reaction times of 25-600 seconds. The reacted tape had about 2.6-10.8 μm niobium-3.tin reaction layer on each side of the tape and about 1-22 μm unreacted niobium on the core of the tape. Table I shows the measurement characteristics of the reaction temperature, the reaction time, the thickness of niobium-3.tin and the critical current, that is, the current density, for each tape sample.

【0022】[0022]

【表1】 (表 I) サンプル 反応温度 反応時間 Nb3 Sn 5テスラでのJc 番号 (°C) (sec) 厚さ(μm) (×10 5 A/cm 2 1 1000 150 2.6 7.01 2 1000 300 4.3 10.3 3 1000 500 8.1 9.59 4 1000 600 9.7 8.76 5 1050 180 6.1 8.04 6 1150 25 2.6 6.25 7 1150 50 4.1 9.15 8 1150 75 8.1 6.74 9 1150 100 10.8 7.41[Table 1] (Table I) Sample reaction temperature Reaction time Jc number (° C) (sec) Thickness (μm) (× 10 5 A / cm 2 ) 1 Nb 3 Sn 5 Tesla 1 1000 150 2.6 7 0.012 1000 300 4.3 10.3 3 1000 500 8.1 9.5 9 4 1000 1000 600 9.7 8.76 5 1050 180 180 6.1 8.04 6 1150 25 2.6 6.25 7 1150 50 4.1 9.15 8 1150 75 75 8.1 6.74 9 1150 100 10.8 7.41

【0023】[0023]

【実施例2】すず浴が約8.8重量%の銅、8.8重量
%の鉛、残部量のすずおよび不可避的不純物からなるこ
と以外は、実施例1と同じ方法で、ニオブ3・すず超電
導テープのサンプルを形成した。反応温度、反応時間、
ニオブ3・すずの厚さ、そして測定した特性を表IIに
示す。
Example 2 Niobium 3 was prepared in the same manner as in Example 1 except that the tin bath consisted of about 8.8% by weight copper, 8.8% by weight lead, balance tin and inevitable impurities. A sample of tin superconducting tape was formed. Reaction temperature, reaction time,
The thickness of niobium 3 tin and the measured properties are shown in Table II.

【0024】[0024]

【表2】 (表 II) サンプル 反応温度 反応時間 Nb3 Sn 5テスラでのJc 番号 (°C) (sec) 厚さ(μm) (×10 5 A/cm 2 10 1050 150 3.3 11.47 11 1050 200 5.1 10.77 12 1050 250 6.8 11.84 表Iと表IIのデータを比較すると、鉛−銅−すず合金
被覆から形成したニオブ3・すずの電流密度が、銅−す
ず被覆から形成したニオブ3・すずより大きいことがわ
かる。この発明の方法により形成したニオブ3・すずテ
ープのすぐれた電流容量が、図6および図7を参照する
と、さらによくわかる。図6および図7は、銅−すず合
金で被覆したニオブテープおよび鉛−銅−すず合金で被
覆したニオブテープをそれぞれ反応させて形成したニオ
ブ3・すずテープについて、電流密度と反応時間との関
係および電流密度とNb3 Sn層の厚さとの関係を示す
グラフである。
(Table 2) (Table II) Sample reaction temperature Reaction time Jc number (° C) (sec) Thickness (μm) (× 10 5 A / cm 2 ) 10 1050 150 3.3 11 at Nb 3 Sn 5 Tesla 0.47 11 1050 200 5.1 10.77 12 1050 250 6.8 11.84 Comparing the data in Tables I and II, the current density of niobium 3 tin formed from the lead-copper-tin alloy coating was found to be copper. It can be seen that it is larger than niobium 3 · tin formed from the tin coating. The excellent ampacity of the niobium 3 tin tape formed by the method of the present invention can be better understood with reference to FIGS. 6 and 7. FIGS. 6 and 7 show the relationship between the current density and the reaction time for the niobium 3 · tin tape formed by reacting the niobium tape coated with the copper-tin alloy and the niobium tape coated with the lead-copper-tin alloy, respectively. 3 is a graph showing the relationship between the current density and the thickness of the Nb 3 Sn layer.

【0025】実施例1の方法により形成したニオブ3・
すずテープの約100のサンプルの電流密度を平均し
て、図6および図7の白丸で示す曲線を得た。ニオブが
銅−すず合金被覆と反応する反応時間が増加するにつれ
て、ニオブ3・すず層に結晶粒が成長するため、ニオブ
3・すずの電流密度が減少することがわかる。しかし、
ニオブを鉛−銅−すず合金被覆と反応させることにより
形成したニオブ3・すず超電導体は、反応時間が増加し
ても、細かい結晶粒度を維持し、電流密度が従来のニオ
ブ3・すず超電導体より向上している。
Niobium 3 formed by the method of Example 1
The current densities of about 100 samples of tin tape were averaged to obtain the curves indicated by white circles in FIGS. 6 and 7. It can be seen that as the reaction time for the niobium to react with the copper-tin alloy coating increases, the crystal grain grows in the niobium-3.tin layer, so that the current density of niobium-3.tin decreases. But,
A niobium-3.tin superconductor formed by reacting niobium with a lead-copper-tin alloy coating maintains a fine grain size even if the reaction time increases, and has a current density of the conventional niobium-3.tin superconductor. It's getting better.

