JPH0799358B2 - Gas detection method - Google Patents

Gas detection method

Info

Publication number
JPH0799358B2
JPH0799358B2 JP26891386A JP26891386A JPH0799358B2 JP H0799358 B2 JPH0799358 B2 JP H0799358B2 JP 26891386 A JP26891386 A JP 26891386A JP 26891386 A JP26891386 A JP 26891386A JP H0799358 B2 JPH0799358 B2 JP H0799358B2
Authority
JP
Japan
Prior art keywords
sensor
detection voltage
gas
resistance value
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26891386A
Other languages
Japanese (ja)
Other versions
JPS63121743A (en
Inventor
伸明 村上
Original Assignee
フイガロ技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フイガロ技研株式会社 filed Critical フイガロ技研株式会社
Priority to JP26891386A priority Critical patent/JPH0799358B2/en
Publication of JPS63121743A publication Critical patent/JPS63121743A/en
Publication of JPH0799358B2 publication Critical patent/JPH0799358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、金属酸化物半導体の抵抗値の変化を用いた
ガスセンサの温度変化を利用し、ガスを検出する方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for detecting a gas by utilizing a temperature change of a gas sensor using a change in resistance value of a metal oxide semiconductor.

[従来技術] 特公昭53−43,320号公報は、金属酸化物半導体の抵抗値
の変化を用いたガスセンサの温度を高温域と低温域とに
交互に変化させ、低温域での出力から特定のガスを検出
することを開示している。
[Prior Art] Japanese Examined Patent Publication No. 53-43,320 discloses that the temperature of a gas sensor using a change in the resistance value of a metal oxide semiconductor is alternately changed between a high temperature region and a low temperature region, and a specific gas is output from an output in a low temperature region. Is disclosed.

発明者はここで、センサの見かけの抵抗値が検出電圧、
即ちセンサの抵抗値の検出のため印加する電圧、に依存
することを見出だした。抵抗値の電圧依存性は、センサ
の2つの電極の間隔を縮める程著しく、またセンサと半
導体との接触面積を小さくする程著しい。さらにこの電
圧依存性はセンサ温度を下げる程著しく、雰囲気の湿度
を増す程増大する。従ってこの電圧依存性は温度に関係
した現象で、特にセンサへの吸着水、恐らくはセンサ中
の塩素イオン等の不純物と吸着水との相互作用、による
ものであろう。
The inventor here finds that the apparent resistance of the sensor is the detection voltage,
That is, it was found that it depends on the voltage applied to detect the resistance value of the sensor. The voltage dependency of the resistance value becomes more significant as the distance between the two electrodes of the sensor is reduced and the contact area between the sensor and the semiconductor is reduced. Further, this voltage dependency becomes more remarkable as the sensor temperature is lowered, and increases as the atmospheric humidity is increased. Therefore, this voltage dependence is a phenomenon related to temperature, and it may be due to the adsorbed water on the sensor, possibly the interaction between the adsorbed water and impurities such as chlorine ions in the sensor.

このような電圧依存性は、センサの湿度特性を低下さ
せ、また電源電圧依存性を増大させる。
Such voltage dependence deteriorates the humidity characteristics of the sensor and increases the power supply voltage dependence.

[発明の課題] この発明の課題は、ガスセンサの抵抗値の電圧依存性を
抑制し、ガスへの検出精度を向上させることに有る。
[Problem of the Invention] An object of the present invention is to suppress the voltage dependence of the resistance value of the gas sensor and improve the detection accuracy for gas.

[発明の構成] この発明では、金属酸化物半導体の抵抗値の変化を利用
したガスセンサに負荷抵抗を直列に接続し、ガスセンサ
の温度を高温域と抵抗域とに交互に変化させる。そして
低温域でのガスセンサ出力から、CO,アンモニア、NOx
のガスを検出する。ここでガスセンサと負荷抵抗との直
列片に印加する検出電圧を0.1〜1.5V、より好ましくは
0.1〜1.2Vとし、センサ抵抗の検出電圧依存性を抑制す
る。
[Configuration of the Invention] In the present invention, a load resistance is connected in series to a gas sensor that utilizes a change in the resistance value of a metal oxide semiconductor, and the temperature of the gas sensor is alternately changed between a high temperature range and a resistance range. Then, gases such as CO, ammonia and NO x are detected from the gas sensor output in the low temperature range. Here, the detection voltage applied to the series piece of the gas sensor and the load resistance is 0.1 to 1.5 V, more preferably
Set to 0.1 to 1.2V to suppress the dependency of the sensor resistance on the detection voltage.

