JPH0799309B2 - Ultra high temperature test or treatment method - Google Patents

Ultra high temperature test or treatment method

Info

Publication number
JPH0799309B2
JPH0799309B2 JP4125102A JP12510292A JPH0799309B2 JP H0799309 B2 JPH0799309 B2 JP H0799309B2 JP 4125102 A JP4125102 A JP 4125102A JP 12510292 A JP12510292 A JP 12510292A JP H0799309 B2 JPH0799309 B2 JP H0799309B2
Authority
JP
Japan
Prior art keywords
heating element
sample
refractory
space
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4125102A
Other languages
Japanese (ja)
Other versions
JPH06288684A (en
Inventor
治 夫 嵐
見 肇 浅
脇 正 弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP4125102A priority Critical patent/JPH0799309B2/en
Publication of JPH06288684A publication Critical patent/JPH06288684A/en
Publication of JPH0799309B2 publication Critical patent/JPH0799309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な超高温試験又は処
理方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a novel ultrahigh temperature test or treatment method.

【0002】[0002]

【従来の技術と解決しようとする課題】近年、航空又は
宇宙科学技術のめざましい発展にともない、その分野に
良好に用い得る各種材料の研究開発が積極的に進められ
ている。この種の材料には多くの機能を備えることとと
もに、特に酸化性雰囲気下2000℃以上の超高温とい
う極限的な環境においても十分使用に耐え得ることが要
求される。従って新たに開発された材料がかかる超高温
下において十分な物理的特性、例えば圧縮強度、引張り
強度等を有するかどうかを容易に正確に測定、試験する
ことが必要になってくる。又これとは別にたとえば容易
には溶接できない材料をかかる超高温を利用して処理し
て溶接できればまたすぐれた材料を新たに開発すること
ができて誠に有益である。
2. Description of the Related Art In recent years, with the remarkable development of aviation or space science and technology, research and development of various materials which can be favorably used in the field have been actively promoted. This kind of material is required to have many functions and to be able to withstand use even in an extreme environment of an extremely high temperature of 2000 ° C. or higher in an oxidizing atmosphere. Therefore, it becomes necessary to easily and accurately measure and test whether or not the newly developed material has sufficient physical properties such as compressive strength and tensile strength under such an ultrahigh temperature. In addition to this, if it is possible to process and weld a material that cannot be easily welded by utilizing such an ultrahigh temperature, it will be very useful because a superior material can be newly developed.

【0003】一方、従来1000〜2000℃程度の高
温に加熱してかかる高温下での各種試験乃至処理を行な
うのに適当な装置は各種開発されているが、2000℃
以上の酸化雰囲気下の試験乃至処理に良好に用い得る装
置がなくその開発が望まれていた。
On the other hand, various devices suitable for performing various tests and treatments under high temperature by heating to a high temperature of about 1000 to 2000 ° C. have been developed.
Since there is no apparatus that can be suitably used for the above-mentioned test or treatment in an oxidizing atmosphere, its development has been desired.

【0004】たとえば特開平2−230085号公報に
は高温抵抗発熱体を有する1次加熱室と、超高温抵抗発
熱体を備え、該1次加熱室内に設置された2次加熱室と
を具備してなる電気抵抗炉が提案されているが、装置の
構成が複雑であり試験乃至処理操作中に反応が生じたり
して良好に実施しえない。
For example, Japanese Unexamined Patent Publication No. 2-230085 discloses a primary heating chamber having a high temperature resistance heating element, an ultra high temperature resistance heating element, and a secondary heating chamber installed in the primary heating chamber. Although an electric resistance furnace composed of the following is proposed, it cannot be satisfactorily implemented due to the complicated structure of the apparatus and the reaction occurring during the test or treatment operation.