【図面の簡単な説明】[Brief description of drawings]

【図1】ニオブテープの側面図である。FIG. 1 is a side view of a niobium tape.

【図2】すず合金で被覆したニオブテープの側面図であ
る。
FIG. 2 is a side view of a niobium tape coated with a tin alloy.

【図3】反応焼鈍したニオブ3・すずテープの側面図で
ある。
FIG. 3 is a side view of a reaction-annealed niobium-3.tin tape.

【図4】反応焼鈍したニオブ3・すずテープを非超電導
外側層にはさんだ構造の側面図である。
FIG. 4 is a side view of a structure in which a reaction-annealed niobium-3.tin tape is sandwiched between non-superconducting outer layers.

【図5】この発明の方法を説明するはんだ浴を含む被覆
装置の図である。
FIG. 5 is a diagram of a coating apparatus including a solder bath illustrating the method of the present invention.

【図6】銅−すず合金で被覆したニオブテープおよび鉛
−銅−すず合金で被覆したニオブテープそれぞれから形
成したニオブ3・すず超電導体について、電流密度と反
応時間との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the current density and the reaction time for niobium 3 tin superconductors formed from a niobium tape coated with a copper-tin alloy and a niobium tape coated with a lead-copper-tin alloy. .

【図7】銅−すず合金で被覆したニオブテープおよび鉛
−銅−すず合金で被覆したニオブテープそれぞれから形
成したニオブ3・すず超電導体について、電流密度と結
晶粒度との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the current density and the grain size of niobium 3 tin superconductors formed from a niobium tape coated with a copper-tin alloy and a niobium tape coated with a lead-copper-tin alloy. .

【符号の説明】[Explanation of symbols]

2 ニオブテープ 2’ 残存ニオブテープ 4 皮膜 4’ 残存皮膜 6 ニオブ3・すず 8 外側層 10 被覆ニオブテープ 12 ニオブ3・すずテープ 14 積層したニオブ3・すずテープ 20 はんだ浴 22 ローラワイパ 2 Niobium tape 2'Residual niobium tape 4 Coating 4'Residual coating 6 Niobium 3 tin 8 Outer layer 10 Coated niobium tape 12 Niobium 3 tin tape 14 Laminated niobium 3 tin tape 20 Solder bath 22 Roller wiper

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−139215(JP,A) 米国特許3429032(US,A) 英国特許1254542(GB,A) 英国特許1342726(GB,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-62-139215 (JP, A) US Patent 3429032 (US, A) UK Patent 1254542 (GB, A) UK Patent 1342726 (GB, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニオブテープをすず浴で被覆し、被覆し
たテープを反応させてニオブ3・すずを形成する工程を
含むニオブ3・すず超電導テープの形成方法において、 ニオブテープを約5−25重量%の鉛、約5−25重量
%の銅および残部量のすずから実質的になるすず浴で被
覆することを特徴とするニオブ3・すず超電導テープの
形成方法。
1. A coated niobium tape in tin bath, in triniobium tin superconducting tape forming method comprising the step of forming the coated by reacting tape triniobium tin, about 5-25 weight niobium tape % Tin, about 5-25% by weight copper and the balance tin, a coating of a tin bath consisting essentially of niobium 3 tin superconducting tape.
【請求項2】 ニオブテープが約1−2原子%のジルコ
ニウムおよび約2−4原子%の酸素を含有する請求項1
に記載のニオブ3・すず超電導テープの形成方法。
2. The niobium tape contains about 1-2 atomic% zirconium and about 2-4 atomic% oxygen.
The method for forming the niobium 3 tin superconducting tape according to 1.
【請求項3】 ニオブ3・すずテープがすず浴被覆の過
剰な層を有し、これを銅外側薄層にはんだ付けすること
を含む請求項1に記載のニオブ3・すず超電導テープの
形成方法。
3. A method of forming a niobium-3.tin superconducting tape according to claim 1, wherein the niobium-3.tin tape has an excess layer of tin bath coating, which comprises soldering it to a thin copper outer layer. .
【請求項4】 ジルコニウム、ハフニウム、モリブデ
ン、ウラン、レニウムまたはこれらの混合物よるなる群
から選んだ約5原子%以下の溶質と約10原子%以下の
酸素を含有するニオブテープをすず浴で被覆し、被覆し
たテープを反応させてニオブ3・すずを形成する工程を
含むニオブ3・すず超電導テープの形成方法において、 ニオブテープを約5−25重量%の鉛、約5−25重量
%の銅および残部量のすずから実質的になるすず浴で被
覆することを特徴とするニオブ3・すず超電導テープの
形成方法。
4. A tin bath is coated with a niobium tape containing not more than about 5 atomic% of solute and not more than about 10 atomic% oxygen selected from the group consisting of zirconium, hafnium, molybdenum, uranium, rhenium or a mixture thereof. In a method for forming a niobium-3.tin superconducting tape, the method comprising reacting the coated tape to form niobium-3.tin, wherein the niobium tape comprises about 5-25 wt% lead, about 5-25 wt% copper and A method for forming a niobium-3.tin superconducting tape, which comprises coating with a tin bath which substantially consists of the balance of tin.
【請求項5】 ニオブ3・すずテープがすず浴被覆の過
剰な層を有し、これを銅外側薄層にはんだ付けすること
を含む請求項4に記載のニオブ3・すず超電導テープの
形成方法。
5. A method of forming a niobium-3.tin superconducting tape according to claim 4, wherein the niobium-3.tin tape has an excess layer of tin bath coating, which is soldered to a copper outer thin layer. .
JP4166513A 1991-06-28 1992-06-25 Method for forming niobium-3 / tin superconductor Expired - Lifetime JPH0799652B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72301791A 1991-06-28 1991-06-28
US723017 1991-06-28