第1図や第2図及び第2に示したように、低温域でのガ
スセンサの抵抗値には検出電圧への依存性がある。そし
て表2から明らかなように、検出電圧を1.5V以下とする
と、ガスセンサの抵抗値の検出電圧依存性は小さくな
り、特に1.2V以下では極めて小さくなる。一方検出電圧
を0.1V未満とすると出力が小さくなり扱い難いので、検
出電圧は0.1〜1.5V、より好ましくは0.1〜1.2Vとする。
As shown in FIG. 1, FIG. 2 and FIG. 2, the resistance value of the gas sensor in the low temperature range depends on the detection voltage. As is clear from Table 2, when the detection voltage is set to 1.5 V or less, the dependency of the resistance value of the gas sensor on the detection voltage becomes small, and particularly 1.2 V or less becomes extremely small. On the other hand, if the detection voltage is less than 0.1 V, the output is too small to handle, so the detection voltage is 0.1 to 1.5 V, and more preferably 0.1 to 1.2 V.

このような抵抗値の検出電圧依存性が生じるのは、吸着
水による表面伝導と関連した現象である。金属酸化物半
導体の本来の抵抗値は検出電圧に依存せず、依存するの
は吸着水による表面伝導である。そして検出電圧を増す
と表面伝導が生じ、ガスセンサの抵抗値は見かけ上減少
する。これは表2で検出電圧を2V以上にするとセンサの
見かけの電気伝導度が増加することや、第1図や第2図
で検出電圧(Vc)を2Vや5Vにすると、見かけの抵抗値
(Rs)が減少することから明らかである。
It is a phenomenon associated with the surface conduction by the adsorbed water that the resistance value depends on the detection voltage. The original resistance value of the metal oxide semiconductor does not depend on the detection voltage, and it depends on the surface conduction by the adsorbed water. When the detection voltage is increased, surface conduction occurs and the resistance value of the gas sensor apparently decreases. This is because the apparent electrical conductivity of the sensor increases when the detection voltage is set to 2 V or higher in Table 2, and the apparent resistance value (Vc) is set to 2 V or 5 V in Figs. 1 and 2. It is clear from the decrease in Rs).

抵抗値の検出電圧依存性が生じると、センサ抵抗の湿度
依存性が増加する。例えば第1図(清浄空気中)や第2
図(CO 100ppm中)において、鎖線は検出電圧が1Vでの
抵抗値を、破線は検出電圧が5Vでの抵抗値を、実線は検
出電圧が2Vでの抵抗値を示す。周囲の温度を一定とし、
相対湿度を3種類に変えて、抵抗値を測定したのが、第
1図,第2図である。同じ検出電圧での3本の線の間隔
は、センサの抵抗値の湿度依存性を表している。図から
明らかなように、検出電圧を増す程、湿度依存性は増加
する。これは、検出電圧を増すと吸着水による表面伝導
が生じ、表面伝導の程度は湿度で定まるためである。従
って検出電圧を1.5V以下とすると、電源電圧変動により
検出電圧が変化した際の誤差を除けるだけでなく、ガス
センサの湿度依存性を小さくし、検出精度を向上させる
ことができる。
When the detection voltage dependency of the resistance value occurs, the humidity dependency of the sensor resistance increases. For example, FIG. 1 (in clean air) and second
In the figure (in CO 100 ppm), the chain line shows the resistance value when the detection voltage is 1 V, the broken line shows the resistance value when the detection voltage is 5 V, and the solid line shows the resistance value when the detection voltage is 2 V. Keep the ambient temperature constant,
The relative humidity was changed to three types, and the resistance value was measured in FIGS. 1 and 2. The interval between the three lines at the same detection voltage represents the humidity dependence of the resistance value of the sensor. As is clear from the figure, the humidity dependency increases as the detection voltage increases. This is because when the detection voltage is increased, surface conduction occurs due to the adsorbed water, and the degree of surface conduction is determined by humidity. Therefore, if the detection voltage is set to 1.5 V or less, not only the error when the detection voltage changes due to the power supply voltage change can be eliminated, but also the humidity dependency of the gas sensor can be reduced and the detection accuracy can be improved.

