JPH0799159A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPH0799159A
JPH0799159A JP5241338A JP24133893A JPH0799159A JP H0799159 A JPH0799159 A JP H0799159A JP 5241338 A JP5241338 A JP 5241338A JP 24133893 A JP24133893 A JP 24133893A JP H0799159 A JPH0799159 A JP H0799159A
Authority
JP
Japan
Prior art keywords
semiconductor
mesh
heating element
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5241338A
Other languages
Japanese (ja)
Other versions
JP3300802B2 (en
Inventor
Hitoshi Nishio
仁 西尾
Gangurii Gautamu
ガングリー ガウタム
Akihisa Matsuda
彰久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kanegafuchi Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP24133893A priority Critical patent/JP3300802B2/en
Publication of JPH0799159A publication Critical patent/JPH0799159A/en
Application granted granted Critical
Publication of JP3300802B2 publication Critical patent/JP3300802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a manufacture method of a semiconductor, in which the defect density in the bulk of a tetrahedral amorphous semiconductor by vapor growth is reduced at a low substrate temperature and which can enhance an electric characteristic when the amorphous semiconductor is applied to a solar cell or the like. CONSTITUTION:A mesh heating element is arranged inside a reaction container 1, the mesh heating element is heated while a semiconductor is being grown, and heat energy is given to a vapor phase. In addition, the mesh heating element is formed as a mesh electrode 7, and the mesh electrode 7 is heated while an electric current is being applied to the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体の製造方法に関
し、気相中で基板上に半導体を成長させるにあたり、低
い基板温度で極めて優れた膜質を得ることができる製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing method, and more particularly to a manufacturing method capable of obtaining an extremely excellent film quality at a low substrate temperature when growing a semiconductor on a substrate in a vapor phase.

【0002】[0002]

【従来の技術】近年、プラズマCVD法等によって得ら
れる水素化非晶質シリコンをはじめとするテトラヘドラ
ル系非晶質半導体は、大面積化が容易で且つ低コスト化
が可能であるため、太陽電池や液晶ディスプレー用薄膜
トランジスタ等への応用が注目されている。しかしなが
らこれら非晶質半導体は、バルク中の欠陥密度がおよそ
1015〜10 16 個/cm3 と結晶半導体に比較して数
桁多く、例えば太陽電池の活性層に使用する際にはこれ
らの欠陥が再結合中心になり、光電変換効率向上の大き
な障害になっている。
2. Description of the Related Art In recent years, a tetrahedral amorphous semiconductor such as hydrogenated amorphous silicon obtained by a plasma CVD method or the like can be easily made large in area and can be manufactured at low cost. Attention has been focused on its application to thin film transistors for liquid crystal displays and the like. However, these amorphous semiconductors have a defect density of about 10 15 to 10 16 defects / cm 3 in the bulk, which is several orders of magnitude higher than that of crystalline semiconductors. Becomes the recombination center, which is a major obstacle to improving the photoelectric conversion efficiency.

【0003】最近、通産省工業技術院電子技術総合研究
所のガングリーらは既に公知のように、基板温度を40
0℃にするとともに、成膜速度を従来の10倍程度に引
き上げることで、水素化非晶質シリコンの欠陥密度を1
14個/cm3 台まで低減させることに成功している。
Recently, as has already been known, the substrate temperature has been increased to 40 by Gangrie et al. Of the Institute of Electronics Technology, Ministry of International Trade and Industry.
The defect density of hydrogenated amorphous silicon was reduced to 1 by increasing the film formation rate to about 10 times that of the conventional method while increasing the temperature to 0 ° C.
We have succeeded in reducing the number to 14 units / cm 3 .

【0004】[0004]

【発明が解決しようとする課題】しかしながら400℃
という基板温度はデバイスの作製上望ましくなく、特に
太陽電池や液晶ディスプレイの場合には透明導電膜に悪
影響を及ぼすことが考えられる。このことはテトラヘド
ラル系非晶質半導体の利用範囲が大きく制限されること
になり、低い基板温度で低い欠陥密度を達成することが
望まれている。
However, 400 ° C.
That is, the substrate temperature is not desirable in manufacturing the device, and may adversely affect the transparent conductive film particularly in the case of solar cells and liquid crystal displays. This greatly limits the application range of the tetrahedral amorphous semiconductor, and it is desired to achieve a low defect density at a low substrate temperature.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題点を解
決するために成されたものであり、気相成長によるテト
ラヘドラル系非晶質半導体のバルク中の欠陥密度を低い
基板温度において低減し、これらを太陽電池等へ応用す
る際に電気特性を向上させることのできる半導体の製造
方法を提供するものである。ここで言う気相成長とは、
シラン系ガスもしくはその混合ガスを、プラズマ、熱、
光のいずれかか、又はこれらの2つ以上の組合せで分解
して基板上にシリコン系非晶質半導体を形成する化学的
気相成長や、シリコンもしくはシリコン系化合物による
スパッタ又は反応性スパッタ等の物理的気相成長などが
有る。
The present invention has been made to solve the above problems, and reduces the defect density in the bulk of a tetrahedral amorphous semiconductor by vapor phase growth at a low substrate temperature. The present invention provides a method for manufacturing a semiconductor, which can improve electric characteristics when applied to a solar cell or the like. Vapor growth here means
Silane-based gas or mixed gas of
Such as chemical vapor deposition, which decomposes by either light or a combination of two or more of these to form a silicon-based amorphous semiconductor on a substrate, sputtering by silicon or a silicon-based compound, or reactive sputtering. There is physical vapor growth.

【0006】テトラヘドラル系非晶質半導体のうち、水
素化非晶質シリコンに関しては、バルク中の欠陥密度と
考えられるシリコン原子の未結合手は、成長表面に存在
する未結合手がそのまま膜の成長に伴いバルク中に取り
込まれるものと考えられている。従って、成長表面の未
結合手を終端することができれば、バルクの欠陥密度を
低減することが可能となる。
Regarding hydrogenated amorphous silicon among the tetrahedral amorphous semiconductors, the dangling bonds of silicon atoms, which are considered to be the defect density in the bulk, are the dangling bonds existing on the growth surface as they are. It is considered that it is taken into the bulk along with. Therefore, if the dangling bonds on the growth surface can be terminated, the bulk defect density can be reduced.

【0007】この水素化非晶質シリコンの膜成長の機構
としては、膜成長の過程として気相中の膜生成前駆体が
成長表面に付着し、表面被覆水素を引き抜いて気相中に
戻る過程と、成長表面に付着した前駆体が成長表面を拡
散して未結合手と結合する膜堆積過程、の2つの過程か
らなるということが提唱されている。従って、前駆体が
成長表面上を拡散する距離をより増加させることができ
れば、より多くの成長表面の未結合手を終端することが
できる。通常、膜成長前駆体の拡散距離は基板の温度と
表面水素の被覆率に依存しているため、基板温度が高く
なるほど拡散係数は大きくなるが、同時に表面水素の被
覆率が低下するため拡散距離には極大値が存在する。従
って、一般的には拡散距離が増加するほど減少すると考
えられる欠陥密度については、基板温度が200〜25
0℃の時に極小値をとり、その値としては1015個/c
3 程度であると報告されている。最近、電子技術総合
研究所のガングリーらは基板温度を400℃にし、且つ
膜成長速度を従来の10倍程度に引き上げることで、水
素化非晶質シリコンの欠陥密度を1014個/cm3台に
することに成功した。これは400℃という基板温度で
は、表面被覆水素が大幅に脱離していくことによって膜
生成前駆体の拡散距離は低下するが、10倍の成膜速度
で水素の脱離した未結合手を終端することによって、膜
生成前駆体の拡散距離の低下が防止されている為と思わ
れる。その結果、400℃の基板温度で従来では得られ
なかった低欠陥密度の半導体膜が作製できることとなっ
た。
The mechanism of the film growth of this hydrogenated amorphous silicon is as follows: As the film growth process, the film-forming precursor in the vapor phase adheres to the growth surface, and the surface-covered hydrogen is extracted and returned to the vapor phase. It is proposed that the precursor deposited on the growth surface is a film deposition process in which the precursor diffuses on the growth surface and bonds with dangling bonds. Therefore, if the distance over which the precursor diffuses on the growth surface can be increased, more dangling bonds on the growth surface can be terminated. Normally, the diffusion distance of the film growth precursor depends on the temperature of the substrate and the surface hydrogen coverage, so that the diffusion coefficient increases as the substrate temperature increases, but at the same time the surface hydrogen coverage decreases and the diffusion distance increases. Has a local maximum. Therefore, regarding the defect density, which is generally considered to decrease as the diffusion distance increases, the substrate temperature is 200 to 25.
It takes a minimum value at 0 ° C, and its value is 10 15 pieces / c
It is reported to be about m 3 . Recently, Gangrie et al. Of the Electrotechnical Laboratory have increased the defect temperature of hydrogenated amorphous silicon to 10 14 / cm 3 by setting the substrate temperature to 400 ° C. and increasing the film growth rate to about 10 times that of the conventional method. Succeeded in This is because at the substrate temperature of 400 ° C., the diffusion distance of the film-forming precursor is shortened due to the large desorption of the surface-coated hydrogen, but the unbonded dangling bonds that have desorbed hydrogen are terminated at a film formation rate of 10 times. It is considered that this prevents the decrease in the diffusion distance of the film-forming precursor. As a result, it has become possible to manufacture a semiconductor film having a low defect density, which has not been obtained conventionally, at a substrate temperature of 400 ° C.

【0008】ところが前述したように、デバイスに応用
することを考慮すると400℃という基板温度は実用的
ではなく、少なくとも200℃前後で低欠陥密度の半導
体膜を作製することが実用上望ましい。そして本出願人
らはこの点について鋭意検討を重ね、本発明を完成する
に至ったのである。本発明はこのような観点から成され
たものであり、200℃程度の低温であっても膜生成前
駆体の拡散距離を増加させ、成長表面の未結合手をより
多く終端してバルクの欠陥密度を低下できるものであ
る。そしてこれは膜成長中の気相に熱エネルギーを与え
ることで、前駆体そのもののエネルギー状態を高めてや
り、これらが成長表面に到達した後の表面上における拡
散距離を、実際の基板温度における拡散距離よりも増加
させる点に特徴がある。
However, as described above, a substrate temperature of 400 ° C. is not practical in consideration of application to a device, and it is practically desirable to manufacture a semiconductor film having a low defect density at least around 200 ° C. The present applicants have earnestly studied this point and completed the present invention. The present invention has been made from such a viewpoint, and increases the diffusion distance of the film-forming precursor even at a low temperature of about 200 ° C., and terminates more dangling bonds on the growth surface to cause bulk defects. The density can be reduced. Then, by applying thermal energy to the vapor phase during film growth, the energy state of the precursor itself is raised, and the diffusion distance on the surface after these reach the growth surface is measured by the diffusion at the actual substrate temperature. It is characterized by increasing the distance rather than the distance.

【0009】そしてこのような本発明の製造方法は、気
相成長による半導体の製造方法であって、反応容器内に
メッシュ発熱体を配置し、半導体の成長中に前記メッシ
ュ発熱体を加熱することによって気相に熱エネルギーを
与えるものであり、前記メッシュ発熱体をメッシュ電極
とし、このメッシュ電極を通電によって加熱することを
併せて提案するものである。そして基板温度としては1
00〜250℃、メッシュ発熱体の温度としては100
〜400℃が好適である。
The manufacturing method of the present invention is a method for manufacturing a semiconductor by vapor phase growth, in which a mesh heating element is arranged in a reaction vessel and the mesh heating element is heated during the growth of the semiconductor. The present invention also proposes that the mesh heating element is a mesh electrode, and the mesh electrode is heated by energization. And the substrate temperature is 1
00 to 250 ° C, the temperature of the mesh heating element is 100
A temperature of 400 ° C is suitable.

【0010】メッシュ発熱体としては、上記のメッシュ
電極以外にメッシュ発熱体を中空配管としておき、内部
に加熱した高沸点液体を循環させることも可能である。
尚メッシュ発熱体としては、反応容器内においてプラズ
マ放電やガスの流れの妨げにならないような、格子状あ
るいは網目状のものが広く使用可能である。
As the mesh heating element, in addition to the above mesh electrode, the mesh heating element may be a hollow pipe, and the heated high boiling point liquid may be circulated inside.
As the mesh heating element, a lattice-shaped or mesh-shaped one can be widely used so as not to disturb the plasma discharge and the gas flow in the reaction vessel.

【0011】本発明の製造方法で得られる非晶質半導体
は欠陥密度の低減されたものであるが、非晶質シリコン
系半導体としては、少なくともSiを含む非晶質半導体
を指し、a−Siおよびa−Siと微結晶状Si、C、
Sn、Ge等との合金も含まれる。合金として代表的な
ものに、 a−Si1-x-y Gex y :H(0≦x、y≦1) a−Si1-x-y Gex y :H:F(0≦x、y≦1) などがある。本発明の非晶質半導体はたとえばpin構
造、ショットキー構造を有する半導体装置に好適に用い
ることができる。
Although the amorphous semiconductor obtained by the manufacturing method of the present invention has a reduced defect density, the amorphous silicon semiconductor refers to an amorphous semiconductor containing at least Si, and a-Si. And a-Si and microcrystalline Si, C,
Alloys with Sn, Ge, etc. are also included. As typical alloys, a-Si 1-xy Ge x C y : H (0 ≦ x, y ≦ 1) a-Si 1-xy Ge x Cy : H: F (0 ≦ x, y ≦ 1) etc. The amorphous semiconductor of the present invention can be suitably used for a semiconductor device having a pin structure or a Schottky structure, for example.

【0012】[0012]

【作用】反応容器内にメッシュ発熱体を配置し、半導体
の成長中に前記メッシュ発熱体を加熱することによって
気相に熱エネルギーを与えると、前述したように前駆体
そのもののエネルギー状態が高くなることにより、これ
らが成長表面に到達した後の表面上における拡散距離
が、実際の基板温度における拡散距離よりも大きくなる
のである。そして反応容器内の圧力は極めて低いため、
メッシュ発熱体から基板への熱伝導は殆ど問題にならな
いのである。
When a mesh heating element is placed in the reaction vessel and the mesh heating element is heated during the growth of the semiconductor to give heat energy to the gas phase, the energy state of the precursor itself increases as described above. As a result, the diffusion distance on the surface after reaching the growth surface becomes larger than the diffusion distance at the actual substrate temperature. And since the pressure in the reaction vessel is extremely low,
Heat conduction from the mesh heating element to the substrate is of little concern.

【0013】[0013]

【実施例】つぎに本発明の半導体の製造方法を実施例に
基づいて説明するが、本発明は本実施例によって何ら限
定されるものではない。
EXAMPLES Next, the semiconductor manufacturing method of the present invention will be explained based on examples, but the present invention is not limited to these examples.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示す条件により純モノシランガスの
グロー放電分解により、コーニング社製コード7059
ガラス及び結晶シリコン基板上に、真性水素化非晶質シ
リコン薄膜を1〜2μm堆積した。図1に半導体薄膜作
製に使用したプラズマCVD装置の概略構造図を示す。
図例の装置は通常のダイオード方式による容量結合型プ
ラズマCVD装置であり、反応容器1内のカソード電極
3、アノード電極5間にメッシュ発熱体としてステンレ
ス製のメッシュ電極7を設置したものである。カソード
電極3、メッシュ電極7間の距離は40mm、メッシュ
電極7、アノード電極5間の距離は20mmとしてい
る。メッシュ電極7はカソード電極3、アノード電極5
の両電極とは接地されておらず浮遊電位状態である。そ
して加熱用電源9とは絶縁トランス11でつながってお
り、スライダック13によって電圧を調整することで、
メッシュ電極7に流れる電流量を制御している。各基板
はアノード電極5上にステンレス治具で密着性良く固定
した。成膜前の準備として、吸着した不純物をできるだ
け排気するために反応容器1の壁、基板、メッシュ電極
7を十分に加熱した後、所定の温度まで下げて2×10
-8Torr程度の真空度まで排気した。この真空排気は
ターボ分子ポンプに接続している高真空用排気口15よ
り排気され、成膜中はメカニカルブースターポンプとロ
ータリーポンプに接続している圧力調整用排気口17か
らの排気により、反応容器1内を一定圧力に保ってい
る。そして原料ガスとして純モノシランガスを反応容器
1内に導入し、高周波電源19よりカソード電極3、ア
ノード電極5間に13.56MHzの高周波電圧を印加
し、前記表1の条件により1〜2μmの膜厚で水素化非
晶質シリコン膜を成膜した。
Corning code 7059 was obtained by glow discharge decomposition of pure monosilane gas under the conditions shown in Table 1.
Intrinsic hydrogenated amorphous silicon thin films were deposited to 1-2 μm on glass and crystalline silicon substrates. FIG. 1 shows a schematic structural diagram of a plasma CVD apparatus used for manufacturing a semiconductor thin film.
The apparatus shown in the drawing is a normal diode-type capacitively coupled plasma CVD apparatus, in which a mesh electrode 7 made of stainless steel is installed as a mesh heating element between the cathode electrode 3 and the anode electrode 5 in the reaction vessel 1. The distance between the cathode electrode 3 and the mesh electrode 7 is 40 mm, and the distance between the mesh electrode 7 and the anode electrode 5 is 20 mm. The mesh electrode 7 is a cathode electrode 3 and an anode electrode 5
Both electrodes are not grounded and are in a floating potential state. And it is connected to the heating power source 9 by an insulating transformer 11, and by adjusting the voltage with the sliderac 13,
The amount of current flowing through the mesh electrode 7 is controlled. Each substrate was fixed on the anode electrode 5 with a stainless jig with good adhesion. In preparation for film formation, the wall of the reaction container 1, the substrate, and the mesh electrode 7 are sufficiently heated to exhaust the adsorbed impurities as much as possible, and then the temperature is lowered to a predetermined temperature to reach 2 × 10 5.
It was evacuated to a vacuum degree of about -8 Torr. This vacuum exhaust is exhausted from the high vacuum exhaust port 15 connected to the turbo molecular pump, and during the film formation, the reaction container is exhausted from the pressure adjusting exhaust port 17 connected to the mechanical booster pump and the rotary pump. The inside of 1 is kept at a constant pressure. Then, pure monosilane gas was introduced into the reaction vessel 1 as a raw material gas, a high frequency voltage of 13.56 MHz was applied between the cathode electrode 3 and the anode electrode 5 from the high frequency power source 19, and a film thickness of 1 to 2 μm was obtained according to the conditions in Table 1. Then, a hydrogenated amorphous silicon film was formed.

【0016】このようにして得られた水素化非晶質シリ
コン膜上に、真空蒸着法によってA1のコプラナー電極
を0.2mm間隔で形成した。そして定常光電流法(C
PM法)と呼ばれる方法により、これら試料における半
導体中の欠陥密度の定量を行った。メッシュ電極7の温
度を横軸に、欠陥密度を縦軸に取ったものを図2(イ)
に示している。通常の基板温度、即ち250℃で形成し
たときの欠陥密度は図2(イ)の左端の点として示され
るように1015個/cm3 程度であるが、メッシュ電極
7を200℃に加熱した場合には、1014個/cm3
まで約一桁低下し、気相への熱エネルギーの供給によっ
て膜中の欠陥密度が低減できることがわかる。また、同
時に成膜した結晶シリコン基板上の試料を赤外分光装置
により測定し、その赤外光吸収特性から膜中水素量を定
量した値を同図(ロ)に示す。膜中水素量はメッシュ電
極7の温度に依らずほぼ一定であり、基板温度と水素量
に相関があることを考慮すると、基板温度は加熱したメ
ッシュ電極7からの輻射には余り影響を受けていないこ
とがわかる。
On the hydrogenated amorphous silicon film thus obtained, A1 coplanar electrodes were formed at intervals of 0.2 mm by a vacuum deposition method. And the stationary photocurrent method (C
The defect density in the semiconductor in these samples was quantified by a method called PM method). The temperature of the mesh electrode 7 is plotted on the horizontal axis and the defect density is plotted on the vertical axis in FIG.
Is shown in. The defect density when formed at a normal substrate temperature, that is, 250 ° C. is about 10 15 defects / cm 3 as shown by the point at the left end of FIG. 2A, but the mesh electrode 7 was heated to 200 ° C. In this case, the number of defects is reduced to about 10 14 / cm 3 by about one digit, and it is understood that the defect density in the film can be reduced by supplying the thermal energy to the gas phase. In addition, a value obtained by measuring a sample on a crystalline silicon substrate formed at the same time with an infrared spectroscope and quantifying the amount of hydrogen in the film from the infrared light absorption characteristics is shown in FIG. Considering that the amount of hydrogen in the film is almost constant regardless of the temperature of the mesh electrode 7 and there is a correlation between the substrate temperature and the amount of hydrogen, the substrate temperature is not significantly affected by the radiation from the heated mesh electrode 7. I know there isn't.

【0017】[0017]

【発明の効果】以上説明したように、本発明の半導体の
製造方法によれば、低い基板温度ながら極めて低い欠陥
密度の半導体を作製できる。従って高性能の太陽電池や
薄膜トランジスタなどの真の実用化に大きく寄与するこ
とができる。
As described above, according to the semiconductor manufacturing method of the present invention, it is possible to manufacture a semiconductor having a very low defect density at a low substrate temperature. Therefore, it can greatly contribute to the practical application of high-performance solar cells, thin film transistors, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実現するためのプラズマCVD装置の
構成例を表す説明図
FIG. 1 is an explanatory diagram showing a configuration example of a plasma CVD apparatus for realizing the present invention.

【図2】本発明の製造方法で得られた水素化非晶質シリ
コン半導体の、メッシュ電極温度と欠陥密度図および膜
中水素量の関係を表す説明図で、(イ)がメッシュ電極
温度−欠陥密度相関図、(ロ)がメッシュ電極温度−膜
中水素量相関図
FIG. 2 is an explanatory diagram showing the relationship between the mesh electrode temperature and the defect density diagram and the hydrogen content in the film of the hydrogenated amorphous silicon semiconductor obtained by the manufacturing method of the present invention, in which (a) is the mesh electrode temperature- Defect density correlation diagram, (b) Correlation diagram of mesh electrode temperature-film hydrogen content

【符号の説明】[Explanation of symbols]

1 反応容器 3 カソード電極 5 アノード電極 7 メッシュ電極 9 加熱用電源 11 絶縁トランス 13 スライダック 15 高真空用排気口 17 圧力調整用排気口 19 高周波電源 1 Reaction Vessel 3 Cathode Electrode 5 Anode Electrode 7 Mesh Electrode 9 Heating Power Supply 11 Insulation Transformer 13 Slideac 15 High Vacuum Exhaust Port 17 Pressure Adjusting Exhaust Port 19 High Frequency Power Source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ガウタム ガングリー 茨城県つくば市梅園1丁目1番4 電子技 術総合研究 所内 (72)発明者 松田 彰久 茨城県つくば市梅園1丁目1番4 電子技 術総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Gautam Gangley 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Center (72) Inventor Akihisa Matsuda 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic technology Inside the research institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】気相成長による半導体の製造方法であっ
て、反応容器内にメッシュ発熱体を配置し、半導体の成
長中に前記メッシュ発熱体を加熱することによって気相
に熱エネルギーを与える半導体の製造方法。
1. A method for producing a semiconductor by vapor phase growth, wherein a mesh heating element is arranged in a reaction vessel, and the mesh heating element is heated during the growth of the semiconductor to give heat energy to the vapor phase. Manufacturing method.
【請求項2】前記メッシュ発熱体をメッシュ電極とし、
このメッシュ電極を通電によって加熱して気相に熱エネ
ルギーを与える請求項1記載の半導体の製造方法。
2. The mesh heating element is a mesh electrode,
The method for producing a semiconductor according to claim 1, wherein the mesh electrode is heated by energization to apply heat energy to a gas phase.
JP24133893A 1993-09-28 1993-09-28 Semiconductor manufacturing method Expired - Lifetime JP3300802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24133893A JP3300802B2 (en) 1993-09-28 1993-09-28 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24133893A JP3300802B2 (en) 1993-09-28 1993-09-28 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0799159A true JPH0799159A (en) 1995-04-11
JP3300802B2 JP3300802B2 (en) 2002-07-08

Family

ID=17072820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24133893A Expired - Lifetime JP3300802B2 (en) 1993-09-28 1993-09-28 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3300802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504377A (en) * 2005-08-10 2009-02-05 マイクロフルイディク システムズ インコーポレイテッド Reactor
JP2014067943A (en) * 2012-09-27 2014-04-17 Dainippon Screen Mfg Co Ltd Thin film formation system and thin film formation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504377A (en) * 2005-08-10 2009-02-05 マイクロフルイディク システムズ インコーポレイテッド Reactor
JP2014067943A (en) * 2012-09-27 2014-04-17 Dainippon Screen Mfg Co Ltd Thin film formation system and thin film formation method

Also Published As

Publication number Publication date
JP3300802B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JP3152328B2 (en) Polycrystalline silicon device
EP0538840B1 (en) Photovoltaic device
US4798167A (en) Apparatus for preparing a photoelectromotive force member having a concentric triplicate conduit for generating active species and precursor
CN1122299C (en) Method of forming microcrystalline sillicon film, photovoltaic element, and method of producing same
JP2000277439A (en) Plasma cvd method for crystalline silicon thin-film and manufacture of silicon thin-film photoelectric conversion device
US6124545A (en) Thin film solar cell
CN1588649A (en) Method for preparing silicon thin film heterojunction solar cell
JP2001332749A (en) Method for forming semiconductor thin film and amorphous silicon solar cell element
JP2000138384A (en) Amorphous semiconductor device and its manufacture
JP2000174310A (en) Manufacture of silicon-based thin-film photoelectric conversion device
JP4335389B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP3300802B2 (en) Semiconductor manufacturing method
JP2000183377A (en) Manufacture of silicon thin-film optoelectric conversion device
Bauer et al. pi interface engineering and i-layer control of hot-wire a-Si: H based pin solar cells using in-situ ellipsometry
JP4510242B2 (en) Thin film formation method
JP2002246622A (en) Silicon crystal thin film photovoltaic element, method of manufacturing it and method of evaluating it
JP4256522B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP2788798B2 (en) Photovoltaic element
JP2000252493A (en) Manufacture of silicon thin-film photoelectric conversion device
JP2728874B2 (en) Semiconductor device manufacturing method
JP2001152347A (en) Plasma cvd apparatus, and manufacturing method of silicon thin film photoelectric converter
JP2915628B2 (en) Photovoltaic element
CN117878178A (en) Crystalline silicon heterojunction solar cell structure and preparation method thereof
JP2000101110A (en) Manufacture of solar battery
JP2000252488A (en) Manufacture of silicon thin-film photoelectric conversion device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

EXPY Cancellation because of completion of term