Publications (2)

Publication Number Publication Date
JPH05198227A JPH05198227A (en) 1993-08-06
JPH0799652B2 true JPH0799652B2 (en) 1995-10-25

Family

ID=24904459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166513A Expired - Lifetime JPH0799652B2 (en) 1991-06-28 1992-06-25 Method for forming niobium-3 / tin superconductor

Country Status (2)

Country Link
JP (1) JPH0799652B2 (en)
GB (1) GB2257437B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690143A1 (en) * 1994-06-27 1996-01-03 General Electric Company Method of coating niobium foil
US5505790A (en) * 1994-09-09 1996-04-09 General Electric Company Method for enhancing critical current of triniobium tin
US6358331B1 (en) * 1995-04-03 2002-03-19 General Electric Company Method for improving quality of triniobium tin superconductor in manufacturing environment by controlling iron content in molten tin bath
US5540787A (en) * 1995-06-14 1996-07-30 General Electric Company Method of forming triniobium tin superconductor
GB2308490A (en) * 1995-12-18 1997-06-25 Oxford Instr Ltd Superconductor and energy storage device
CN110560817A (en) * 2019-08-26 2019-12-13 苏州新材料研究所有限公司 continuous soldering device for superconducting materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2104952A1 (en) * 1970-02-04 1971-08-12 Plessey Handel Investment Ag Superconducting alloy in particular for the production of wire or strip material and flux concentrators and processes for their production
JPS55107769A (en) * 1979-02-09 1980-08-19 Natl Res Inst For Metals Manufacture of nb3 sn diffused wire

Also Published As

Publication number Publication date
GB2257437A (en) 1993-01-13
JPH05198227A (en) 1993-08-06
GB2257437B (en) 1994-05-18
GB9213163D0 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
US5134040A (en) Melt formed superconducting joint between superconducting tapes
Tachikawa et al. Composite‐processed Nb3Sn with titanium addition to the matrix
US3372470A (en) Process for making composite conductors
US4108737A (en) Method of continuous production of a ductile superconducting material in the form of tapes, foils or wires
US5082164A (en) Method of forming superconducting joint between superconducting tapes
US6918172B2 (en) Process for manufacturing Nb3Sn superconductor
US5109593A (en) Method of melt forming a superconducting joint between superconducting tapes
US3537827A (en) Flexible superconductive laminates
JPH0799652B2 (en) Method for forming niobium-3 / tin superconductor
JP2959872B2 (en) Electrical contact material and its manufacturing method
JPS62113306A (en) Complex superconductor and manufacture of the same
EP1556906B1 (en) Constrained filament niobium-based superconductor composite and process of fabrication
Pourrahimi et al. Nb/sub 3/Al wire produced by powder metallurgy and rapid quenching from high temperatures
US20020020051A1 (en) Constrained filament niobium-based superconductor composite and process of fabrication
EP0613192A1 (en) Wire for NB3X superconducting wire
JPS5823110A (en) Method of producing nb3sn superconductive wire material
US3458293A (en) Metallic laminated superconductors
JP2016225288A (en) PRECURSOR WIRE MATERIAL FOR Nb3Al SUPERCONDUCTING WIRE MATERIAL AND Nb3Al SUPERCONDUCTING WIRE MATERIAL
US5522945A (en) Method for forming triniobium tin superconductor with bismuth
JPH04334815A (en) Niobium-tin superconductor containing hafnium oxide particle
JPH058276B2 (en)
US5843584A (en) Superconductive article and method of making
US5656380A (en) Superconductive article and method of making
JPH08212853A (en) Method for increase of critical current of triniobium stannate product
US3293076A (en) Process of forming a superconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960423

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 17