【0005】即ち、かかる電気炉乃至一般の電気炉を用
いてたとえば試料の溶融テストを行なう場合、試料をル
ツボたとえば白金ルツボに収容して行なわれるが白金ル
ツボは1800℃以上の高温で溶融してしまいテストが
できない。又白金よりも融点の高いイリジウムルツボ
(融点2454℃)を用いると酸化雰囲気では酸化が起
きて使用することができない。一方耐火物ルツボたとえ
ばジルコニアルツボを用いると2000℃に至る以前の
1750℃で試料とルツボが相互に反応し溶融してしま
う。以上はルツボを用いる場合であるが、試料を敷台に
載せて行なうときもルツボと同様な問題が生じる。
That is, when a melting test of a sample is performed using such an electric furnace or a general electric furnace, the sample is placed in a crucible, for example, a platinum crucible, and the platinum crucible is melted at a high temperature of 1800 ° C. or higher. I can't test it. If an iridium crucible having a melting point higher than that of platinum (melting point 2454 ° C.) is used, it cannot be used because oxidation occurs in the oxidizing atmosphere. On the other hand, when a refractory crucible such as a zirconial crucible is used, the sample and the crucible react with each other and melt at 1750 ° C. before reaching 2000 ° C. The above is the case of using the crucible, but the same problem as the crucible occurs when the sample is placed on the bed.

【0006】又特許出願公表昭59−500912号公
報には改良型ジルコニア質誘導炉に関する発明が開示さ
れており、これによれば酸化で高温まで昇温でき光ファ
イバーの延伸用として使用することができたが、誘導炉
であるため電波障害規制を受けるとともに誘導発信機が
高価という難点があった。
[0006] Further, Japanese Patent Application Publication No. 59-500912 discloses an invention relating to an improved zirconia induction furnace, which allows the temperature to be raised to a high temperature by oxidation and can be used for drawing an optical fiber. However, since it is an induction furnace, it suffers from the drawbacks that it is subject to radio interference regulations and the induction transmitter is expensive.

【0007】このような状況の下、本発明者らはさきに
超高温電気抵抗炉を開発して特許出願した(特願平3−
226183号)。これは上下方向に貫通する空間を有
する中空円筒型ジルコニア質抵抗発熱体を用いるもので
あり、これによれば被処理物を該中空円筒型発熱体の中
空部に上方から又は下方から挿入して容易に超高温に加
熱することができるのであるが、本発明者らはこの超高
温電気抵抗炉を用いることによって、上記の如き問題が
生じて従来は困難であった超高温、酸化雰囲気下での強
度測定等の試験操作又はかかる超高温での溶接等の処理
操作を容易に実施できることを見出して本発明に至った
ものである。
Under these circumstances, the present inventors previously developed an ultrahigh temperature electric resistance furnace and applied for a patent (Japanese Patent Application No.
No. 226183). This uses a hollow cylindrical zirconia resistance heating element having a space penetrating in the vertical direction. According to this, an object to be treated is inserted into the hollow portion of the hollow cylindrical heating element from above or below. Although it is possible to easily heat to an ultrahigh temperature, the inventors of the present invention have used the ultrahigh temperature electric resistance furnace to generate the above-mentioned problems under an ultrahigh temperature and an oxidizing atmosphere, which have been difficult in the past. The present invention has been completed by finding that a test operation such as strength measurement or a processing operation such as welding at such an ultrahigh temperature can be easily performed.

【0008】[0008]

【課題を解決するための手段】よって、本発明は、試料
又は被処理材を内部で加熱することができる発熱部と、
その両端の端子部を備えた中空円筒型ジルコニア質抵抗
発熱体をパイプ状耐火物により直立支持せしめ、その外
側に前記発熱体を予熱する装置とこれを保護するための
円筒状耐火物を設けてなり、前記円筒状耐火物は前記発
熱体を囲んでジルコニア質円筒状耐火物、アルミナ質円
筒状耐火物の順で設けてなり、前記発熱体を予熱する装
置として前記アルミナ質円筒状耐火物の表面に予熱ヒー
タを備えており、前記中空円筒型抵抗発熱体と前記パイ
プ状耐火物は内部に上下方向に貫通する空間を有してな
る超高温電気抵抗炉を用い、試料又は被処理物を上下方
向から上記空間に挿入し前記発熱部にて超高温に加熱し
て該試料の各種物性を試験するか又は該被処理物を処理
することを特徴とする、超高温試験又は処理方法を提供
するものである。
Therefore, according to the present invention, a heating portion capable of heating a sample or a material to be treated therein,
A hollow cylindrical zirconia resistance heating element with terminals at both ends is supported upright by a pipe-shaped refractory, and a device for preheating the heating element and a cylindrical refractory for protecting it are provided on the outside thereof. The cylindrical refractory material surrounds the heating element and is provided in the order of zirconia-based cylindrical refractory material and alumina-based cylindrical refractory material, and the alumina-based cylindrical refractory material is used as a device for preheating the heating element. A surface is equipped with a preheater, and the hollow cylindrical resistance heating element and the pipe-shaped refractory material use an ultra-high-temperature electrical resistance furnace having a space that vertically penetrates inside, and a sample or an object to be treated Provided is an ultrahigh temperature test or treatment method, which is characterized in that it is inserted into the space from above and below and heated to an ultrahigh temperature in the heat generating portion to test various physical properties of the sample or to treat the object to be treated. To do.

【0009】[0009]

【実施例】まず、本発明方法に良好に用いられる電気抵
抗炉の一例を図1について説明すれば、1が本発明で用
いられる中空円筒型抵抗発熱体であり、通常ジルコニア
質の発熱体が用いられる。これは中央部に細い径即ち小
さな断面積の発熱部2とその両端にそれより太い径即ち
大きな断面積を有する一定長さの端子部3を備えてい
る。この端子部3には白金線又は白金‐ロジウム合金線
の如き通電用リード線4が取付けられている。発熱部2
と端子部3は内部に試料乃至被処理物を出し入れし内部
で発熱するに必要な大きさの内径を有している。この発
熱体については後で詳しく説明する。
First, an example of an electric resistance furnace which is preferably used in the method of the present invention will be described with reference to FIG. Used. This is provided with a heat generating portion 2 having a thin diameter, that is, a small cross-sectional area in the center portion, and terminal portions 3 having a constant diameter having a larger diameter, that is, a larger cross-sectional area, at both ends thereof. A lead wire 4 for energization such as a platinum wire or a platinum-rhodium alloy wire is attached to the terminal portion 3. Heating part 2
The terminal portion 3 has an inner diameter of a size necessary for putting a sample or an object to be processed in and out and generating heat therein. This heating element will be described in detail later.

【0010】この発熱体1を直立支持するために発熱体
1の上下にパイプ状耐火物5を備える。この耐火物5と
しては、アルミナ又はマグネシア等電気絶縁性に優れた
ものが用いられ、リード線4が内部に埋設されている。
この耐火物5の内径は前記発熱体1の内径と同じであ
る。なおこの耐火物5としてランタンクロマイト、ラン
タンマンガタイト、ランタンコバルタイト等を使用する
場合は前記の通電用リード線4は不要となる。
In order to support the heating element 1 upright, pipe-shaped refractory materials 5 are provided above and below the heating element 1. The refractory 5 is made of alumina, magnesia, or the like having excellent electric insulation, and the lead wire 4 is embedded therein.
The inner diameter of the refractory 5 is the same as the inner diameter of the heating element 1. When lanthanum chromite, lanthanum manganite, lanthanum cobaltite, or the like is used as the refractory material 5, the energizing lead wire 4 is unnecessary.

【0011】これらの外側には該発熱体の予熱装置と円
筒状耐火物が配置される。まず発熱体1を囲んで周囲に
順にジルコニア質円筒状耐火物6、アルミナ質円筒状耐
火物7が配置される。耐火物6にかかる熱負荷を軽減す
るため、且つ発熱体1からの漏電を防ぐために発熱体1
と耐火物6との間に若干の空間8が設けられる。アルミ
ナ質耐火物7の表面には発熱体1を予熱するために予熱
ヒータ9が備えられており、アルミナ質耐火物7は予熱
ヒータ9の漏電を防ぎ予熱ヒータ9を発熱体1の高温時
の影響から保護することができる。前記予熱ヒータ9は
アルミナ質耐火物の外側に巻付けて施工される。そのス
ペーサ及び接着剤としてアルミナ質モルタルが使用され
る。
On the outside of these, a preheating device for the heating element and a cylindrical refractory are arranged. First, a zirconia-based cylindrical refractory material 6 and an alumina-based cylindrical refractory material 7 are arranged in this order around the heating element 1. In order to reduce the heat load on the refractory material 6 and to prevent leakage of electricity from the heating element 1, the heating element 1
A slight space 8 is provided between the refractory 6 and the refractory 6. The surface of the alumina refractory 7 is provided with a preheat heater 9 for preheating the heating element 1. The alumina refractory 7 prevents the preheating heater 9 from leaking and prevents the preheating heater 9 from being heated when the heating element 1 is at a high temperature. Can be protected from the effects. The preheater 9 is wound around the outer surface of the alumina refractory material. Aluminous mortar is used as the spacer and adhesive.

【0012】予熱ヒータ9としては炭化珪素質、二珪化
モリブデン等の非金属発熱体、Fe−Cr−Al系や白
金等の金属発熱体が用いられる。熱効率の点からは金属
発熱体を耐火物7に巻付けて使用するのが好ましい。そ
の際、耐火物にジルコニアを使用するときに耐火物への
漏電現象がおこるため、アルミナ耐火物を介在させるこ
とが必要である。
As the preheating heater 9, a non-metallic heating element such as silicon carbide or molybdenum disilicide, or a metallic heating element such as Fe-Cr-Al system or platinum is used. From the viewpoint of thermal efficiency, it is preferable to use a metal heating element wound around the refractory material 7. At that time, when zirconia is used for the refractory, a leakage phenomenon occurs in the refractory, so that it is necessary to interpose the alumina refractory.

【0013】アルミナ質耐火物7の外側にはセラミック
質断熱材10と外殻鉄皮11が設けられる。前記断熱材
10としてはアルミナシリカ系ファイバーブロック又は
バルクを施工する。これにより鉄皮11が保護断熱され
る。又鉄皮11は炉体全体寸法に制約がある場合には鉄
皮を二重構造として内部に水又は空気を流して水冷又は
空冷を図ることができる。
A ceramic heat insulating material 10 and an outer shell 11 are provided outside the alumina refractory 7. As the heat insulating material 10, an alumina-silica fiber block or bulk is applied. Thereby, the iron skin 11 is protected and insulated. Further, when the entire size of the furnace body is restricted, the iron shell 11 can be water-cooled or air-cooled by making the iron shell double structure and flowing water or air inside.

【0014】前記中空円筒型抵抗発熱体1とパイプ状耐
火物5の内部に上下に貫通する空間12が形成されて試
料又は被処理物を上方又は下方から挿入して発熱体1の
発熱部2付近の超高温加熱空間13に配置することがで
きる。その空間13に試料又は被処理物を載置又は懸垂
させる手段を設けることができ、目的によっては前記空
間の上部又は下部を耐火材にてシールすることもできる
(図示せず)。
The hollow cylindrical resistance heating element 1 and the pipe-shaped refractory 5 are provided with a space 12 vertically penetrating therethrough to insert a sample or an object to be treated from above or below and the heating portion 2 of the heating element 1 is inserted. It can be arranged in the ultra-high temperature heating space 13 in the vicinity. A means for placing or suspending the sample or the object to be processed can be provided in the space 13, and the upper or lower part of the space can be sealed with a refractory material depending on the purpose (not shown).

【0015】なお、中空円筒型抵抗発熱体とこれを支持
するパイプ状耐火物の外周囲に配置される耐火物として
は該発熱体が高温になった際その熱に耐えられる材質で
あることが必要であり、上記のようにアルミナやジルコ
ニア質のものが用いられる。ジルコニア質耐火物が特に
好適であり、たとえばジルコニア中空球、ジルコニア粉
末とジルコニア繊維からなるものを用いることができる
(特願平2−242244号)。そのジルコニア繊維と
しては、純ジルコニアファイバの外にライム、マグネシ
ア、イットリア等の安定化剤を添加して安定化されたジ
ルコニアファアイバーも用いられる。この外、特開平3
−83856号公報に記載されたような、ジルコニアフ
ァイバと、ジルコニア粉末から構成され、嵩比重が2.
5〜5.0である表皮層を有し、内部が中空である又は
内部が全部又は一部ジルコニアのファイバ、中空球、フ
ァイバーボードからなる充填剤で充填されている、耐火
物を用いることもできる。
The hollow cylindrical resistance heating element and the refractory material arranged around the pipe-shaped refractory material supporting the same should be made of a material capable of withstanding the heat when the heating element reaches a high temperature. It is necessary, and alumina or zirconia-based material is used as described above. A zirconia-based refractory is particularly suitable, and for example, a zirconia hollow sphere, a zirconia powder and a zirconia fiber can be used (Japanese Patent Application No. 2-242244). As the zirconia fiber, a zirconia fiber stabilized by adding a stabilizer such as lime, magnesia or yttria to the pure zirconia fiber is also used. In addition to this, JP-A-3
It is composed of zirconia fiber and zirconia powder as described in JP-A-83856, and has a bulk specific gravity of 2.
It is also possible to use a refractory material having a skin layer of 5 to 5.0 and having a hollow inside or being filled with a filler consisting of fibers of zirconia, hollow spheres, or fiberboard inside. it can.

【0016】本発明方法はこのような超高温電気抵抗炉
を用いて実施されるものであり、以下順に図面について
説明する。まず図2においては試料A(以下、単に試料
という)をこれと反応しない材料からなる支持台15上
に載せてこれを中空円筒型抵抗発熱体1の内部に上下方
向に貫通する空間12に下方から挿入し、発熱部2に囲
まれた超高温加熱空間13にて超高温に加熱して試料を
加熱処理、焼成及び溶融することによってその試料の加
熱処理試験、焼成試験及び溶融試験を行なうことができ
る。この外支持台上に試料を載せずに試料を長尺に形成
してその長尺試料を超高温加熱空間13に挿入してその
試料の先端部を加熱処理、焼成及び溶融して試験するこ
ともできる。
The method of the present invention is carried out by using such an ultrahigh temperature electric resistance furnace, and the drawings will be described below in order. First, in FIG. 2, a sample A (hereinafter, simply referred to as a sample) is placed on a support base 15 made of a material that does not react with the sample A, and the sample A is downwardly penetrated into the hollow cylindrical resistance heating element 1 in a space 12 extending vertically. And perform a heat treatment test, a firing test and a melting test on the sample by heating it to an ultrahigh temperature in an ultrahigh temperature heating space 13 surrounded by the heat generating portion 2 to heat-treat, fire and melt the sample. You can To form a long sample without placing the sample on the outer support, insert the long sample into the ultra-high temperature heating space 13 and subject the tip of the sample to heat treatment, baking and melting for testing. You can also

【0017】例えばアルミナ試料を溶融させる場合この
試料をアルミナ支持台上に載せるか、又長尺アルミナ試
料を形成してこれを超高温加熱空間13に挿入して加
熱、溶融すれば、前記したようなルツボ乃至敷台の溶融
やそれらと試料との反応を生じることなく、試料を溶融
させることができる。もし溶融試験後徐冷が必要な場
合、或は急冷が必要な場合は、発熱体1の温度の調整を
行なって徐冷を図ったり、試料を下方へ引出して急冷を
図るなど、条件に応じて適宜調整することができる。
For example, when melting an alumina sample, this sample is placed on an alumina support, or a long alumina sample is formed and inserted into the ultra-high temperature heating space 13 for heating and melting, as described above. It is possible to melt the sample without melting the crucible or bed and causing the reaction between the crucible and the bed. If gradual cooling is required after the melting test, or if rapid cooling is required, adjust the temperature of the heating element 1 for gradual cooling, or pull down the sample for rapid cooling, depending on the conditions. Can be adjusted accordingly.

【0018】図3においては、試料Aをたとえば白金線
又は白金ロジウム線16でつないでこれを上方から前記
空間12に吊してその試料Aをその発熱部2付近の超高
温加熱空間13にて超高温に加熱してその金属線の材料
の融点近くまでの急熱試験を行なうことができ、更には
これを落下して急冷して急冷試験を行なうことができ
る。また直下にカロリーメータを設けて比熱を測定する
こともできる。因みに白金の融点は1755℃、ロジウ
ムの融点は1966℃である。
In FIG. 3, the sample A is connected with, for example, a platinum wire or a platinum rhodium wire 16 and hung from above in the space 12, and the sample A is heated in the ultrahigh temperature heating space 13 near the heat generating portion 2. A rapid heating test can be performed by heating to an ultrahigh temperature to a temperature close to the melting point of the material of the metal wire, and further dropping and rapid cooling to perform a rapid cooling test. Further, a calorimeter may be provided immediately below to measure the specific heat. Incidentally, the melting point of platinum is 1755 ° C and the melting point of rhodium is 1966 ° C.

【0019】図4においては、試料Aを天秤17の先端
に置き、これを上方から吊して空間12に入れ超高温に
加熱して温度の変化に伴なう重量変化を測定することが
できる。
In FIG. 4, the sample A is placed on the tip of the balance 17, which is hung from above and placed in the space 12 to be heated to an extremely high temperature so that the weight change due to the temperature change can be measured. .

【0020】図5においては、試料Aを支持台18と押
え治具19の間に置きこれを空間12に挿入して試料A
を超高温加熱空間13に位置せしめながら、たとえば油
圧装置にて上下両方向から又は片方向から圧縮圧力を加
えることにより圧縮強度を測定することができる。同時
にホットプレスを行なうこともできる。たとえば支持台
としてまた押え治具としてジルコニア耐火物を用いてア
ルミナ試料を2000℃の温度、10Kg/cm2 の圧力で
ホットプレスすると気孔率0の試料を得ることができ
る。
In FIG. 5, the sample A is placed between the support base 18 and the holding jig 19 and is inserted into the space 12 to make the sample A.
The compressive strength can be measured, for example, by applying a compressive pressure from above and below in one direction or with a hydraulic device while locating in the ultrahigh temperature heating space 13. Hot pressing can be performed at the same time. For example, when a zirconia refractory is used as a support and as a holding jig, an alumina sample is hot-pressed at a temperature of 2000 ° C. and a pressure of 10 kg / cm 2 to obtain a sample having a porosity of 0.

【0021】図6においては、試料Aを支持台20,2
1の間に挟みこれを空間12に入れ超高温加熱しながら
油圧装置などにより上下の支持台を互いに反対方向に引
張ることによって試料の引張強度を測定することができ
る。
In FIG. 6, the sample A is placed on the supporting bases 20 and 2.
It is possible to measure the tensile strength of the sample by sandwiching this between 1 and putting it in the space 12 and pulling the upper and lower supports in opposite directions by a hydraulic device while heating at an extremely high temperature.

【0022】図7においては、たとえば二つのアルミナ
試料A,A′を上方および下方から空間12に入れて互
いに接触させて超高温加熱空間で2050℃の超高温に
加熱すれば溶接が困難なセラミックス材料同士の溶接を
行なうことができる。
In FIG. 7, for example, two alumina samples A and A'are difficult to weld if they are put into the space 12 from above and below and brought into contact with each other and heated to an ultrahigh temperature of 2050 ° C. in an ultrahigh temperature heating space. Welding of materials can be performed.

【0023】図8においては、たとえばアルカリ、鉄分
計1%の不純物を含む長尺状のアルミナ試料Aを空間1
2に入れ、超高温加熱空間にて2050℃に加熱すれ
ば、加熱された部分22は溶融精製されて不純物を0に
することができ、このようにして部分溶融乃至部分精製
処理を行なうことができる。
In FIG. 8, a long alumina sample A containing impurities such as alkali and 1% iron is added to the space 1.
By putting it in No. 2 and heating it to 2050 ° C. in an ultra-high temperature heating space, the heated portion 22 can be melt-refined to make impurities zero, and thus partial melting or partial refining treatment can be performed. it can.

【0024】図9においては、たとえばシリカ試料Aを
空間12に入れその先端23を約1800℃に加熱しこ
れを下方へ延伸することにより容易にシリカファイバ2
4をつくることができる。これは光ファイバとして用い
ることができる。
In FIG. 9, for example, the silica sample A is put into the space 12 and the tip 23 thereof is heated to about 1800 ° C., and the silica fiber 2 is easily drawn downward.
You can make 4. It can be used as an optical fiber.

【0025】[0025]

【発明の効果】このように本発明方法によれば、中空円
筒状ジルコニア質抵抗発熱体を有する超高温電気抵抗炉
を用いることによって、前記中空円筒状発熱体に形成さ
れる上下方向空間に試料乃至被処理物を挿入して容易に
超高温に加熱し、試料や治具の反応、溶融を生ずること
なく、超高温、酸化雰囲気下での各種物性の測定試験或
は溶接、ホットプレスなどの処理を行なうことができて
有効である。又、本発明で用いる超高温電気抵抗炉の発
熱体のすぐ外側にジルコニア質円筒状耐火物を設け、更
にその外側にアルミナ質円筒状耐火物に設けるようにし
たので、融点約2050℃のアルミナ質円筒耐火物が発
熱体の高温を直接受けて半溶融したり又は収縮が大きく
なったりすることがない。又ジルコニア質に比べ電気絶
縁性がすぐれたアルミナ質耐火物をジルコニア質耐火物
の外側に設けそのアルミナ質耐火物の表面に予熱ヒータ
を設けたので予熱ヒータの熱効率が上り漏電を来すこと
もない。従って本発明によれば試料及び被処理物の超高
温での試験及び処理を円滑、容易に実施することができ
る。
As described above, according to the method of the present invention, by using an ultrahigh-temperature electric resistance furnace having a hollow cylindrical zirconia-based resistance heating element, a sample can be placed in the vertical space formed in the hollow cylindrical heating element. Or, by inserting the object to be processed and heating it to ultra high temperature easily, without causing reaction or melting of the sample or jig, measurement test of various physical properties under ultra high temperature or oxidizing atmosphere, welding, hot pressing, etc. It is effective because it can perform processing. Further, since a zirconia-based cylindrical refractory is provided just outside the heating element of the ultra-high-temperature electric resistance furnace used in the present invention, and further provided on an alumina-based cylindrical refractory outside thereof, an alumina having a melting point of about 2050 ° C. The porous cylindrical refractory does not directly receive the high temperature of the heating element to be semi-molten or to have a large shrinkage. Also, since an alumina refractory material that has better electrical insulation than zirconia is provided outside the zirconia refractory material and a preheater heater is provided on the surface of the alumina refractory material, the thermal efficiency of the preheater heater rises and electric leakage may occur. Absent. Therefore, according to the present invention, it is possible to smoothly and easily carry out a test and a treatment of a sample and an object to be treated at an ultrahigh temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いるに適当な超高温電気抵抗炉の一
実施例の断面図。
FIG. 1 is a sectional view of an embodiment of an ultrahigh temperature electric resistance furnace suitable for use in the present invention.

【図2】本発明により溶融試験を行なう状態を示す説明
図。
FIG. 2 is an explanatory diagram showing a state in which a melting test is performed according to the present invention.

【図3】本発明により急冷試験を行なう状態を示す説明
図。
FIG. 3 is an explanatory diagram showing a state in which a rapid cooling test is performed according to the present invention.

【図4】本発明により重量変化測定試験を行なう状態を
示す説明図。
FIG. 4 is an explanatory diagram showing a state in which a weight change measurement test is performed according to the present invention.

【図5】本発明により圧縮強度測定試験を行なう状態を
示す説明図。
FIG. 5 is an explanatory diagram showing a state in which a compressive strength measurement test is performed according to the present invention.

【図6】本発明により引張強度測定試験を行なう状態を
示す説明図。
FIG. 6 is an explanatory diagram showing a state in which a tensile strength measurement test is performed according to the present invention.

【図7】本発明により溶接処理を行なう状態を示す説明
図。
FIG. 7 is an explanatory diagram showing a state in which a welding process is performed according to the present invention.

【図8】本発明により部分溶融、精製処理を行なう状態
を示す説明図。
FIG. 8 is an explanatory view showing a state in which partial melting and refining treatment are performed according to the present invention.

【図9】本発明により無機繊維延伸処理を行なう状態を
示す説明図。
FIG. 9 is an explanatory view showing a state in which an inorganic fiber stretching treatment is performed according to the present invention.

【符号の説明】[Explanation of symbols]

1 中空円筒型抵抗発熱体 2 発熱部 3 端子部 12 上下貫通空間 13 超高温加熱空間 15 支持台 A 試料 DESCRIPTION OF SYMBOLS 1 Hollow cylindrical resistance heating element 2 Heating part 3 Terminal part 12 Vertical penetration space 13 Ultra-high temperature heating space 15 Support stand A Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料又は被処理材を内部で加熱することが
できる発熱部と、その両端の端子部を備えた中空円筒型
ジルコニア質抵抗発熱体をパイプ状耐火物により直立支
持せしめ、その外側に前記発熱体を予熱する装置とこれ
を保護するための円筒状耐火物を設けてなり、前記円筒
状耐火物は前記発熱体を囲んでジルコニア質円筒状耐火
物、アルミナ質円筒状耐火物の順で設けてなり、前記発
熱体を予熱する装置として前記アルミナ質円筒状耐火物
の表面に予熱ヒータを備えており、前記中空円筒型抵抗
発熱体と前記パイプ状耐火物は内部に上下方向に貫通す
る空間を有してなる超高温電気抵抗炉を用い、試料又は
被処理物を上下方向から上記空間に挿入し前記発熱部に
て超高温に加熱して該試料の各種物性を試験するか又は
該被処理物を処理することを特徴とする、超高温試験又
は処理方法。
1. A hollow cylindrical zirconia resistance heating element having a heat generating portion capable of internally heating a sample or a material to be treated and terminal portions at both ends thereof is supported upright by a pipe-shaped refractory, and the outside thereof. the heating element will be provided a cylindrical refractory to apparatus for preheating and protect it to the cylinder
-Shaped refractory surrounds the heating element and is a zirconia cylindrical refractory
And alumina cylindrical refractory in this order.
Alumina cylindrical refractory as a device for preheating a heating element
Is equipped with a preheating heater on the surface of the hollow cylindrical resistance heating element and the pipe-shaped refractory, and an ultra-high temperature electric resistance furnace having a space penetrating in the vertical direction is used inside the sample or the object to be treated. Is inserted into the space from above and below and is heated to an ultrahigh temperature in the heat generating portion to test various physical properties of the sample, or the object to be treated is treated, or an ultrahigh temperature test or treatment method.
JP4125102A 1992-05-18 1992-05-18 Ultra high temperature test or treatment method Expired - Fee Related JPH0799309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125102A JPH0799309B2 (en) 1992-05-18 1992-05-18 Ultra high temperature test or treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125102A JPH0799309B2 (en) 1992-05-18 1992-05-18 Ultra high temperature test or treatment method

Publications (2)

Publication Number Publication Date
JPH06288684A JPH06288684A (en) 1994-10-18
JPH0799309B2 true JPH0799309B2 (en) 1995-10-25

Family

ID=14901904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125102A Expired - Fee Related JPH0799309B2 (en) 1992-05-18 1992-05-18 Ultra high temperature test or treatment method

Country Status (1)

Country Link
JP (1) JPH0799309B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125202A (en) * 2002-09-30 2004-04-22 Shinagawa Refract Co Ltd Electric resistance furnace
JP5754773B2 (en) * 2011-05-09 2015-07-29 国立研究開発法人産業技術総合研究所 Heating container, local heating device and heating method
CN107894441B (en) * 2017-11-27 2023-09-01 洛阳西格马高温电炉有限公司 Laser local heating oxidation resistance testing equipment and testing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571750A (en) * 1980-06-02 1982-01-06 Yamato Shiki Kk Pasting device for case
JPH0343215Y2 (en) * 1985-09-26 1991-09-10
JPS6355097U (en) * 1986-09-26 1988-04-13

Also Published As

Publication number Publication date
JPH06288684A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
CN104483224A (en) Test box for temperature rise thermal shock of ceramic materials
GB1594869A (en) Apparatus for treating a specimen or workpiece at an elevated temperature and pressure
US4247755A (en) High pressure autoclave
JPH0799309B2 (en) Ultra high temperature test or treatment method
US2635125A (en) Glass induction furnace
CN106232265A (en) Casting ladle heater
US3155759A (en) High temperature furnace
JPS63278227A (en) Heat treatment equipment
JP2649295B2 (en) Ultra high temperature electric resistance furnace
JP2849457B2 (en) Sample temperature detector for thermal analyzer
JP3646125B2 (en) High-temperature property testing equipment for electric furnace raw materials for alloy iron production
JP2664977B2 (en) Ceramic heater furnace
JP2535485Y2 (en) Lining structure of ultra-high temperature resistance furnace
JP2004125202A (en) Electric resistance furnace
JP2820654B2 (en) Zirconia heating element
JP2001182912A (en) Triple layered single ended radiant tube and method of heating therewith
JP2000088667A (en) Fiber-reinforced thermocouple
JP2735752B2 (en) Single crystal growth method
RU174419U1 (en) DEVICE "HEATER FROM GRAPHITE"
EP0434839B1 (en) Oxidizing atmosphere hot isotropic press
CN206974179U (en) A kind of insulation protection heat-proof device for Chemical Analysis Lab electric furnace
JP2891498B2 (en) Dehydration sintering furnace
JP2820423B2 (en) Ceramic heater furnace
JP2779124B2 (en) Zirconia heating structure
JPH05157463A (en) Heating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees