JPH0798986B2 - Co-based amorphous magnetic alloy for high frequency switching circuits - Google Patents

Co-based amorphous magnetic alloy for high frequency switching circuits

Info

Publication number
JPH0798986B2
JPH0798986B2 JP5093788A JP9378893A JPH0798986B2 JP H0798986 B2 JPH0798986 B2 JP H0798986B2 JP 5093788 A JP5093788 A JP 5093788A JP 9378893 A JP9378893 A JP 9378893A JP H0798986 B2 JPH0798986 B2 JP H0798986B2
Authority
JP
Japan
Prior art keywords
magnetic
high frequency
saturable reactor
based amorphous
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5093788A
Other languages
Japanese (ja)
Other versions
JPH0625806A (en
Inventor
浩一郎 猪俣
▲迪▼雄 長谷川
利浩 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP56095727A priority Critical patent/JPS57210377A/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5093788A priority patent/JPH0798986B2/en
Publication of JPH0625806A publication Critical patent/JPH0625806A/en
Publication of JPH0798986B2 publication Critical patent/JPH0798986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Fixing For Electrophotography (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は可飽和リアクタを用い
た磁気増幅器を具備する電圧共振形等の高周波スイッチ
ング回路に用いられる非晶質磁性合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous magnetic alloy used in a high frequency switching circuit such as a voltage resonance type equipped with a magnetic amplifier using a saturable reactor.

【0002】[0002]

【従来の技術】周知のように、電子計算機の周辺機器や
一般通信機用の安定化電源は仕様として小電圧、大電流
を要求するが、近年このような用途に小形、軽量、高効
率という利点を持つスイッチング式電源が多く使われて
いる。電圧あるいは電流共振波形を用いたスイッチング
電源はトランジスタやサイリスタ等の主スイッチング素
子のスイッチング効率が良く、且つ低雑音で動作する等
の長所がある。しかし、共振波形を保持しながら制御で
きる出力電力の範囲が狭い等の欠点もある。従来共振波
形を利用したスイッチング回路の代表的なものとして、
特にシングルエンデイドスイッチング回路では準E級ス
イッチング回路がある。これは外部回路を工夫してスイ
ッチング素子の端子電圧波形が共振の弧を描くようにし
たものでその場合、スイッチング周期、導通幅および外
部回路定数を所定の条件に設定する必要がある。この電
圧共振波形を利用した準E級スイッチング回路の電力変
換効率は動作周波数100KHzで90%以上得られ
る。
2. Description of the Related Art As is well known, stabilized power supplies for peripheral equipment of electronic computers and general communication equipment require small voltage and large current as specifications, but in recent years they have been called compact, lightweight and highly efficient for such applications. Switching type power supplies, which have advantages, are often used. A switching power supply using a voltage or current resonance waveform has advantages such as high switching efficiency of main switching elements such as transistors and thyristors, and low noise operation. However, there are drawbacks such as a narrow range of output power that can be controlled while holding the resonance waveform. As a typical one of the conventional switching circuits using the resonance waveform,
Particularly in the single-ended switching circuit, there is a quasi-E class switching circuit. This is a device in which an external circuit is devised so that the terminal voltage waveform of the switching element draws an arc of resonance. In that case, it is necessary to set the switching period, the conduction width, and the external circuit constant to predetermined conditions. The power conversion efficiency of the quasi-class E switching circuit using this voltage resonance waveform is 90% or more at an operating frequency of 100 KHz.

【0003】一方、ハーフブリッジスイッチング回路で
はスイッチ素子を流れる電流波形が共振の弧を描くよう
に周辺回路を工夫してある。この電流の共振波形を利用
するスイッチング回路はスイッチ素子がサイリスタの場
合強制転流回路が省略でき有効である。しかしながら、
上述の共振形スイッチング回路において、共振周波数は
外部回路の素子値の組合せで決まる。このため、共振波
形を利用したスイッチング回路を安定化電源や電力増幅
器に応用した場合出力電力の制御をするのが複雑にな
る。例えば、通常のフォワード形スイッチ回路では単に
スイッチングの導通幅を変えるだけで容易に電力制御で
きるのに対し、共振波形を利用したスイッチ回路では導
通幅を変えると同時にスイッチング周期も所定の関係で
変えなければ共振波形を保ちながら電力制御はできな
い。即ち、出力電力を増大するために導通幅を広げると
共振の弧の軸は一定なので、結果的にスイッチング周期
も長くする必要がある。したがって、その制御構成も複
雑となる。また、たとえその複雑な制御回路を作って出
力電力の制御ができても可変範囲が狭く、安定化電源や
電力増幅器を構成するには不十分である。
On the other hand, in the half-bridge switching circuit, the peripheral circuit is devised so that the waveform of the current flowing through the switching element draws an arc of resonance. A switching circuit using the resonance waveform of this current is effective because the commutation circuit can be omitted when the switching element is a thyristor. However,
In the above resonance type switching circuit, the resonance frequency is determined by the combination of the element values of the external circuit. Therefore, when the switching circuit using the resonance waveform is applied to the stabilized power supply or the power amplifier, it becomes complicated to control the output power. For example, in a normal forward type switch circuit, power can be easily controlled by simply changing the conduction width of switching, whereas in a switch circuit using a resonance waveform, the conduction width must be changed and the switching cycle must also be changed in a predetermined relationship. For example, power control cannot be performed while maintaining the resonance waveform. That is, when the conduction width is increased to increase the output power, the axis of the resonance arc is constant, and as a result, the switching cycle also needs to be lengthened. Therefore, the control configuration becomes complicated. Further, even if the complicated control circuit can be made to control the output power, the variable range is narrow, and it is insufficient to form a stabilized power supply or a power amplifier.

【0004】上記欠点を解決する一つの方法として、出
力回路には電圧制御形の磁気増幅器を用いる方式があ
る。この磁気増幅器を構成する主要部は可飽和リアクタ
であり、可飽和リアクタの鉄心の磁気に関するヒステリ
シス曲線の角形性が磁気増幅器の性質を左右することは
言うまでもない、磁気増幅器を正しく動作させるために
は通常直流における角形比90数%のものを用いる。し
かし、従来の如く角形比が85〜95%程度のパーマロ
イ等をそのまま100KHz程度の高周波スイッチ回路
に適用すると、うず電流損失により発熱を生じ磁気増幅
器の機能を損うことになる。
As one method of solving the above-mentioned drawback, there is a method of using a voltage-controlled magnetic amplifier in the output circuit. The main part that constitutes this magnetic amplifier is the saturable reactor, and it goes without saying that the squareness of the hysteresis curve related to the magnetism of the iron core of the saturable reactor influences the properties of the magnetic amplifier. Usually, a rectangular shape with a squareness ratio of 90% is used. However, if a permalloy having a squareness ratio of about 85 to 95% is applied as it is to a high frequency switch circuit of about 100 KHz, heat is generated due to eddy current loss and the function of the magnetic amplifier is impaired.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、可飽和リアクタを用い高周波でも高効率で安定に動
作する磁気増幅器を備え、高周波領域での良好なスイッ
チング特性を有する高周波スイッチング回路用Co基非
晶質磁性合金を提供する事を目的とする。
In view of the above points, the present invention is a high frequency switching circuit having a magnetic amplifier which uses a saturable reactor and operates stably with high efficiency even at high frequencies, and has a good switching characteristic in a high frequency region. The present invention aims to provide a Co-based amorphous magnetic alloy for use.

【0006】[0006]

【課題を解決するための手段及び作用】本発明は、可飽
和リアクタを用いた磁気増幅器を具備する高周波スイッ
チング回路用Co基非晶質磁性合金において、原子%で (Co1-a-b-c Fea Nib c 1-d d 0.04≦a≦0.15 0≦b≦0.10 0.005 ≦c≦0.10 0.15≦d≦0.30 Mは、Nb、Cr、Mo、V、Ta、Ti、Zr、Wか
ら選ばれる少なくとも一種の元素 Xは、BまたはB+Si ただしSiを含有する場合のSi量は25原子%以下で
示され、かつ20〜100KHzで磁気ヒステリシス曲
線のBr /B10が85%以上、保磁力Hc が0.35Oe以
下の特性を有することを特徴とする高周波スイッチング
回路用Co基非晶質磁性合金である。
The present invention provides a Co-based amorphous magnetic alloy for a high-frequency switching circuit, which is equipped with a magnetic amplifier using a saturable reactor, in an atomic percentage of (Co 1 -abc Fe a Ni b M c ) 1-d X d 0.04 ≤ a ≤ 0.15 0 ≤ b ≤ 0.10 0.005 ≤ c ≤ 0.10 0.15 ≤ d ≤ 0.30 M is selected from Nb, Cr, Mo, V, Ta, Ti, Zr and W. At least one element X is B or B + Si. However, when Si is contained, the Si content is 25 atomic% or less, and at 20 to 100 KHz, B r / B 10 of the magnetic hysteresis curve is 85% or more, and the coercive force H It is a Co-based amorphous magnetic alloy for high-frequency switching circuits characterized in that c has a characteristic of 0.35 Oe or less.

【0007】本発明は非晶質合金の高周波特性を見出し
たことを基本とするものである。すなわち低周波領域で
は、他の材料に比べ優れていることはなくとも、高周波
領域では格段に優れた磁気特性を示すことを見出し、そ
の非晶質合金をスイッチング回路に適用し、スイッチン
グ周波数の高周波化、電源効率の向上などの効果を実現
したのが本発明である。以下に本発明に用いる非晶質合
金の組成限定理由を詳細に説明する。本発明に用いる非
晶質磁性合金は前記の如く、 (Co1-a-b-c Fea Nib c 1-d d 0.04≦a≦0.15 0≦b≦0.10 0.005 ≦c=0.10 0.15≦d≦0.30 Mは、Nb、Cr、Mo、V、Ta、Ti、Zr、Wか
ら選ばれる少なくとも一種の元素 Xは、BまたはB+Si ただしSiを含有する場合のSi量は25原子%以下で
示され、かつ20〜100KHzで磁気ヒステリシス曲
線のBr /B10が85%以上、保磁力Hc が0.35Oe以
下の特性を有するCo基非晶質磁性合金である。
The present invention is based on the discovery of high frequency characteristics of amorphous alloys. That is, it was found that even in the low frequency region, even though it is not superior to other materials, it exhibits remarkably excellent magnetic characteristics in the high frequency region. The present invention realizes effects such as improvement in efficiency and power efficiency. The reasons for limiting the composition of the amorphous alloy used in the present invention will be described in detail below. As described above, the amorphous magnetic alloy used in the present invention is (Co 1-abc Fe a Ni b M c ) 1-d X d 0.04 ≦ a ≦ 0.15 0 ≦ b ≦ 0.10 0.005 ≦ c = 0.10 0.15 ≦ d ≦ 0.30 M is at least one element selected from Nb, Cr, Mo, V, Ta, Ti, Zr and W X is B or B + Si However, when Si is contained, the amount of Si is 25 atomic% or less, Further, it is a Co-based amorphous magnetic alloy having properties such that B r / B 10 of the magnetic hysteresis curve is 85% or more and coercive force H c is 0.35 Oe or less at 20 to 100 KHz.

【0008】磁気特性に直流特性と交流特性(高周波特
性)があることは周知のことであり、非晶質磁性合金の
角型比の向上に磁場中熱処理が有効であることは知られ
ていたが、これは直流特性に関してであり、磁場中熱処
理により高角型比を実現した非晶質磁性合金の高周波領
域における磁気特性は、角型比こそ高いもののヒステリ
シスループが歪み、かつ保磁力が大きくなるため、損失
が大きく到底実用には耐えられるものではない。この傾
向は特にFe基非晶質磁性合金の場合に顕著である。本
願発明者らは磁場中熱処理なしで交流特性、特に高周波
領域での磁気特性の向上を実現できないかと研究をすす
めた。その結果、Co基非晶質磁性合金において熱処理
時に磁場を印加しないと、直流特性こそ磁場中熱処理に
比較して劣るものの高周波領域ではその特性が逆転し、
非常に良好な磁気特性、すなわち高角型性及び低保磁力
を実現できることを見出したのである。
It is well known that magnetic characteristics include direct current characteristics and alternating current characteristics (high frequency characteristics), and it has been known that heat treatment in a magnetic field is effective for improving the squareness ratio of an amorphous magnetic alloy. However, this is related to the direct current characteristics, and the magnetic characteristics in the high frequency region of the amorphous magnetic alloy that realized a high squareness ratio by heat treatment in a magnetic field have a high squareness ratio, but the hysteresis loop is distorted and the coercive force becomes large. Therefore, the loss is large and cannot be practically used. This tendency is particularly remarkable in the case of Fe-based amorphous magnetic alloy. The inventors of the present application proceeded with research to realize improvement of AC characteristics, particularly magnetic characteristics in a high frequency region, without heat treatment in a magnetic field. As a result, in a Co-based amorphous magnetic alloy, when a magnetic field was not applied during heat treatment, the direct current characteristics were inferior to those in the magnetic field heat treatment, but the characteristics were reversed in the high frequency region,
It has been found that very good magnetic properties, that is, high squareness and low coercive force can be realized.

【0009】Feは高角型性及び低保磁力を達成するの
に必須の元素であり、その含有量aは0.04≦a≦0.15の
範囲に限定する。a<0.04ではFe添加の効果が表われ
ず、a>0.15ではかえって角型性及び保磁力特性が低下
してしまう。
Fe is an essential element for achieving high squareness and low coercive force, and its content a is limited to the range of 0.04≤a≤0.15. When a <0.04, the effect of adding Fe does not appear, and when a> 0.15, the squareness and the coercive force characteristic deteriorate rather.

【0010】Niの少量の添加は、キュリー点の調整、
磁気特性の向上に有効であるが、余り過剰の添加は飽和
磁束密度の低下、キュリー点の低下などの不具合を生じ
るおそれがあるため、Ni含有量bはb≦0.10とする。
Addition of a small amount of Ni adjusts the Curie point,
Although it is effective for improving the magnetic properties, excessive Ni addition may cause problems such as a decrease in saturation magnetic flux density and a decrease in Curie point. Therefore, the Ni content b is set to b ≦ 0.10.

【0011】Nb、Cr、Mo、V、Ta、Ti、Z
r、Wから選ばれる少なくとも一種の元素であるMは高
周波領域における低保磁力化などの磁気特性向上に有効
な元素であり、高角型性及び低保磁力を製造性良く実現
するために必須の元素である。その含有量cは0.005 ≦
c≦0.10とする。余り少ないとM元素添加効果が表われ
難く、過剰な添加はかえって高周波領域の保磁力増加、
角形比の低下などの高周波領域における磁気特性を低下
し、更には脆くなって取り扱い難くなってしまうためこ
の範囲とする。
Nb, Cr, Mo, V, Ta, Ti, Z
M, which is at least one element selected from r and W, is an element effective for improving magnetic properties such as low coercive force in a high frequency region, and is essential for realizing high squareness and low coercive force with good manufacturability. It is an element. The content c is 0.005 ≤
c ≦ 0.10. If it is too small, the effect of adding the M element is difficult to appear, and excessive addition causes an increase in the coercive force in the high frequency region.
This range is set because the magnetic properties in the high frequency region such as the decrease of the squareness ratio are deteriorated, and the brittleness becomes more difficult to handle.

【0012】次にX(BまたはB+Si)であるが、こ
れは非晶質合金を得るために必要な元素である。この含
有量dは0.15≦d≦0.30とする。この範囲外では非晶質
化が困難となるばかりか高周波領域における磁気特性の
向上の効果を得ることが困難である。またSiの過剰添
加は磁気特性の低下を招くため全体の25原子%以下と
する。
Next, X (B or B + Si) is an element necessary for obtaining an amorphous alloy. The content d is 0.15 ≦ d ≦ 0.30. Outside this range, not only is it difficult to amorphize, but it is also difficult to obtain the effect of improving the magnetic characteristics in the high frequency region. Further, since excessive addition of Si causes deterioration of magnetic properties, it is set to 25 atom% or less of the whole.

【0013】[0013]

【実施例】以下、この発明の一実施例について図面を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1において、11は直流電源であり、こ
の電源11の正極はスイッチング素子例えばトランジス
タ12のコレクタに接続される、このトランジスタ12
のベースには所定周期、所定導通幅のスイッチングパル
スPが供給され、これにより周期的に開閉作動される。
このトランジスタ12のエミッタは変成器13の一次巻
線131 を介して前記電源11の負極端に接続される。
この変成器13の一次巻線131 には共振用コンデンサ
14が並列接続され、前記トランジスタ12のコレク
タ、エミッタ間にはダンパダイオード15が図示極性で
接続される。これらトランジスタ12、変成器13、共
振用コンデンサ14、ダンパダイオード15はシングル
エンデイドスイッチング回路16を構成している。
In FIG. 1, reference numeral 11 is a DC power supply, and the positive electrode of the power supply 11 is connected to the switching element, for example, the collector of the transistor 12, which is the transistor 12.
A switching pulse P having a predetermined conduction width and a predetermined conduction width is supplied to the base of, and thereby the opening and closing operation is periodically performed.
The emitter of the transistor 12 is connected to the negative terminal of the power source 11 via the primary winding 13 1 of the transformer 13.
A resonance capacitor 14 is connected in parallel to the primary winding 13 1 of the transformer 13, and a damper diode 15 is connected between the collector and the emitter of the transistor 12 with the polarity shown in the figure. The transistor 12, the transformer 13, the resonance capacitor 14, and the damper diode 15 form a single-ended switching circuit 16.

【0015】一方、前記変成器13の二次巻線132
132 (一次巻線と二次巻線との巻線比はn:1)の一
端部にはコイル133 を介して可飽和リアクタ17の一
端が接続され、このリアクタ17の他端は環流ダイオー
ド18のカソードに接続される。このダイオード18の
アノードは可変抵抗19を介して前記二次巻線132
他端部に接続される。これら二次巻線132 、コイル1
3 、可飽和リアクタ17、環流ダイオード12、可変
抵抗19はレミー形と称される電圧制御磁気増幅器20
を構成している。
On the other hand, the secondary winding 13 2 , of the transformer 13,
One end of a saturable reactor 17 is connected to one end of 13 2 (the winding ratio of the primary winding and the secondary winding is n: 1) via a coil 13 3, and the other end of the reactor 17 is a recirculation. It is connected to the cathode of the diode 18. The anode of the diode 18 is connected to the other end of the secondary winding 13 2 via the variable resistor 19. These secondary winding 13 2 and coil 1
3 3 , the saturable reactor 17, the freewheeling diode 12, and the variable resistor 19 are voltage controlled magnetic amplifiers 20 called Remy type.
Are configured.

【0016】また、前記可飽和リアクタ17の他端部に
は整流ダイオード21のアノードが接続され、このダイ
オード21のカソードは負荷22を介して前記変成器1
3の二次巻線132 の他端部に接続される。この負荷2
2には平滑用コンデンサ23が並列接続され、このコン
デンサ23とダイオード21によって平滑回路24を構
成している。
The anode of a rectifying diode 21 is connected to the other end of the saturable reactor 17, and the cathode of the diode 21 is connected to the transformer 1 via a load 22.
3 is connected to the other end of the secondary winding 13 2 . This load 2
A smoothing capacitor 23 is connected in parallel to the capacitor 2, and the capacitor 23 and the diode 21 form a smoothing circuit 24.

【0017】尚、シングルエンデイドスイッチング回路
16はトランジスタ12の両端にかかる電圧が正弦波の
弧になるような動作をするようにトランジスタ12のス
イッチング周期および導通幅、共振用コンデン14の容
量値、変成器12の励磁インダクタンス等の値が相互に
定められている。さらに、磁気増幅器20は自己帰還が
かかるように変成器13の二次側の正負の出力電圧に対
応させて可飽和リアクタ17のアンペア・ターンが設定
されている。
The single-ended switching circuit 16 operates so that the voltage applied across the transistor 12 becomes an arc of a sine wave, the switching period and conduction width of the transistor 12, the capacitance value of the resonance capacitor 14, Values such as the exciting inductance of the transformer 12 are mutually determined. Further, in the magnetic amplifier 20, the ampere-turn of the saturable reactor 17 is set corresponding to the positive and negative output voltages of the secondary side of the transformer 13 so that self-feedback is performed.

【0018】上記構成において、仮に、磁気増幅器20
を除去し、変成器3の二次側を直接整流平滑回路24に
接続すると、シングルエンデイドスイッチング回路16
の二次側、つまり変成器13の二次側に誘起され、平滑
回路24に印加される電圧波形は、図2bに点線で示す
ようになることが知られている。即ち、トランジスタ1
2が時刻t=0において導通されると、入力直流電源1
1から変成器13の励磁インダクタンスL1 と洩れイン
ダクタンスL2 (図3参照)との並列合成インダクタン
スに電流が供給される。このとき、上記合成インダクタ
ンスに流れる電流は、図2aに点線で示すように直接的
に増加する。そして、所定時間経過後、時刻t=ton
でトランジスタ12が急激に非導通になると、上記の合
成インダクタンスに流れていた電流は慣性を持っている
ため、そのまま共振用コンデンサ14に流れ込む。しか
し、この流れ込む方向は入力直流11に対し負方向にな
るため、充電が進めば共振用コンデンサ14の端子電圧
は入力直流電源11の電圧+Einの値から徐々に減少
してやがて負となり、負の最大値を経て再び+Einに
戻ってくる。この様子を変成器13の二次側電圧波形と
して示したのが図2bの点線である。この共振用コンデ
ンサ14の端子電圧波形の変化の特徴は、正電位の時と
負電位の時との面積(電圧×時間)の比が0.5 〜2と比
較的少ないことである。
In the above structure, the magnetic amplifier 20 is assumed.
Is removed and the secondary side of the transformer 3 is directly connected to the rectifying / smoothing circuit 24, the single-ended switching circuit 16
It is known that the voltage waveform induced on the secondary side of the transformer, that is, the secondary side of the transformer 13 and applied to the smoothing circuit 24 is as shown by the dotted line in FIG. 2b. That is, the transistor 1
2 becomes conductive at time t = 0, input DC power supply 1
A current is supplied from 1 to the parallel combined inductance of the exciting inductance L 1 and the leakage inductance L 2 (see FIG. 3) of the transformer 13. At this time, the current flowing through the combined inductance directly increases as shown by the dotted line in FIG. 2a. Then, after a predetermined time has passed, time t = ton
Then, when the transistor 12 suddenly becomes non-conductive, the current flowing through the above-mentioned combined inductance flows into the resonance capacitor 14 as it is because it has inertia. However, since the flowing-in direction is a negative direction with respect to the input DC 11, the terminal voltage of the resonance capacitor 14 gradually decreases from the value of the voltage + Ein of the input DC power supply 11 to become negative as the charging proceeds, and then becomes negative. After reaching the maximum value, it returns to + Ein again. This state is shown as a voltage waveform on the secondary side of the transformer 13, and is indicated by a dotted line in FIG. 2b. The characteristic of the change in the terminal voltage waveform of the resonance capacitor 14 is that the ratio of the area (voltage × time) between the positive potential and the negative potential is relatively small at 0.5 to 2.

【0019】以上の点を念頭において、図1の動作を説
明する。なお図2bの実線は磁気増幅器に印加される電
圧を示し、図2cは平滑回路に入力される磁気増幅器2
0の出力電圧(E´out )を示している。先ず、トラン
ジスタ12が導通になった時、変成器13の極性を考え
ると整流ダイオード21も導通になる。そして、定常状
態になると平滑用コンデンサ23と負荷22との並列回
路は一つの電池と等価になる。これらのことから図1の
等価回路は図3aに示すようになる。尚、Tは理想変成
器であり、30は前記等価的な電池である。この場合、
トランジスタ12の導通初期において、可飽和リアクタ
17は飽和しないため、このインピーダンスは非常に高
い。したがって、入力直流電源11から流れ出す電流は
ほとんど変成器13の励磁インダクタンスL1 にだけ流
れる。この様子を示したのが図2aに示す実線のt=0
〜tc の期間である。その後、可飽和リアクタ17が飽
和すると、そのインピーダンスはほとんど零になるた
め、図1の等価回路は図3bに示すようになる。この図
3bの状態においては、入力直流電源11から洩れイン
ダクタンスL2 を経由して電池30に流れ込む電流が急
激に励磁インダクタンスL1 に加えられるため、入力直
流電源11から流れ出る電流の傾斜は大きくなる。この
様子を示したのが図2aに示す実線のt=tc 〜ton
の期間である。この期間では、可飽和リアクタ17の端
子電圧はほとんど零になる。
With the above points in mind, the operation of FIG. 1 will be described. 2b shows the voltage applied to the magnetic amplifier, and FIG. 2c shows the magnetic amplifier 2 input to the smoothing circuit.
The output voltage (E ' out ) of 0 is shown. First, when the transistor 12 becomes conductive, the rectifier diode 21 becomes conductive, considering the polarity of the transformer 13. Then, in the steady state, the parallel circuit of the smoothing capacitor 23 and the load 22 becomes equivalent to one battery. From these facts, the equivalent circuit of FIG. 1 becomes as shown in FIG. 3a. Incidentally, T is an ideal transformer, and 30 is the equivalent battery. in this case,
Since the saturable reactor 17 is not saturated in the initial stage of the conduction of the transistor 12, this impedance is very high. Therefore, almost all the current flowing from the input DC power supply 11 flows only in the exciting inductance L 1 of the transformer 13. This is illustrated by the solid line t = 0 in FIG. 2a.
~ T c . After that, when the saturable reactor 17 is saturated, its impedance becomes almost zero, so that the equivalent circuit of FIG. 1 becomes as shown in FIG. 3b. In the state of FIG. 3b, the current flowing from the input DC power supply 11 into the battery 30 via the leakage inductance L 2 is rapidly added to the exciting inductance L 1 , so that the slope of the current flowing out of the input DC power supply 11 becomes large. . This is illustrated by the solid line t = t c to ton shown in FIG. 2a.
Is the period. During this period, the terminal voltage of the saturable reactor 17 becomes almost zero.

【0020】次に、トランジスタ12が非導通になる
と、入力直流電源11は切り離され、しかも可飽和リア
クタ17は飽和しているため図1の等価回路は図3cに
示すようになる。この場合、t=tonにおいて変成器
13に流れていた励磁電流と負荷22に流れる電流との
和は慣性を持っているため、共振用コンデンサ14に流
れ込むようになり、このコンデンサ14の端子電圧を正
から負へ共振の弧を描きながら図2bに示す点線のよう
に変化させようとする。しかし、この状態になると帰還
ダイオード18が順バイアスを与えられて導通し、可飽
和リアクタ17にはこのダイオード18と可変抵抗素子
19を介して上記とは逆向きの電流が流れ始める。即
ち、上記洩れインダクタンスに溜っていた電流と上記可
変抵抗素子19に流れる電流は向きが逆で、重畳して可
飽和リアクタ17に流れる。洩れインダクタンスに溜っ
ていた電流が流れている期間は図2bに示すt=ton
〜tmであるが、この電流が零になる過程と可飽和リア
クタ17の磁束の変化との対応は図4に示す如く飽和磁
束密度Bsから徐々に活性に戻り、残留磁束密度Brま
で移行する。この飽和磁束密度Bsから残留磁束密度B
rまでの磁束密度の変化は通常ほとんど平坦に近いので
可飽和リアクタ17の端子間インピーダンスは極端に低
い。その結果、図2bt=ton〜tmに示すように可
飽和リアクタ17の端子間にはすでにリセットパルスが
かかっているのにもかかわらず電位が低い。この洩れイ
ンダクタンスに溜っていた電流が流れ切った後、可飽和
リアクタ17のコア内の磁束密度は単に変成器13の二
次側に誘起しているフライバックパルスで残留磁束密度
Brより更に低くなり、活性領域内を変化する。そして
一番低くなる磁束密度Bominは図2bの電圧波形で
時刻t=tonからtdまでの面積Bを可飽和リアクタ
17の巻回数μとそのコアの断面積Sで割った値であ
る。また、時刻t=td以後可飽和リアクタ17には正
の電位がかかるため、可飽和リアクタ17の磁束密度は
再び上昇し始める。そして、図2bに示す時刻t=td
からT+tcまでの電圧面積Aが上記の面積Bと等しく
なった時可飽和リアクタ17のコアは飽和し、この端子
間インピーダンスはほとんど零になる。したがって、図
1の等価回路は図3bのようになり、負荷22に電力が
供給される。
Next, when the transistor 12 becomes non-conductive, the input DC power supply 11 is disconnected and the saturable reactor 17 is saturated, so that the equivalent circuit of FIG. 1 becomes as shown in FIG. 3c. In this case, since the sum of the exciting current flowing through the transformer 13 and the current flowing through the load 22 at t = ton has inertia, the current flows into the resonance capacitor 14, and the terminal voltage of the capacitor 14 is changed. An attempt is made to change from positive to negative while drawing an arc of resonance as shown by the dotted line in FIG. 2b. However, in this state, the feedback diode 18 is given a forward bias and becomes conductive, and a current in the opposite direction to the above starts to flow through the saturable reactor 17 through the diode 18 and the variable resistance element 19. That is, the current accumulated in the leakage inductance and the current flowing in the variable resistance element 19 have opposite directions and flow in the saturable reactor 17 in a superposed manner. The period during which the current accumulated in the leakage inductance is flowing is t = ton shown in FIG. 2b.
.About.tm, the correspondence between the process in which the current becomes zero and the change in the magnetic flux of the saturable reactor 17 gradually returns from the saturated magnetic flux density Bs to the active state and shifts to the residual magnetic flux density Br as shown in FIG. From this saturation magnetic flux density Bs to the residual magnetic flux density B
Since the change in the magnetic flux density up to r is usually almost flat, the terminal impedance of the saturable reactor 17 is extremely low. As a result, as shown in FIG. 2bt = ton to tm, the potential is low even though the reset pulse is already applied between the terminals of the saturable reactor 17. After the current accumulated in the leakage inductance has completely flowed out, the magnetic flux density in the core of the saturable reactor 17 becomes lower than the residual magnetic flux density Br simply by the flyback pulse induced on the secondary side of the transformer 13. , Change in the active area. The lowest magnetic flux density Bomin is the value obtained by dividing the area B from time t = ton to td in the voltage waveform of FIG. 2b by the number of turns μ of the saturable reactor 17 and the cross-sectional area S of its core. Further, after time t = td, a positive potential is applied to the saturable reactor 17, so that the magnetic flux density of the saturable reactor 17 starts to increase again. Then, the time t = td shown in FIG. 2b.
When the voltage area A from to T + tc becomes equal to the above area B, the core of the saturable reactor 17 becomes saturated, and the impedance between the terminals becomes almost zero. Therefore, the equivalent circuit of FIG. 1 is as shown in FIG. 3b, and power is supplied to the load 22.

【0021】以上の説明で明らかなように、可飽和リア
クタ17のコアのヒステリシス特性が図4に示すように
矩形であればある程図2bの時刻t=tc、tm、td
での波形の時間変化が急岐になり良好な動作が得られ
る。したがって、スイッチング回路の動作周波数でも図
4のヒステリシス特性が保持されていることが絶対の条
件になる。しかしながら、通常のセンデルタ等の角形比
の大きな材料では確かに直流でヒステリアス曲線を描か
せると図5aに示すようなヒステリシス曲線になるが、
これを100KHz程度の高い周波数で同様にヒステリ
シス曲線を描かせると図5bのように肩が張ってくると
ともに、保磁力が極端に大きくなる。これはコアの板厚
を10μm程度まで薄くしても改善できない材質のその
ものの性質である。このような特性のコアを用い、10
0KHz程度の高周波スイッチング波形を制御した場
合、図2bに示すような電圧波形を得ることは困難であ
る。即ち、同図の時刻t=te、tm、tdで各々波形
が尾を引きやがては制御不能になる。
As is clear from the above description, the more rectangular the hysteresis characteristic of the core of the saturable reactor 17 is as shown in FIG. 4, the more the time t = tc, tm, td in FIG. 2b.
The time change of the waveform at becomes sharp, and good operation can be obtained. Therefore, it is an absolute condition that the hysteresis characteristic of FIG. 4 is maintained even at the operating frequency of the switching circuit. However, for a material with a large squareness ratio such as ordinary Senda, if a hysteresis curve is drawn with a direct current, a hysteresis curve as shown in FIG.
If a hysteresis curve is similarly drawn at a high frequency of about 100 KHz, the shoulder becomes stiff as shown in FIG. 5B and the coercive force becomes extremely large. This is the property of the material itself that cannot be improved even if the thickness of the core is reduced to about 10 μm. Using a core with such characteristics,
When controlling a high frequency switching waveform of about 0 KHz, it is difficult to obtain the voltage waveform as shown in FIG. 2b. That is, at the times t = te, tm, and td in the figure, the respective waveforms are tailed and become uncontrollable.

【0022】一方、非晶質磁性合金等の磁性材料を用い
ると直流時の角形比Br /B10は図6aに示すように4
0〜50%程度とセンデルタ等には及ばないが50KH
z程度の高い周波数では94%と角形比が大きくなり、
磁気増幅器を構成することが可能となる。また、更に重
要な要素は保磁力Hc である。この点について直流での
角形比の大きな従来のセンデルタ等の磁性材料は直流の
保磁力Hc は小さいが、高周波ではうず電流損が増大
し、見かけ上の保磁力Hc ´は非常に大きくなる。セン
デルタ等はこのうず電流損の発熱だけで20KHz以上
では使用不能となる。これに対して、非晶質磁性合金は
うず電流損の重畳分を含んでも未だ磁気増幅の機能を失
なわない。図7に従来の代表的な磁気増幅器用磁性材料
センデルタiおよび本発明に係る(Co 0.90 Fe0.06
0.0477Si1013からなるCo系非晶質磁性合金k
について、角形比Br /B10の周波数依存性を示す。ま
た、図7中点線は測定不能になる周波数で磁気増幅器の
機能をしなくなることを示す。上記Co系非晶質磁性合
金kは直流時の角形比Br /B10が29%でしかなかっ
たものが100KHzで94%にも達し、十分磁気増幅
器として使用できる。同様に、図8に、従来例としての
センデルタi、および本発明に係る(Co0.88Fe0.06
Cr0.03Ni0.0375Si1015非晶質合金l、比較例
としての(Fe0.45Ni0.5578Si1012非晶質合金
mの保磁力Hc の周波数依存性を示した。ここでセンデ
ルタは20KHzでも保磁力Hc が0.9 Oeもあり、し
かも20KHz以上では測定不可能な程大きな値を示し
た。
On the other hand, when a magnetic material such as an amorphous magnetic alloy is used, the squareness ratio B r / B 10 at direct current is 4 as shown in FIG. 6a.
0 to 50%, which is not as high as Sendelta, but 50KH
At a high frequency of about z, the squareness ratio becomes large at 94%,
It becomes possible to construct a magnetic amplifier. A coercive force H c is a more important factor. Regarding this point, conventional magnetic materials such as Senda with a large squareness ratio at direct current have a small direct current coercive force H c, but the eddy current loss increases at high frequencies, and the apparent coercive force H c ′ becomes very large. . Sendadelta and the like cannot be used above 20 KHz due to the heat generated by this eddy current loss. On the other hand, the amorphous magnetic alloy does not lose its magnetic amplification function even if it contains a superposed eddy current loss. FIG. 7 shows a conventional representative magnetic material for a magnetic amplifier Sendelta i and (Co 0.90 Fe 0.06 C according to the present invention.
r 0.04 ) 77 Si 10 B 13 Co-based amorphous magnetic alloy k
, The frequency dependence of the squareness ratio B r / B 10 is shown. Further, the dotted line in FIG. 7 indicates that the magnetic amplifier does not function at a frequency at which measurement is impossible. The above Co-based amorphous magnetic alloy k has a squareness ratio B r / B 10 of only 29% at direct current, but reaches 94% at 100 KHz, and can be sufficiently used as a magnetic amplifier. Similarly, FIG. 8 shows SenDelta i as a conventional example and (Co 0.88 Fe 0.06) according to the present invention.
Cr 0.03 Ni 0.03) 75 Si 10 B 15 amorphous alloy l, Comparative Example
As a result, the frequency dependence of the coercive force H c of the (Fe 0.45 Ni 0.55 ) 78 Si 10 B 12 amorphous alloy m was shown. Here, the sen delta has a coercive force H c of 0.9 Oe even at 20 KHz, and has a large value that cannot be measured at 20 KHz or more.

【0023】また他の本発明に係る非晶質磁性合金を用
いた場合の各種磁気特性を次表に示す。
The following table shows various magnetic characteristics when the other amorphous magnetic alloy according to the present invention is used.

【0024】[0024]

【表1】 なお以上説明した非晶質磁性合金はいずれも溶湯急冷で
非晶質合金薄帯製造後、無磁場中熱処理を施したもので
ある。例えば表中のCo基非晶質磁性合金(Co0.88
0.06Ni0.04Nb0.0275Si1015に対しては、非
晶質合金薄帯に、420℃×30分の無磁場中熱処理を
施した後、急冷(空冷)の条件の熱処理を加えてある。
次に本発明に係る非晶質磁性合金の製造性を評価するた
め、本発明に係るCo 0.92 Fe 0.06 Nb 0.02 75 Si 10
15 非晶質合金、及び比較例としてのCo 70 Fe 5 Si
10 15 非晶質合金について、300mmφのFeロール
を用いて幅5mm、板厚20μmの薄帯を製造後、この
薄帯を巻回してそれぞれサイズの異なるトライダル形の
磁心を作製し、さらに440℃、30分の窒素雰囲気中
熱処理を施し急冷して高周波磁気特性を測定した。この
とき磁心のサイズとしては、平均径7.5mm(外径8
mm、内径7mm)、平均径10mm(外径12mm、
径8mm)、平均径12.5mm(外径15mm、内
径10mm)、平均径15mm(外径18mm、内径1
2mm)、平均径17.5mm(外径21mm、内径1
4mm)及び平均径22mm(外径26mm、内径18
mm)の6種類の試料をそれぞれの非晶質磁性合金につ
いて作製し、交流磁気特性評価装置により100KHz
での保磁力と角型比を算出した。結果を、得られた磁心
のH c 、B r /B 10 のサイズ依存性として図11に示
す。 図中実線で表したのが、本発明に係る(Co 0.92
0.06 Nb 0.02 75 Si 10 15 非晶質合金を用いて作製
された磁心のH c 、B r /B 10 であり、いずれも作製さ
れた磁心のサイズにはさほど依存せず、本発明に係る非
晶質磁性合金は製造性が良く、高角型性、低保磁力を安
定して実現することができた。これに対し、比較例であ
るCo 70 Fe 5 Si 10 15 非晶質合金においては、磁心
のサイズがその100KHzでの保磁力と角型比に及ぼ
す影響が大で、特に高周波領域で保磁力は著しく増大し
ており製造性の点で大きく劣ることが判る。
[Table 1] All of the amorphous magnetic alloys described above are obtained by producing amorphous alloy ribbon by quenching the molten metal, and then subjecting it to heat treatment in a magnetic field-free state. For example, Co-based amorphous magnetic alloy (Co 0.88 F in the table)
For e 0.06 Ni 0.04 Nb 0.02) 75 Si 10 B 15, the amorphous alloy ribbon, was subjected to no magnetic field heat treatment 420 ° C. × 30 minutes, the heat treatment conditions of the quench (cooling) was added There is.
Next, the manufacturability of the amorphous magnetic alloy according to the present invention was evaluated.
Therefore, Co 0.92 Fe 0.06 Nb 0.02 ) 75 Si 10 according to the present invention
B 15 amorphous alloy, and Co 70 Fe 5 Si as a comparative example
About 10 B 15 amorphous alloy, Fe roll 300mmφ
After manufacturing a thin strip with a width of 5 mm and a plate thickness of 20 μm using
Wrap a thin strip of different size of tri-dal type
A magnetic core is prepared and further in a nitrogen atmosphere at 440 ° C. for 30 minutes
A high frequency magnetic property was measured after heat treatment and rapid cooling. this
At this time, as the size of the magnetic core, the average diameter is 7.5 mm (outer diameter 8
mm, inner diameter 7 mm), average diameter 10 mm (outer diameter 12 mm,
Inner diameter 8 mm), mean diameter 12.5 mm (outer diameter 15 mm, inner
Diameter 10 mm), average diameter 15 mm (outer diameter 18 mm, inner diameter 1
2mm), average diameter 17.5mm (outer diameter 21mm, inner diameter 1
4 mm) and average diameter 22 mm (outer diameter 26 mm, inner diameter 18
mm) for 6 kinds of samples to each amorphous magnetic alloy.
Produced by using an AC magnetic characteristic evaluation device.
The coercive force and squareness ratio at were calculated. The result is the obtained magnetic core
Fig. 11 shows the size dependence of H c and B r / B 10 of
You The solid line in the figure represents (Co 0.92 F according to the present invention.
e 0.06 Nb 0.02 ) 75 Si 10 B 15 Fabricated using an amorphous alloy
Are magnetic cores of H c, a B r / B 10, both manufactured of
It does not depend much on the size of the magnetic core, and
Amorphous magnetic alloy has good manufacturability, high squareness, and low coercive force.
Could be realized. On the other hand, in the comparative example
In a Co 70 Fe 5 Si 10 B 15 amorphous alloy,
Size affects its coercivity and squareness ratio at 100 KHz.
The coercive force is significantly increased especially in the high frequency range.
Therefore, it is understood that the productivity is significantly inferior.

【0025】以上より、高周波スイッチング回路に用い
る磁気増幅器用の磁性材料としては本願組成で20〜1
00KHzの動作周波数で保磁力Hc が0.35Oe以下、
且つ角形比Br /B10が85%以上のものが望ましいこ
とが分かる。即ち、図9に示す点A、B、C、Dで囲ま
れた領域の非晶質磁性合金がよい。尚、図9は周波数を
パラメータとしてBr /B10、Hc を示したもので、×
印は直流○印は10KHz、□印は20KHz△印
は50KHz、*印は100KHzである。その他、図
7、図8と同一部分には同一符号を付する。
From the above, the composition of the present invention is 20 to 1 as a magnetic material for a magnetic amplifier used in a high frequency switching circuit.
Coercive force H c is 0.35 Oe or less at an operating frequency of 00 KHz,
Further, it can be seen that it is desirable that the squareness ratio B r / B 10 is 85% or more. That is, the amorphous magnetic alloy in the region surrounded by points A, B, C and D shown in FIG. 9 is preferable. In addition, FIG. 9 shows B r / B 10 and H c with the frequency as a parameter.
The mark is direct current , the mark is 10 KHz, the mark is 20 KHz , the mark is 50 KHz, and the mark * is 100 KHz. In addition, the same parts as those in FIGS. 7 and 8 are designated by the same reference numerals.

【0026】また、上記のような磁性特性を持った磁気
増幅器の適用回路は図1に限られるものではなく、図1
0に示すように負荷回路に電流平滑用チョークコイル5
0および還流用ダイオード51が設けられたスイッチン
グ回路にも適用できることは勿論である。また、図10
において、図1と同一部分には同一符号を付する。
The circuit to which the magnetic amplifier having the above magnetic characteristics is applied is not limited to that shown in FIG.
As shown in 0, the load circuit has a choke coil 5 for current smoothing.
Of course, it can be applied to a switching circuit provided with 0 and the free wheeling diode 51. In addition, FIG.
2, the same parts as those in FIG. 1 are designated by the same reference numerals.

【0027】図1に示した回路を用い、スイッチング周
波数を50KHzとし、非晶質合金として表の上から3
番目の組成の合金を用いた場合について電源効率を測定
したところ約85%と高効率であった。比較のための本
発明の組成範囲外の非晶質合金(Co0.82Fe0.06Nb
0.1275Si1015[20KHzの保磁力1.3 Oe、B
r/B10=0.99]を用いた場合は電源効率が約67%と
低いものであった。
Using the circuit shown in FIG. 1, the switching frequency was set to 50 KHz and the amorphous alloy was selected from the top 3
When the power supply efficiency was measured using the alloy of the second composition, it was high efficiency of about 85%. For comparison, an amorphous alloy (Co 0.82 Fe 0.06 Nb) outside the composition range of the present invention is used.
0.12 ) 75 Si 10 B 15 [coercive force of 20 KHz 1.3 Oe, B
When r / B10 = 0.99], the power supply efficiency was as low as about 67%.

【0028】[0028]

【発明の効果】以上、詳述したようにこの発明によれ
ば、可飽和リアクタを用い高周波でも高効率で安定に動
作する磁気増幅器を構成でき、高周波領域での良好なス
イッチング特性を有する高周波スイッチング回路用Co
基非晶質磁性合金を提供することができる。
As described above in detail, according to the present invention, a magnetic amplifier which uses a saturable reactor and operates stably with high efficiency even at high frequencies can be constructed, and high frequency switching having excellent switching characteristics in the high frequency region. Circuit Co
A base amorphous magnetic alloy can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明に係わる電圧共振形高周波スイッチ
ング回路の一実施例を示す回路構成図。
FIG. 1 is a circuit configuration diagram showing an embodiment of a voltage resonance type high frequency switching circuit according to the present invention.

【図2】 図1の動作を説明するための波形図。FIG. 2 is a waveform diagram for explaining the operation of FIG.

【図3】 図1の各動作期間における等価回路図。FIG. 3 is an equivalent circuit diagram in each operation period of FIG.

【図4】 代表的な磁気増幅器用磁性材料のヒステリシ
ス曲線を示す図。
FIG. 4 is a diagram showing a hysteresis curve of a typical magnetic material for a magnetic amplifier.

【図5】 直流と交流とで変化するヒステリシス曲線の
例を示す図。
FIG. 5 is a diagram showing an example of a hysteresis curve that changes between direct current and alternating current.

【図6】 直流と交流とで変化するヒステリシス曲線の
例を示す図。
FIG. 6 is a diagram showing an example of a hysteresis curve that changes between direct current and alternating current.

【図7】 各磁性材料の角形比の周波数依存性を示す
図。
FIG. 7 is a diagram showing the frequency dependence of the squareness ratio of each magnetic material.

【図8】 各磁性材料の保磁力Hcの周波数依存性を示
す図。
FIG. 8 is a diagram showing frequency dependence of coercive force Hc of each magnetic material.

【図9】 Br/B10、Hcを周波数をパラメータとし
て各材料別に示す図。
FIG. 9 is a diagram showing Br / B 10 and Hc for each material with frequency as a parameter.

【図10】 他の実施例を示す回路構成図。FIG. 10 is a circuit configuration diagram showing another embodiment.

【図11】 各磁性材料を用いて作製された磁心のH
c 、Br /B10のサイズ依存性を示す図。
FIG. 11: H of a magnetic core produced using each magnetic material
c, shows the size dependence of B r / B 10.

【符号の説明】[Explanation of symbols]

11…入力直流電源、12…トランジスタ、13…変成
器、14…共振用コンデンサ、15…ダンパダイオー
ド、17…可飽和リアクタ、18,21,51…ダイオ
ード、19…可変抵抗、22…負荷、23…平滑コンデ
ンサ。
11 ... Input DC power supply, 12 ... Transistor, 13 ... Transformer, 14 ... Resonance capacitor, 15 ... Damper diode, 17 ... Saturable reactor, 18, 21, 51 ... Diode, 19 ... Variable resistance, 22 ... Load, 23 … Smoothing capacitors.

フロントページの続き (56)参考文献 IEEE INTELEC(1979) R.HIRAMATSU, K.HARA DA AND T.NINOMIYA " SWITCH MODE CONVERT ER USING HIGH−FREQU ENCY MAGNETIC AMPLI FIRE” P.282−288 日本応用磁気学会誌、VOL.5 N O.2(1981−3.)P.165−168Continued Front Page (56) References IEEE INTELEC (1979) HIRAMATSU, K .; HARA DA AND T. NINOMIYA "SWITCH MODE CONVERT ER USING HIGH-FREQ ENCY MAGNETIC AMPLI FIRE" P.N. 282-288 Journal of Japan Applied Magnetics Society, VOL. 5 N O. 2 (1981-3.) P. 165-168

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可飽和リアクタを用いた磁気増幅器を具備
する高周波スイッチング回路用Co基非晶質磁性合金に
おいて、原子%で (Co 1-a-c Fe a c 1-d d 0.04≦a≦0.15 0.005 ≦c≦0.10 0.15≦d≦0.30 Mは、Nb、Cr、Mo、V、Ta、Ti、Zr、Wか
ら選ばれる少なくとも一種の元素 Xは、BまたはB+Si ただしSiを含有する場合のSi量は25原子%以下で
示され、かつ20〜100KHzで磁気ヒステリシス曲
線のB r /B 10 が85%以上、保磁力H c が0.35Oe以下
の特性を有することを特徴とする高周波スイッチング回
路用Co基非晶質磁性合金。 【請求項】可飽和リアクタを用いた磁気増幅器を具備
する高周波スイッチング回路用Co基非晶質磁性合金に
おいて、原子%で (Co1-a-b-c Fea Nibc1-dd 0.04≦a≦0.15 0<b≦0.10 0.005 ≦c≦0.10 0.15≦d≦0.30 Mは、Nb、Cr、Mo、V、Ta、Ti、Zr、Wか
ら選ばれる少なくとも一種の元素 Xは、BまたはB+Si ただしSiを含有する場合のSi量は25原子%以下で
示され、かつ20〜100KHzで磁気ヒステリシス曲
線のBr /B10が85%以上、保磁力Hc が0.35Oe以下
の特性を有することを特徴とする高周波スイッチング回
路用Co基非晶質磁性合金。
1. Equipped with magnetic amplifier using saturable reactor
For Co-based amorphous magnetic alloys for high-frequency switching circuits
Atomic% (Co 1-ac Fe a M c ) 1-d X d 0.04 ≦ a ≦ 0.15 0.005 ≤ c ≤ 0.10 0.15 ≤ d ≤ 0.30 M is Nb, Cr, Mo, V, Ta, Ti, Zr, W
At least one element selected from X is B or B + Si However, if Si is contained, the amount of Si should be 25 atomic% or less.
Magnetic hysteresis curve shown and at 20-100 KHz
Line B r / B Ten Is 85% or more, coercive force H c Is 0.35 Oe or less
High frequency switching circuit characterized by having the characteristics of
Co-based amorphous magnetic alloy for roads. [Claims]Two] Equipped with magnetic amplifier using saturable reactor
For Co-based amorphous magnetic alloys for high-frequency switching circuits
In atomic% (Co1-abc Fea Nib Mc )1-d Xd 0.04 ≦ a ≦ 0.150 <b ≦ 0.10 0.005 ≤ c ≤ 0.10 0.15 ≤ d ≤ 0.30 M is Nb, Cr, Mo, V, Ta, Ti, Zr, W
At least one element X selected from B or B + Si, if Si is contained, the Si content is 25 atomic% or less.
Magnetic hysteresis curve shown and at 20-100 KHz
Line Br / BTenIs 85% or more, coercive force Hc Is 0.35 Oe or less
High frequency switching circuit characterized by having the characteristics of
Co-based amorphous magnetic alloy for roads.
JP5093788A 1981-06-19 1993-03-30 Co-based amorphous magnetic alloy for high frequency switching circuits Expired - Lifetime JPH0798986B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56095727A JPS57210377A (en) 1981-06-19 1981-06-19 Heat fixing device
JP5093788A JPH0798986B2 (en) 1981-06-19 1993-03-30 Co-based amorphous magnetic alloy for high frequency switching circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56095727A JPS57210377A (en) 1981-06-19 1981-06-19 Heat fixing device
JP5093788A JPH0798986B2 (en) 1981-06-19 1993-03-30 Co-based amorphous magnetic alloy for high frequency switching circuits

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56097527A Division JPS57212512A (en) 1981-06-25 1981-06-25 Voltage resonance type high-frequency switching circuit

Publications (2)

Publication Number Publication Date
JPH0625806A JPH0625806A (en) 1994-02-01
JPH0798986B2 true JPH0798986B2 (en) 1995-10-25

Family

ID=26435082

Family Applications (2)

Application Number Title Priority Date Filing Date
JP56095727A Pending JPS57210377A (en) 1981-06-19 1981-06-19 Heat fixing device
JP5093788A Expired - Lifetime JPH0798986B2 (en) 1981-06-19 1993-03-30 Co-based amorphous magnetic alloy for high frequency switching circuits

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP56095727A Pending JPS57210377A (en) 1981-06-19 1981-06-19 Heat fixing device

Country Status (1)

Country Link
JP (2) JPS57210377A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEEINTELEC(1979)R.HIRAMATSU,K.HARADAANDT.NINOMIYA"SWITCHMODECONVERTERUSINGHIGH−FREQUENCYMAGNETICAMPLIFIRE"P.282−288
日本応用磁気学会誌、VOL.5NO.2(1981−3.)P.165−168

Also Published As

Publication number Publication date
JPH0625806A (en) 1994-02-01
JPS57210377A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US4553199A (en) High frequency power supply device
KR100514955B1 (en) Magnetic core for saturable reactor, magnetic amplifier type multi-output switching regulator and computer having magnetic amplifier type multi-output switching regulator
EP0058400B1 (en) High frequency switching circuit
JPH0427797B2 (en)
US5635828A (en) Active filter circuit and power supply apparatus including same
US6611187B2 (en) Magnetic core, coil assembly and power supply circuit using the same
JPH0798986B2 (en) Co-based amorphous magnetic alloy for high frequency switching circuits
WO1994007300A1 (en) Snubber circuit, switching power-supply, and saturable inductor used for them
JP5004260B2 (en) Outer iron type power transformer and power converter using the same
JPS63186560A (en) Voltage resonance type high frequency switching circuit
US4745536A (en) Reactor for circuit containing semiconductor device
JPH0536513A (en) Soft magnetic metal alloy powder and dust core using the same
JP3190775B2 (en) Switching power supply
JP3533237B2 (en) Saturable core and magnetic amplifier using the same
JP3121641B2 (en) Switching power supply
JP2637184B2 (en) Core for oscillation transformer
JP4300494B2 (en) High frequency power transformer and power conversion device using the same
JP2002223568A (en) Dc-to-dc converter
JPH06260318A (en) Surface-mount magnetic component
Slavkova Specific Applications of Nanocrystalline and Amorphous Soft Magnetic Materials with Different Hysteresis Loops
JPS63239907A (en) Magnetic core for oscillation transformer
JP2515640B2 (en) Switching power supply circuit
JP2501859B2 (en) Switching regulator
JP2001115201A (en) Alloy powder for high frequency reactor and high frequency reactor using the same
JPH079862B2 (en) Amorphous magnetic core manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080817