[実施例] 第4図にガスセンサ(2)を示す。図において、
(4),(6)は一対のヒータ兼用電極で、ここでは線
径60μ程度のIr−Pd合金のコイルを用い、コイルの内径
は0.3mm、(好ましくは0.2〜0.5mm)とした。(8)は
ガスを吸着して抵抗値が変化する金属酸化物半導体で、
ここではSnO2とし、(10)はNOxを被検出ガスと反応さ
せ除去するためのNOx還元接触である。NOx還元接触(1
0)は、NOxを検出対象とする場合には不要である。NOx
還元接触(10)には、NOxとCOやアンモニア等の被検出
ガスを反応させNOxをN2に還元するものであれば、任意
の接触を用いることができる。還元接触(10)は例え
ば、RuO2やRh、Pd,Pt等の貴金属系のものや、Mn2O3、Cr
2O3等の遷移金属酸化物系のもの、あるいはこれにRuO2
等の貴金属を担持させたもの等も用い得る。しかしここ
では、半導体(8)と同じSnO2を用い、その厚さFを大
きくして(0.3mm)、接触として用いた。
[Example] FIG. 4 shows a gas sensor (2). In the figure,
(4) and (6) are a pair of electrodes that also serve as heaters. Here, an Ir-Pd alloy coil having a wire diameter of about 60 μ was used, and the inner diameter of the coil was 0.3 mm (preferably 0.2 to 0.5 mm). (8) is a metal oxide semiconductor whose resistance value changes by adsorbing gas,
Here, SnO 2 is used, and (10) is a NO x reducing contact for reacting and removing NO x with the gas to be detected. NO x reducing contact (1
0) is not necessary when NO x is the detection target. NO x
The reduction in contact (10), the NO x is reacted with a detector gas such as NO x and CO or ammonia as long as it is reduced to N 2, it is possible to use any contact. The reduction contact (10) is, for example, a noble metal-based material such as RuO 2 , Rh, Pd, or Pt, or Mn 2 O 3 , Cr.
2 O 3 and other transition metal oxides, or RuO 2
It is also possible to use those carrying a noble metal such as However, here, the same SnO 2 as the semiconductor (8) was used, and its thickness F was increased (0.3 mm) and used as a contact.

なおここではSnCl4をアンモニアで加水分解し600℃で焼
成したSnO2を用い、SnO2には金属換算で0.3wt%のパラ
ディウムを添加して、半導体(8)や還元接触(10)の
材料とした。
In addition, SnO 2 was used here, which was obtained by hydrolyzing SnCl 4 with ammonia and calcining at 600 ° C., and 0.3% by weight of palladium was added to SnO 2 as a material for semiconductor (8) and reduction contact (10). And

センサ抵抗の検出電圧依存性は、半導体と電極との接触
面積を増す程、減少する。そのめここでは2つの電極
(4),(6)をいずれもコイル状とした。また抵抗の
検出電圧依存性は、電極間隔Hを増す程、減少する。好
ましい電極間隔は0.4〜1mmで、これ以下では検出電圧依
存性が大きく、これ以上ではセンサの熱容量が増大し、
温度変化に必要な時間が増し、ガスの検出が遅れること
になる。
The detection voltage dependency of the sensor resistance decreases as the contact area between the semiconductor and the electrode increases. Therefore, both electrodes (4) and (6) are coiled here. Further, the dependency of the resistance on the detection voltage decreases as the electrode interval H increases. A preferable electrode interval is 0.4 to 1 mm, below which the detection voltage dependency is large, and above this, the heat capacity of the sensor increases,
This increases the time required for temperature changes and delays gas detection.

センサ抵抗の検出電圧依存性が電極間隔や検出電圧自体
に依存することは、センサ内部での電界の強さと検出電
圧依存性が関係することを意味する。また電極と半導体
との接触面積を減らすと検出電圧依存性が増すことは、
半導体と電極との接触抵抗に問題が有ること、および電
極付近での電界の集中が検出電圧依存性を増大させてい
ることを示唆する。
The dependence of the sensor resistance on the detection voltage depends on the electrode spacing and the detection voltage itself means that the strength of the electric field inside the sensor is related to the detection voltage dependence. Also, decreasing the contact area between the electrode and the semiconductor increases the detection voltage dependency.
This suggests that there is a problem with the contact resistance between the semiconductor and the electrode, and that the concentration of the electric field near the electrode increases the detection voltage dependence.

第5図に他のガスセンサ(12)を示す。(14)は線状の
貴金属電極、(16)はヒータ兼用のコイル状貴金属電
極、(18)は半導体、(20)はNOx還元触媒である。こ
こではコイル(16)の内径を0.6mmとし、NOx還元触媒
(20)はγ−アルミナに金属換算で3wt%のRuO2を担持
させたものを用いた。なお還元触媒(20)の厚さは0.2m
mとした。第5図のセンサ(12)では、第4図のセンサ
(2)に比べ、抵抗値の検出電圧依存性は大きい。これ
は中心電極(14)が線状で、その付近で電界が集中する
こと、電極面積がわずかで接触抵抗が増すことに基づ
く。なおセンサの形状には、これ以外にも任意のものを
用い得る。
FIG. 5 shows another gas sensor (12). (14) is a linear noble metal electrode, (16) is a coil-shaped noble metal electrode that also serves as a heater, (18) is a semiconductor, and (20) is a NO x reduction catalyst. Here, the inner diameter of the coil (16) was set to 0.6 mm, and the NO x reduction catalyst (20) used was γ-alumina carrying 3 wt% of RuO 2 in terms of metal. The thickness of the reduction catalyst (20) is 0.2m.
It was m. The sensor (12) shown in FIG. 5 has a greater dependency of the resistance value on the detected voltage than the sensor (2) shown in FIG. This is because the center electrode (14) is linear, the electric field is concentrated in the vicinity thereof, and the contact resistance is increased due to the small electrode area. The shape of the sensor may be any other shape.

第6図に検出回路の例を示す。図において、(30)は検
出電源で例えば0.1〜1.5V程度のものを用い、その出力
電圧を検出電圧(Vc)とする。(32)はヒータ電源で、
(34)は3KΩ程度の負荷抵抗、(36)はセンサの温度依
存性を補償するための負特性サーミスタ、(38)は作動
増幅器である。(40)はタイマ回路を内蔵した制御回路
で、これ自体は公知のものである。制御回路(40)は例
えば20秒周期で動作し、最初の10秒間はスイッチ(42)
を閉じセンサを高温域に加熱する。次の10秒間はスイッ
チ(42)を開放し、センサを冷却して低温域に保持す
る。低音域ではセンサの温度は徐々に低下し、10秒経過
直前にスイッチ(44)を閉じ、差動増幅器(38)の出力
をメモリー兼用のADコンバータ(46)に入力する。ADコ
ンバータでは差動増幅器(38)の出力を記憶し、表示装
置(48)を制御する。表示装置(48)には、例えば発光
ダイオードやメータ、あるいはブザー等を用いる。この
ような検出回路には多数のものが知られており、第6図
のものに限るものではない。
FIG. 6 shows an example of the detection circuit. In the figure, (30) is a detection power source, for example, a power source of about 0.1 to 1.5 V, and its output voltage is the detection voltage (Vc). (32) is the heater power supply,
(34) is a load resistance of about 3 KΩ, (36) is a negative characteristic thermistor for compensating the temperature dependence of the sensor, and (38) is an operational amplifier. (40) is a control circuit containing a timer circuit, which is a publicly known one. The control circuit (40) operates, for example, in a cycle of 20 seconds, and switches (42) for the first 10 seconds.
Close and heat the sensor to a high temperature range. For the next 10 seconds, the switch (42) is opened to cool the sensor and keep it in the low temperature range. In the low sound range, the temperature of the sensor gradually decreases, the switch (44) is closed immediately before the elapse of 10 seconds, and the output of the differential amplifier (38) is input to the AD converter (46) also serving as a memory. The AD converter stores the output of the differential amplifier (38) and controls the display device (48). A light emitting diode, a meter, a buzzer, or the like is used for the display device (48). A large number of such detection circuits are known, and the detection circuit is not limited to that shown in FIG.

検出電圧(Vc)への依存性を、第1図、第2図に示す。
センサは第4図のセンサ(2)で、電極間隔Hは0.5mm
である。時刻0までセンサ(2)は300℃に加熱されて
いるものとし、時刻0でヒータをオフし低温域へ移行さ
せる。横軸は時間、縦軸はセンサ抵抗、雰囲気は45℃
で、相対湿度は75%、15%、3%の3者である。第1図
には清浄空気中での特性を、第2図には100ppmのCO中で
の特性を示す。
The dependence on the detection voltage (Vc) is shown in FIGS. 1 and 2.
The sensor is the sensor (2) in Fig. 4, and the electrode interval H is 0.5 mm.
Is. It is assumed that the sensor (2) is heated to 300 ° C. until time 0, and the heater is turned off at time 0 to shift to the low temperature range. Horizontal axis is time, vertical axis is sensor resistance, atmosphere is 45 ° C
The relative humidity is 75%, 15%, and 3%. Figure 1 shows the characteristics in clean air, and Figure 2 shows the characteristics in 100ppm CO.

センサ(2)の抵抗値は湿度の影響を受ける。ここで検
出電圧を変化させると、抵抗の測定値も変化する。この
ような変化は清浄空気中で大きく、高湿度で大きい。そ
して抵抗値の検出電圧依存性は、低温側での時間の経過
と共に増大する。この現象はガスの検出精度を低下させ
る。またこの現象は低濃度のガス、例えば10〜30ppm程
度のCOを検出する場合に更に問題となる。なおここでは
SnO2を半導体に用いた例に付いて説明したが、この現象
はIn2O3やZnO等の他の半導体でも共通であった。なお第
1図の45℃相対湿度3%で検出電圧を2Vとした際の抵抗
値は、検出電圧を1Vとした際の結果と5Vとした際の結果
との中間に現れた。また以下では相対湿度を省略し、単
に%により示す。第2図で検出電圧2Vでの結果は、検出
電圧1Vと5Vでの結果の中間に現れた。
The resistance value of the sensor (2) is affected by humidity. If the detected voltage is changed here, the measured resistance value also changes. Such changes are significant in clean air and at high humidity. The dependency of the resistance value on the detected voltage increases with the passage of time on the low temperature side. This phenomenon reduces the gas detection accuracy. Further, this phenomenon becomes a further problem when a low concentration gas, for example, CO of about 10 to 30 ppm is detected. Note that here
An example of using SnO 2 as a semiconductor has been described, but this phenomenon is common to other semiconductors such as In 2 O 3 and ZnO. The resistance value when the detection voltage was 2 V at 45 ° C. and 3% relative humidity in FIG. 1 appeared between the results when the detection voltage was 1 V and 5 V. Also, in the following, relative humidity is omitted and is simply expressed by%. In FIG. 2, the result at the detection voltage of 2V appears in the middle of the results at the detection voltage of 1V and 5V.

第1図、第2図での特性はセンサ形状を工夫し、検出電
圧依存性を小さくした際のものである。第5図での結果
や、第4図のセンサ(2)で電極間隔Hを変えた際の結
果を表1に示す。雰囲気はいずれも20℃65%で、これは
45℃15%と同程度の絶対湿度であり、1Vの検出電圧での
センサの電気伝導度を基準とする5Vでの電気伝度を示
す。第4図のセンサでは電極間隔0.2mmと0.5mmとの間に
大きな変化が有り、また第5図のセンサでは中心電極
(14)と半導体との接触面積が小さいため検出電圧依存
性が大きい。
The characteristics shown in FIGS. 1 and 2 are obtained by devising the sensor shape to reduce the detection voltage dependency. Table 1 shows the results shown in FIG. 5 and the results when the electrode interval H was changed in the sensor (2) shown in FIG. The atmosphere is 20 ° C and 65%,
It has the same absolute humidity as 45 ° C and 15%, and shows the electric conductivity at 5V based on the electric conductivity of the sensor at the detection voltage of 1V. In the sensor of FIG. 4, there is a large change between the electrode intervals of 0.2 mm and 0.5 mm, and in the sensor of FIG. 5, the contact area between the center electrode (14) and the semiconductor is small, so that the detection voltage dependency is large.

表2に、2つのコイル状電極(4),(6)を用いたセ
ンサ(2)で、電極間隔を0.5mmに固定し、検出電圧を
変えた際の特性を示す。
Table 2 shows the characteristics of the sensor (2) using two coil-shaped electrodes (4) and (6) when the electrode interval is fixed to 0.5 mm and the detection voltage is changed.

表2から、検出電圧を小さくすると、抵抗値の検出電圧
依存性は減少し、特に1.5V、より好ましくは1.2V以下で
は、抵抗値の検出電圧依存性はほとんど問題とならない
ことが判る。
It can be seen from Table 2 that when the detection voltage is reduced, the dependency of the resistance value on the detection voltage is reduced, and particularly at 1.5 V, and more preferably 1.2 V or less, the dependency of the resistance value on the detection voltage hardly poses a problem.

第1図、第2図に戻ると、センサ抵抗の検出電圧依存性
は高湿側で増大することが判る。このことはセンサの湿
度依存性を更に悪化させる。
Returning to FIGS. 1 and 2, it can be seen that the detection voltage dependency of the sensor resistance increases on the high humidity side. This exacerbates the humidity dependence of the sensor.

次にCO中でのセンサ抵抗には、低温域への移行後10〜20
秒を中心としたボトムが依存する。一方空気中でのセン
サ抵抗には、低温度への移行後10〜20秒を中心としたピ
ークが存在する。この期間はセンサがCOに対する最大感
度を示す温度(80〜100℃)に対応し、この期間でCOを
検出することが好ましい。
Next, the sensor resistance in CO should be 10 to 20 after the transition to the low temperature range.
The bottom centered on the second depends. On the other hand, the sensor resistance in air has a peak around 10 to 20 seconds after the transition to low temperature. During this period, the sensor corresponds to the temperature (80 to 100 ° C.) at which the sensor has the maximum sensitivity to CO, and it is preferable to detect CO during this period.

第3図に、センサ(2)の加熱を10秒毎にオン−オフし
た際の温度特性を示す。センサ(2)は第4図のもの
で、室温は20℃である。電極間隔Hにより熱時定数が変
化し、低温域への温度変化に必要な時間も変化する。CO
やアンモニア等の検出にはセンサの温度変化が必要で、
熱時定数の増大は検出を遅らせる。従って電極間隔Hは
1mm以下、より好ましくは0.8mm以下とするのが良い。
FIG. 3 shows temperature characteristics when the heating of the sensor (2) is turned on and off every 10 seconds. The sensor (2) is that of Fig. 4 and the room temperature is 20 ° C. The thermal time constant changes depending on the electrode interval H, and the time required for changing the temperature to the low temperature range also changes. CO
The temperature of the sensor needs to be changed to detect ammonia, ammonia, etc.
Increasing the thermal time constant delays detection. Therefore, the electrode spacing H is
It is preferably 1 mm or less, more preferably 0.8 mm or less.

次にNOx還元触媒(10)の効果を示す。20℃、65%の雰
囲気で、100ppmのCO中でのセンサ抵抗と、これに50ppm
のNOを加えた雰囲気でのセンサ抵抗との比を求める。な
お測定値は低温域への移行後10秒目のものである。結果
を表3に示す。NOx還元触媒(10),(20)により、NOx
の影響を緩和することができる。
Next, the effect of the NO x reduction catalyst (10) will be shown. At 20 ℃, 65% atmosphere, sensor resistance in 100ppm CO and 50ppm
Calculate the ratio with the sensor resistance in the atmosphere with NO added. The measured value is 10 seconds after the transition to the low temperature range. The results are shown in Table 3. The NO x reduction catalyst (10), by (20), NO x
The effect of can be mitigated.

表 3 NOx還元触媒 センサ 抵抗値の比 第4図 F 0.3mm 0.7 〃 F〜0 0.4 第5図 0.8 * 第4図のセンサでは、SnO2に金属換算で0.3wt%の
パラディウム触媒を加えたものを、NOx還元触媒とし、
第5図のものでは、コイル(16)の外部に金属換算で3w
t%のRuO2を加えたγ−アルミナを0.2mm厚に被覆してNO
x還元触媒とした。
Table 3 Ratio of resistance values of NO x reduction catalyst sensor Fig. 4 F 0.3mm 0.7 〃 F to 0 0.4 Fig. 0.8 * In the sensor of Fig. 4, 0.3 wt% palladium catalyst was added to SnO 2 in terms of metal. As a NO x reduction catalyst,
In the case of the one shown in Fig. 5, 3w is converted to metal outside the coil (16).
γ-alumina containing t% RuO 2 was coated to a thickness of 0.2 mm and NO
x reduction catalyst.

[発明の効果] この発明では、ガスセンサの抵抗値の検出電圧依存性を
抑制し、ガスの検出精度を向上させることができる。
[Advantages of the Invention] According to the present invention, it is possible to suppress the dependency of the resistance value of the gas sensor on the detection voltage and improve the gas detection accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は、実施例の特性図、第4図は実施例に
用いたガスセンサの断面図、第5図は変形例のガスセン
サの断面図、第6図は実施例に用いた検出回路の回路図
である。 図において、(4),(6),(14),(16)電極、 (8),(18)半導体、 (10),(20)NOx還元触媒、 (40)制御回路。
1 to 3 are characteristic diagrams of the embodiment, FIG. 4 is a sectional view of a gas sensor used in the embodiment, FIG. 5 is a sectional view of a gas sensor of a modified example, and FIG. 6 is used in the embodiment. It is a circuit diagram of a detection circuit. In the figure, (4), (6), (14), (16) electrodes, (8), (18) semiconductors, (10), (20) NO x reduction catalysts, (40) control circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物半導体の抵抗値の変化を利用し
たガスセンサに直列に負荷抵抗を接続し、前記ガスセン
サの温度を高温域と低温域とに交互に変化させ、低温域
でのガスセンサ出力から被検出ガスを検出する方法にお
いて、 ガスセンサと負荷抵抗との直列片に印加する検出電圧
を、0.1〜1.5Vとしたことを特徴とする、ガス検出方
法。
1. A gas sensor that utilizes a change in resistance of a metal oxide semiconductor is connected in series with a load resistor, and the temperature of the gas sensor is alternately changed between a high temperature range and a low temperature range, and a gas sensor output in a low temperature range is provided. The method for detecting a gas to be detected according to claim 1, wherein the detection voltage applied to the series piece of the gas sensor and the load resistor is 0.1 to 1.5V.
【請求項2】前記検出電圧を0.1〜1.2Vとしたことを特
徴とする、特許請求の範囲第1項記載のガス検出方法。
2. The gas detection method according to claim 1, wherein the detection voltage is 0.1 to 1.2V.
JP26891386A 1986-11-11 1986-11-11 Gas detection method Expired - Fee Related JPH0799358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26891386A JPH0799358B2 (en) 1986-11-11 1986-11-11 Gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26891386A JPH0799358B2 (en) 1986-11-11 1986-11-11 Gas detection method

Publications (2)

Publication Number Publication Date
JPS63121743A JPS63121743A (en) 1988-05-25
JPH0799358B2 true JPH0799358B2 (en) 1995-10-25

Family

ID=17465010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26891386A Expired - Fee Related JPH0799358B2 (en) 1986-11-11 1986-11-11 Gas detection method

Country Status (1)

Country Link
JP (1) JPH0799358B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283943A (en) * 1999-03-30 2000-10-13 Matsushita Seiko Co Ltd Gas detector

Also Published As

Publication number Publication date
JPS63121743A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
GB1565554A (en) Humidity sensors
US4326414A (en) Humidity detecting apparatus
JPH0799358B2 (en) Gas detection method
JPH11142356A (en) Semiconductor gas sensor
JP2005257702A (en) Co detector
JPS6225988B2 (en)
JPH07198644A (en) Gas sensor and method of detecting gas
JPH06288952A (en) Gas sensor
JP3522257B2 (en) Gas detection method and device
JPH0545322A (en) Gas detecting apparatus
JPH049574Y2 (en)
JPH06103285B2 (en) Semiconductor gas detector
JPH07117513B2 (en) Gas sensor
JPS6136619B2 (en)
JPH07218461A (en) Gas sensor driving method and gas detecting method using the same
JPS5826641B2 (en) Temperature/humidity detection element
KR100186999B1 (en) Gas sensor with thermopile
JP4091713B2 (en) Compound gas sensor
JPS59218945A (en) Detector of gas component and humidity
JPH0365642A (en) Method of cleaning moisture sensitive element
JPH08285807A (en) Contact combustion-type gas sensor circuit
JPH0458144A (en) Gas sensor
JPH02208550A (en) Gas sensor
JP2000019139A (en) Ceramic chlorine gas sensor
JPH0674929A (en) Temperature-humidity detecting circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees