JPH0798866B2 - Ceramics manufacturing method - Google Patents

Ceramics manufacturing method

Info

Publication number
JPH0798866B2
JPH0798866B2 JP3306489A JP30648991A JPH0798866B2 JP H0798866 B2 JPH0798866 B2 JP H0798866B2 JP 3306489 A JP3306489 A JP 3306489A JP 30648991 A JP30648991 A JP 30648991A JP H0798866 B2 JPH0798866 B2 JP H0798866B2
Authority
JP
Japan
Prior art keywords
polymer
formula
silazane polymer
ceramic
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3306489A
Other languages
Japanese (ja)
Other versions
JPH0532787A (en
Inventor
稔 高見沢
好文 竹田
章 林田
勉 竹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3306489A priority Critical patent/JPH0798866B2/en
Publication of JPH0532787A publication Critical patent/JPH0532787A/en
Publication of JPH0798866B2 publication Critical patent/JPH0798866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス前駆体と
して使用される有機シラザン重合体を用いたセラミック
スの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ceramics using an organic silazane polymer used as a ceramics precursor.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】セラミ
ックスは、耐熱性、耐摩耗性、高温強度等に優れた材料
として注目を集めているが、固く、そして脆いため、セ
ラミックスを加工することは極めて困難である。従っ
て、セラミックス製品を製造する場合、セラミックス材
料の微粉末を加圧等の方法により予め所望の形状に成形
した後、焼結する方法、或いはセラミックス前駆体とし
ての有機重合体を溶融若しくは溶剤に溶解し、これを所
望の形状に加工した後、焼成して無機化する前駆体法な
どが採用されている。上記前駆体法の最大の特徴は、微
粉末による焼結法では不可能な形状のセラミックス製品
を得ることができ、従って繊維状或いはシート状といっ
た特殊形状の製品を製造し得ることである。
2. Description of the Related Art Ceramics have attracted attention as materials excellent in heat resistance, wear resistance, high temperature strength, etc. However, since they are hard and brittle, it is difficult to process them. It's extremely difficult. Therefore, when manufacturing a ceramic product, a method of forming fine powder of a ceramic material into a desired shape in advance by a method such as pressing and then sintering, or melting or dissolving an organic polymer as a ceramic precursor in a solvent Then, a precursor method or the like is employed in which the material is processed into a desired shape and then fired to be inorganic. The most significant feature of the precursor method is that a ceramic product having a shape that cannot be obtained by the sintering method using fine powder can be obtained, and thus a product having a special shape such as a fiber or a sheet can be manufactured.

【0003】この場合、一般にセラミックスと呼ばれる
もののうちSiC及びSi34は、それぞれSiCが耐
熱性、高温強度に優れ、Si34が耐熱衝撃性、破壊靭
性に優れるなど、高温での優れた特性を有するために広
く注目を集めており、このため従来より、下記〜に
示すように、前駆体法によるSiC−Si34系セラミ
ックスの製造方法及びその有機珪素前駆体の製造方法に
関する種々の提案がなされているが、これらの提案はい
ずれも問題点を有するものであった。即ち、 米国特許第3,853,567号明細書には、クロ
ロシラン類とアミン類とを反応させ、次いで200〜8
00℃に加熱してカルボシラザンを得た後、これを紡
糸、不融化して800〜2000℃で高温焼成すること
により、SiC−Si34系セラミックスを得る方法が
開示されている。しかし、この方法は、カルボシラザン
を得るために520〜650℃という高温が必要であっ
て、工業的製法として極めて困難であること、またカル
ボシラザンを無機化する際にセラミックス収率が約55
%という低収率となることといった欠点を有する。な
お、この米国特許明細書の実施例には、クロロシラン類
としてはメチルトリクロロシラン、ジメチルジクロロシ
ラン、アミン類としては、メチルアミンの例しか記述さ
れていない。
In this case, among those generally called ceramics, SiC and Si 3 N 4 are excellent in high temperature such that SiC is excellent in heat resistance and high temperature strength, and Si 3 N 4 is excellent in thermal shock resistance and fracture toughness. characteristics widely and attention in order to have, Therefore conventionally, as shown in the following ~, a manufacturing method of preparation and their organosilicon precursor SiC-Si 3 N 4 based ceramic according precursor method Various proposals have been made, but all of these proposals have problems. That is, in U.S. Pat. No. 3,853,567, chlorosilanes are reacted with amines, and then 200-8
A method of obtaining SiC-Si 3 N 4 based ceramics by heating to 00 ° C. to obtain carbosilazane, spinning, infusibilizing this and firing at high temperature at 800 to 2000 ° C. is disclosed. However, this method requires a high temperature of 520 to 650 ° C. to obtain carbosilazane, which is extremely difficult as an industrial production method, and the ceramic yield is about 55 when inorganicizing carbosilazane.
It has a drawback that the yield is as low as%. In the examples of this US patent specification, only methyltrichlorosilane and dimethyldichlorosilane as chlorosilanes and methylamine as amines are described.

【0004】 米国特許第4,097,294号明細
書には、種々の珪素を含有するポリマーが熱分解によっ
てセラミックス物質に変換されることが示されている。
しかし、シラザンポリマーに関しては僅かに一例しか開
示されておらず、しかもそのセラミックス化収率は最大
で12%という低収率である。また、この米国特許明細
書にはセラミックスの繊維化、薄膜化等も可能であると
記載されているが、単にその可能性を示唆したに過ぎ
ず、前駆体法で最も重要とされるポリマーの成形性、加
工性については全く言及されていない。
US Pat. No. 4,097,294 shows that various silicon-containing polymers are converted to ceramic materials by thermal decomposition.
However, only one example of silazane polymer is disclosed, and the yield of ceramization is as low as 12% at maximum. Further, although it is described in this US patent specification that it is possible to make ceramics into fibers, to form a thin film, etc., this suggests only that possibility, and the polymer of the most important in the precursor method is No mention is made of moldability and processability.

【0005】 特開昭57−117532号公報に
は、クロロジシラン類とジシラザン類との反応により、
特開昭57−139124号公報にはクロロシラン類と
ジシラザン類との反応により、特開昭58−63725
号公報にはクロロジシラン類とアンモニアとの反応によ
り、特開昭60−135431号公報にはトリクロロシ
ランとジシラザン類との反応により、それぞれシラザン
ポリマーを得ることが示されている。また、米国特許第
4,535,007号明細書にはクロロシラン類及びジ
シラザン類に金属ハロゲン化物を添加することにより、
特開昭60−208331号公報にはクロロジシラン類
及びジシラザン類に金属ハロゲン化物を添加することに
より、それぞれシラザンポリマーを製造することが開示
されている。以上のシラザンポリマーは、いずれも熱分
解によってセラミックス化が可能であるとされている。
しかしながら、セラミックス化収率はいずれのシラザン
ポリマーも50〜60%であって低収率である。また、
上記各刊行物は、の明細書と同様に前駆体法で最も重
要であるポリマーの成形性、加工性については詳しく記
載されておらず、特に、繊維化の実施例のないもの、或
いは繊維化した実施例はあってもそのセラミックス化繊
維の強度については言及していないものが殆んどであ
る。僅かに特開昭60−208331号公報に強度の記
載が見られるが、この場合も引張強度で53kg/mm
2或いは63kg/mm2という極めて強度の低いものし
か得られていない。
JP-A-57-117532 discloses that a reaction between chlorodisilanes and disilazanes
JP-A-57-139124 discloses a reaction between chlorosilanes and disilazanes, which is disclosed in JP-A-58-63725.
JP-A-60-135431 discloses that a silazane polymer is obtained by a reaction between chlorodisilanes and ammonia, and JP-A-60-135431 discloses that a silazane polymer is obtained by a reaction between trichlorosilanes and disilazanes. Further, in US Pat. No. 4,535,007, by adding a metal halide to chlorosilanes and disilazanes,
JP-A-60-208331 discloses that a silazane polymer is produced by adding a metal halide to chlorodisilanes and disilazanes. It is said that any of the above silazane polymers can be made into ceramics by thermal decomposition.
However, the yield of ceramization for any silazane polymer is 50 to 60%, which is a low yield. Also,
The above-mentioned publications do not describe the moldability and processability of the polymer, which is the most important in the precursor method, in the same manner as the specification of, and particularly, there are no examples of fiberization or fiberization. Most of the examples described above do not mention the strength of the ceramized fiber. There is a slight description of strength in JP-A-60-208331, but in this case also, the tensile strength is 53 kg / mm.
Only very low strength of 2 or 63 kg / mm 2 was obtained.

【0006】 特開昭60−226890号公報に
は、
Japanese Unexamined Patent Publication No. 60-226890 discloses that

【0007】[0007]

【化4】 で示される有機珪素化合物とアンモニアとの反応によ
り、アンモノリシス生成物を得た後、この生成物をアル
カリ金属又はアルカリ土類金属の水素化物で脱水素縮合
させてシラザンポリマーを得る方法が開示されている。
この方法で得られるポリマーは、脱水素縮合の度合いに
よってその性状をオイル状から融点を持たない固体まで
種々調整することが可能であるとされている。しかし、
ポリマーを溶融した状態から成形、加工する場合、例え
ば溶融紡糸法で連続繊維を製造する場合には、ポリマー
が一定重合度でかつ熱的に安定であることが必要である
が、上記方法では重合を途中で停止させないとポリマー
が融点を持たない固体となってしまい、溶融可能なポリ
マーを得るためには反応時間、反応温度、触媒量、溶媒
量等の微妙なコントロールを必要とし、その調整が非常
に困難であると共に、再現性に欠けるという問題があ
る。更に、この方法によって得られるポリマーは熱的に
安定でなく、ゲル状物の生成を伴うといった欠点があ
り、以上の二つの点から上記方法はシラザンポリマーの
工業的製法として適当ではない。
[Chemical 4] A method for obtaining a silazane polymer by obtaining an ammonolysis product by the reaction of an organosilicon compound represented by and ammonia, and then dehydrogenatively condensing the product with a hydride of an alkali metal or an alkaline earth metal is disclosed. There is.
It is said that the properties of the polymer obtained by this method can be variously adjusted from oily to solid without melting point depending on the degree of dehydrogenative condensation. But,
When a polymer is molded and processed from a molten state, for example, when a continuous fiber is produced by a melt spinning method, it is necessary that the polymer has a constant degree of polymerization and is thermally stable. If the reaction is not stopped midway, the polymer will become a solid without a melting point, and in order to obtain a meltable polymer, delicate control of the reaction time, reaction temperature, amount of catalyst, amount of solvent, etc. is required, and its adjustment There is a problem that it is extremely difficult and lacks reproducibility. Further, the polymer obtained by this method has the drawback that it is not thermally stable and accompanies the formation of a gel, and the above method is not suitable as an industrial production method of a silazane polymer from the above two points.

【0008】 特開昭60−228489号公報に
は、
JP-A-60-228489 discloses that

【0009】[0009]

【化5】 で示される化合物とモノメチルアミンとから環状シラザ
ンを形成し、この環状シラザンとアンモニアを反応させ
ることによってシラザンポリマーを得る方法が示されて
いる。しかし、上記公報には該ポリマーが化学蒸着用材
料として好適であると述べられているが、ポリマーにつ
いては物性等に関する詳細な記述が全くなされておら
ず、またセラミックス収率についても全く触れられてい
ない。
[Chemical 5] A method for obtaining a silazane polymer by forming a cyclic silazane from the compound represented by and monomethylamine and reacting the cyclic silazane with ammonia is disclosed. However, although the above-mentioned publication describes that the polymer is suitable as a material for chemical vapor deposition, there is no detailed description about the physical properties of the polymer, and the ceramic yield is also mentioned at all. Absent.

【0010】上述したように、従来提案されているセラ
ミックス前駆体としてのポリシラザン重合体は工業的生
産に不適当なものであり、しかもセラミックス繊維等の
前駆体としての成形性、加工性に劣る上、セラミックス
収率が低いものであった。また、従来のポリシラザン重
合体を前駆体として製造したセラミックス製品、例えば
セラミックス繊維は、強度、弾性率等の種々の物性に劣
るものであった。
As described above, the conventionally proposed polysilazane polymer as a ceramic precursor is unsuitable for industrial production, and in addition, it is inferior in moldability and workability as a precursor of ceramic fibers and the like. The ceramic yield was low. Further, a ceramic product manufactured by using a conventional polysilazane polymer as a precursor, such as a ceramic fiber, is inferior in various physical properties such as strength and elastic modulus.

【0011】本発明は、上記事情に鑑みなされたもの
で、工業的生産に適し、かつ成形性、加工性に優れ、し
かもセラミックス収率が高いセラミックス前駆体を用い
た高品質のセラミックスの製造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and is a method for producing high-quality ceramics using a ceramics precursor suitable for industrial production, excellent in moldability and workability, and having a high ceramics yield. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段及び作用】即ち、本発明者
らは、前駆体法に属するセラミックス製品の製造方法及
びこのセラミックス製品の製造に好適に用いられる工業
性、加工性等に優れたセラミックス前駆体の製造方法を
開発するため、SiC及びSi34の有する優れた高温
特性を併せ持つSiC−Si34系セラミックスに着目
し、前駆体法によるSiC−Si34系セラミックスの
製造方法につき鋭意研究を行なった結果、下記一般式
〔I〕で示される有機珪素化合物又は下記一般式〔I〕
及び下記一般式〔II〕で示される有機珪素化合物の混
合物と、下記一般式〔III〕で示されるジシラザンと
を無水雰囲気下において温度25〜350℃で反応さ
せ、副生する揮発性成分を系外に留去することにより、
極めて強度が高く、熱安定性に優れ、かつ一定重合度の
ポリシラザン重合体が得られること、更にこのポリシラ
ザン重合体を溶融、成形後、空気中加熱或いは電子線照
射、紫外線照射等により不融化し、焼成することによっ
て高品質のSiC,Si34を主体とするセラミックス
を得ることができることを知見し、本発明をなすに至っ
たものである。
Means for Solving the Problems That is, the inventors of the present invention have proposed a method for producing a ceramic product belonging to the precursor method, and a ceramic which is preferably used for producing the ceramic product and which is excellent in industrial property, workability and the like. to develop a method for manufacturing a precursor, focusing on the SiC-Si 3 N 4 ceramic having both excellent high temperature properties possessed by SiC and Si 3 N 4, the manufacture of SiC-Si 3 N 4 based ceramic according precursor method As a result of earnest research on the method, an organosilicon compound represented by the following general formula [I] or the following general formula [I]
And a mixture of an organosilicon compound represented by the following general formula [II] and a disilazane represented by the following general formula [III] are reacted at a temperature of 25 to 350 ° C. under an anhydrous atmosphere to form a volatile component produced as a by-product. By distilling outside,
Extremely high strength, excellent thermal stability, and obtaining a polysilazane polymer having a constant degree of polymerization, and further melting this polysilazane polymer, after molding, infusible by heating in air or electron beam irradiation, ultraviolet irradiation, etc. The present invention has been completed based on the finding that it is possible to obtain high-quality ceramics composed mainly of SiC and Si 3 N 4 by firing.

【0013】[0013]

【化6】 (但し、式中R は水素,塩素,臭素,メチル基,エチル
基,フェニル基又はビニル基、R 1は水素又はメチル
基、Xは塩素又は臭素をそれぞれ示す。以下、同様。)
[Chemical 6](However, in the formula R Is hydrogen, chlorine, bromine, methyl group, ethyl
Group, phenyl group or vinyl group, R 1Is hydrogen or methyl
The group, X, represents chlorine or bromine, respectively. The same applies hereinafter. )

【0014】[0014]

【化7】 (但し、R 2及びR3は水素,塩素,臭素,メチル基,エ
チル基,フェニル基又はビニル基、Xは塩素又は臭素を
それぞれ示す。以下、同様。)
[Chemical 7](However, R 2And R3Is hydrogen, chlorine, bromine, methyl group,
Cyl group, phenyl group or vinyl group, X is chlorine or bromine
Shown respectively. The same applies hereinafter. )

【0015】[0015]

【化8】 (但し、式中R 4,R 5及びR6は水素,メチル基,エチ
ル基,フェニル基又はビニル基を示す。以下、同様。)
[Chemical 8](However, in the formula R Four, R FiveAnd R6Is hydrogen, methyl group, ethi
Group, phenyl group or vinyl group. The same applies hereinafter. )

【0016】従って、本発明は、上記式〔I〕で示され
る有機珪素化合物又は上記式〔I〕及び上記式〔II〕
で示される有機珪素化合物の混合物と上記式〔III〕
で示されるジシラザンとを無水雰囲気下で温度25〜3
50℃で反応させ、副生する揮発性成分を系外に留去さ
せて有機シラザン重合体を得、次いでこの有機シラザン
重合体を溶融、成形し、更に不融化した後、焼成してセ
ラミックスを得ることを特徴とするセラミックスの製造
方法を提供する。
Therefore, the present invention provides an organosilicon compound represented by the above formula [I] or the above formula [I] and the above formula [II].
A mixture of the organosilicon compounds represented by the formula [III]
And a disilazane represented by
The reaction is carried out at 50 ° C., the volatile components produced as by-products are distilled out of the system to obtain an organic silazane polymer, and then the organic silazane polymer is melted and molded, further infusibilized, and then fired to obtain a ceramic. Provided is a method for producing a ceramic, which is characterized by being obtained.

【0017】本発明のセラミックスの製造に用いる有機
シラザン重合体の製造方法は、出発原料として式〔I〕
又は式〔I〕及び式〔II〕の有機珪素化合物を使用
し、式〔III〕のジシラザンと無水雰囲気下で温度2
5〜350℃で反応させて副生する揮発性成分を系外に
留去させるだけで、熱安定性に優れ、従来にない構造単
位を有する有機シラザン重合体を得ることができる。従
って、この方法によれば、成形性、加工性に優れ、しか
も高強度で可撓性に富むが故に取扱い性が良好であり、
優れた不融化性を有し、セラミックス収率の高い(通常
70〜80%)高品質の有機シラザン重合体を工業的に
容易に製造することができる。
The method for producing the organic silazane polymer used in the production of the ceramics of the present invention is carried out by using the formula [I] as a starting material.
Alternatively, an organosilicon compound of the formula [I] and the formula [II] is used, and the temperature is set to 2 with the disilazane of the formula [III] under an anhydrous atmosphere.
It is possible to obtain an organic silazane polymer having excellent thermal stability and having an unprecedented structural unit simply by reacting at 5 to 350 ° C. and distilling off by-product volatile components to the outside of the system. Therefore, according to this method, the moldability and processability are excellent, and the handleability is good because of its high strength and flexibility.
A high-quality organic silazane polymer having excellent infusibilizing property and high ceramic yield (usually 70 to 80%) can be industrially easily produced.

【0018】更に、本発明者らは先にメチルジクロロシ
ラン、ジメチルジクロロシラン、メチルトリクロロシラ
ンの三成分系を用いた有機シラザン重合体の製造方法
(特開昭62−290730号公報)や、メチルジクロ
ロシラン、メチルトリクロロシラン、下記一般式〔I
V〕で示される有機珪素化合物の三成分系を用いた有機
シラザン重合体の製造方法(特開昭63−117037
号公報)を提案した。
Furthermore, the present inventors previously mentioned a method for producing an organic silazane polymer using a ternary system of methyldichlorosilane, dimethyldichlorosilane and methyltrichlorosilane (Japanese Patent Laid-Open No. 62-290730) and methyl. Dichlorosilane, methyltrichlorosilane, the following general formula [I
V], a method for producing an organic silazane polymer using a ternary system of an organosilicon compound represented by the formula (JP-A-63-117037).
Issue).

【0019】[0019]

【化9】 (但し、R 7及びR8は水素又はメチル基、Xは塩素又は
臭素、R9は塩素,臭素,メチル基,エチル基又はフェ
ニル基、R 10は水素,塩素,臭素,メチル基,エチル基
又はフェニル基をそれぞれ示す。)
[Chemical 9](However, R 7And R8Is hydrogen or a methyl group, X is chlorine or
Bromine, R9Is chlorine, bromine, methyl group, ethyl group or
Nyl group, R TenIs hydrogen, chlorine, bromine, methyl group, ethyl group
Or a phenyl group, respectively. )

【0020】これらの方法に比べ、本発明に従った有機
シラザン重合体の製造方法は出発原料に上記式〔I〕又
は式〔I〕及び式〔II〕の有機珪素化合物を用い、式
〔III〕のジシラザンと反応させることで、得られる
有機シラザン重合体の不融化性が向上し、セラミックス
収率がより高く、しかも強度が高く可撓性に富むことか
ら取扱い性が良好であり、工業的に有利である。
Compared with these methods, the method for producing an organic silazane polymer according to the present invention uses the above formula [I] or the organosilicon compound of the formula [I] and the formula [II] as a starting material, and formula [III] ] By reacting with the disilazane, the infusibilizing property of the obtained organic silazane polymer is improved, the ceramic yield is higher, and the handleability is good because it has high strength and flexibility and is industrially useful. Is advantageous to.

【0021】また、本発明に係るセラミックスの製造方
法は、上述した有機シラザン重合体を前駆体として用い
たことにより、優れた物性を有し、安定な品質の適宜形
状のセラミックス製品を高い歩留りで容易に製造するこ
とができる。
In addition, the method for producing a ceramic according to the present invention uses the above-mentioned organic silazane polymer as a precursor, so that a ceramic product having an excellent physical property and a stable quality and an appropriate shape can be obtained at a high yield. It can be easily manufactured.

【0022】なお、セラミックス前駆体であるシラザン
重合体の製造原料として有機珪素化合物を用いること
は、上述したように従来より知られている。しかしなが
ら、有機珪素化合物として上述した1種又は2種以上の
有機珪素化合物を選択すると共に、これらを上述したジ
シラザンと特定の条件下で反応させて副生成物を系外に
留出させることにより、従来にない優れた特性のシラザ
ン重合体が得られるということは、本発明者らの新たな
知見である。即ち、式〔I〕又は式〔I〕及び式〔I
I〕の有機珪素化合物を使用すること、好ましくは式
〔I〕及び式〔II〕の有機珪素化合物を混合比が50
〜100モル%:0〜50モル%の割合で使用すること
により、先に述べた特開昭57−117532号公報、
特開昭57−139124号公報、特開昭58−637
25号公報及び特開昭60−135431号公報や特開
昭62−290730号公報、特開昭63−11703
7号公報に記載されたような有機珪素化合物を単独又は
混合して使用することによって得られるシラザン重合体
とは異なる構造を有し、種々の繰り返し単位及びこれら
繰り返し単位の結合構造が入り混じった新規なシラザン
重合体が得られること、また、このシラザン重合体が先
に述べた有機珪素化合物を単独又は混合して使用するこ
とにより得られる有機シラザン重合体に比べ、セラミッ
クス前駆体として用いる場合にその不融化性が良好であ
る上に、強度が高く可撓性に富む重合体であること、そ
してこのような従来のシラザン重合体構造とは相違する
新規構造を有し、しかも優れた特性のシラザン重合体を
セラミックス前駆体として用いることにより、従来のこ
の種の前駆体法によるセラミックスの製造法に比べセラ
ミックス収率が大幅に向上すると共に、引張強度、弾性
率等の物性が顕著に改善された安定な品質のセラミック
スが製造されるということを、本発明者らは初めて見い
出したものである。
The use of an organosilicon compound as a raw material for producing a silazane polymer, which is a ceramic precursor, has been conventionally known as described above. However, by selecting one or more of the above-mentioned organosilicon compounds as the organosilicon compound, and reacting these with the above-mentioned disilazane under specific conditions to distill a by-product out of the system, It is a new finding of the present inventors that a silazane polymer having unprecedented excellent properties can be obtained. That is, the formula [I] or the formula [I] and the formula [I
I] of the organosilicon compound, preferably the organosilicon compound of the formula [I] and the formula [II] at a mixing ratio of 50.
˜100 mol%: 0 to 50 mol%, the above-mentioned JP-A-57-117532,
JP-A-57-139124, JP-A-58-637
25, JP-A-60-135431, JP-A-62-290730, and JP-A-63-1703.
It has a structure different from that of the silazane polymer obtained by using the organosilicon compounds as described in JP-A-7-320, alone or in combination, and various repeating units and bonding structures of these repeating units are mixed. When a novel silazane polymer is obtained, and when this silazane polymer is used as a ceramic precursor as compared with an organic silazane polymer obtained by using the above-mentioned organosilicon compounds alone or in combination, In addition to having good infusibilizing property, it is a polymer having high strength and high flexibility, and having a novel structure different from such a conventional silazane polymer structure, and having excellent properties. By using the silazane polymer as the ceramic precursor, the ceramic yield is higher than that of the conventional ceramic manufacturing method using this type of precursor method. As well as improved tensile strength, that is the physical properties such as elastic modulus is remarkably produced improved stable quality ceramics, the present inventors are those found for the first time.

【0023】以下、本発明につき更に詳しく説明する
と、本発明に係る有機シラザン重合体の製造方法におい
ては、出発原料として上記式〔I〕の有機珪素化合物を
使用するか、又は式〔I〕及び式〔II〕の有機珪素化
合物を混合して使用するものである。この場合、式
〔I〕と式〔II〕の化合物を〔I〕:〔II〕が50
〜100モル%:0〜50モル%の割合となるように混
合することが好適である。上記組成範囲を外れた場合は
得られるシラザン重合体の強度が低く、可撓性に欠ける
場合が多く、例えばこのシラザン重合体を溶融後、紡糸
して繊維状物を得る場合、巻き取りや後工程など種々の
取扱いの際に糸切れを起こす原因になり、最終工程まで
の歩留りが低下したり、最終製品の物性が悪くなる場合
がある。
The present invention will be described in more detail below. In the method for producing an organic silazane polymer according to the present invention, the organosilicon compound represented by the above formula [I] is used as a starting material, or the compound represented by the formula [I] and The organosilicon compound of the formula [II] is mixed and used. In this case, the compounds of the formulas [I] and [II] are replaced by [I]: [II] 50
It is preferable to mix in a ratio of ˜100 mol%: 0 to 50 mol%. When the composition is out of the above range, the resulting silazane polymer has low strength and often lacks flexibility. For example, when the silazane polymer is melted and then spun to obtain a fibrous material, it may be wound or This may cause yarn breakage during various handlings such as processes, which may reduce the yield up to the final process or deteriorate the physical properties of the final product.

【0024】ここで、式〔I〕の化合物としては、例え
ば ClH2SiCH2CH2SiH2Cl,Cl2 SiCH2
CH2SiH Cl2,Cl3SiCH2CH2SiCl3,C
(CH32SiCH2CH2Si(CH32Cl,Cl
2(CH3)SiCH2CH2Si(CH3)Cl2,Cl
(CH32SiCH (CH3)CH(CH3)Si(CH
32Cl,Cl2(CH2=CH)SiCH2CH2Si
(CH=CH2)Cl2 等が挙げられる。これらの中では、1,2−ビス(クロ
ロジメチルシリル)エタン、1,2−ビス(ジクロロメ
チルシリル)エタン、1,2−ビス(トリクロロシリ
ル)エタンが好適に用いられる。
Here, as the compound of the formula [I], for example,
If ClH2SiCH2CH2SiH2Cl, Cl2H SiCH2
CH2SiH Cl2, Cl3SiCH2CH2SiCl3, C
l (CH3)2SiCH2CH2Si (CH3)2Cl, Cl
2(CH3) SiCH2CH2Si (CH3) Cl2, Cl
(CH3)2SiCH (CH3) CH (CH3) Si (CH
3)2Cl, Cl2(CH2= CH) SiCH2CH2Si
(CH = CH2) Cl2 Etc. Among these, 1,2-bis (black
Rodimethylsilyl) ethane, 1,2-bis (dichlorometh)
Cylsilyl) ethane, 1,2-bis (trichlorosilyl)
Le) ethane is preferably used.

【0025】また、式〔II〕の化合物としては、例え
ばH2SiCl2,H SiCl3,SiCl4,CH3Si
Cl3,(CH32SiCl2,(C25)SiCl3
(C252SiCl2,C65SiCl3,(C652
SiCl2,CH2=CHSiCl3,(CH2=CH)2
SiCl2,(CH2=CH)(CH3)SiCl2等が挙
げられる。
Further, as the compound of the formula [II], for example,
If H2SiCl2, H SiCl3, SiClFour, CH3Si
Cl3, (CH3)2SiCl2, (C2HFive) SiCl3
(C2HFive)2SiCl2, C6HFiveSiCl3, (C6HFive)2
SiCl2, CH2= CHSiCl3, (CH2= CH)2
SiCl2, (CH2= CH) (CH3) SiCl2Etc.
You can

【0026】なお、式〔I〕及び式〔II〕の化合物
は、各々上述のような化合物のうち1種を単独で使用し
ても2種以上を併用配合して多成分系としても差し支え
ない。
The compounds of the formulas [I] and [II] may be used alone or as a multi-component system by combining two or more of the above compounds. .

【0027】更に、本発明は上記有機珪素化合物に上記
式〔III〕のジシラザンを反応させる。
Further, in the present invention, the above organosilicon compound is reacted with the disilazane of the above formula [III].

【0028】ここで、式〔III〕のジシラザンの配合
量は、上記に式〔I〕,〔II〕の有機珪素化合物のハ
ロゲン量に対しモル換算で当モル量以上であればよい。
式〔III〕のジシラザンとして具体的には、(H3
i)2NH,{H2(CH3)Si}2NH,{H(C
32Si}2NH,{(CH33Si}2NH,{(C
253Si}2NH,{(C653Si}2NH,{C
2=CH(C 32Si}2NH,{C 2=CH(C6
52Si}2NH,{C 2=CH(C252Si}2
NH等が例示され、これらの1種又は2種以上を使用す
ることができる。
Here, the formulation of the disilazane of the formula [III]
The amount is the amount of the organosilicon compound of the formulas [I] and [II] above.
It suffices if it is an equimolar amount or more in terms of mol with respect to the amount of rogen.
Specifically as the disilazane of the formula [III], (H3S
i)2NH, {H2(CH3) Si}2NH, {H (C
H3)2Si}2NH, {(CH3)3Si}2NH, {(C
2HFive)3Si}2NH, {(C6HFive)3Si}2NH, {C
H2= CH (C H3)2Si}2NH, {C H2= CH (C6
HFive)2Si}2NH, {C H2= CH (C2HFive)2Si}2
NH and the like are exemplified, and one or more of these may be used.
You can

【0029】また、本発明においては、上記式〔I〕,
〔II〕の有機珪素化合物に式〔III〕のジシラザン
を反応させる場合、無水雰囲気下で温度25〜350℃
の条件で反応させ、副生する揮発性成分を系外に留出さ
せて有機シラザン重合体を得るものである。このような
反応条件で反応させることにより、目的とするシラザン
重合体をオイル状から固体状と多種の形態で得ることが
でき、更にセラミックス繊維用プレカーサーとして好適
な重合度及び優れた熱安定性を有するシラザン重合体を
得ることができる。
In the present invention, the above formula [I],
When the organosilicon compound of [II] is reacted with the disilazane of the formula [III], the temperature is 25 to 350 ° C. under an anhydrous atmosphere.
The organic silazane polymer is obtained by reacting under the conditions described above and distilling off the volatile component produced as a by-product to the outside of the system. By reacting under such reaction conditions, the target silazane polymer can be obtained in various forms from oily to solid form, and further, a polymerization degree suitable as a precursor for ceramics fiber and excellent thermal stability can be obtained. A silazane polymer having the same can be obtained.

【0030】この場合、有機珪素化合物やジシラザンは
溶剤に溶かしてもよいが、通常無溶剤での使用が好まし
い。反応条件は、無水の雰囲気が反応温度25〜350
℃、好ましくは150〜320℃とする。反応温度が2
5℃より低いと反応が進まず、350℃より高いと反応
速度が速くなり、シラザン重合体を所望の重合度に調整
することが難しい。
In this case, the organosilicon compound or disilazane may be dissolved in a solvent, but it is usually preferable to use it without a solvent. Regarding the reaction conditions, an anhydrous atmosphere has a reaction temperature of 25 to 350.
C., preferably 150 to 320.degree. Reaction temperature is 2
If it is lower than 5 ° C., the reaction does not proceed, and if it is higher than 350 ° C., the reaction rate becomes fast, and it is difficult to adjust the silazane polymer to a desired degree of polymerization.

【0031】このように有機珪素化合物にジシラザンを
反応させると下記反応式A及びBの反応が引き続いて起
きる。
When the organosilicon compound is reacted with disilazane in this way, the reactions of the following reaction formulas A and B occur successively.

【0032】[0032]

【化10】 [Chemical 10]

【0033】即ち、まず反応式Aに示すように式〔I〕
又は式〔I〕及び式〔II〕の有機珪素化合物と式〔I
II〕のジシラザンとが反応し、式〔V〕の化合物及び
副生物として揮発性の式〔VI〕の化合物が生成する。
このうち式〔VI〕の副生物は、反応の進行に伴って常
圧あるいは減圧下で系外に留出される。更に引き続い
て、温度の上昇と共に反応式Bに示すように式〔V〕の
化合物の縮合反応が起こり始め、目的とするより高分子
量のシラザン重合体(式〔VII〕)が生成される。な
お、式〔VII〕のシラザン重合体と共に副生される式
〔III〕のジシラザンは、式〔VI〕の副生物と同様
に常圧あるいは減圧下の蒸留で系外に留出され、再使用
が可能である。
That is, first, as shown in reaction formula A, the formula [I]
Alternatively, the organosilicon compound of the formula [I] and the formula [II] and the formula [I
II] reacts with the disilazane to form a compound of formula [V] and a volatile compound of formula [VI] as a by-product.
Of these, the by-product of the formula [VI] is distilled out of the system under normal pressure or reduced pressure as the reaction progresses. Further, subsequently, as the temperature rises, a condensation reaction of the compound of the formula [V] begins to occur as shown in the reaction formula B, and a desired higher molecular weight silazane polymer (formula [VII]) is produced. The disilazane of the formula [III], which is by-produced together with the silazane polymer of the formula [VII], is distilled out of the system by distillation under normal pressure or reduced pressure in the same manner as the by-product of the formula [VI] and reused. Is possible.

【0034】なお、シラザン重合体の重合度、融点は使
用する原料の有機珪素化合物の配合比や反応温度、反応
時間等を変更することによって適宜調整することができ
るが、また、比較的低分子量の低いオリゴマーを熱時減
圧下に留去すことによって粘度、融点などを調整するこ
ともできる。
The degree of polymerization and melting point of the silazane polymer can be appropriately adjusted by changing the compounding ratio of the raw material organosilicon compound used, the reaction temperature, the reaction time, etc. It is also possible to adjust the viscosity, melting point and the like by distilling off the oligomer having a low viscosity under reduced pressure while heating.

【0035】このようにして得られた有機シラザン重合
体は、その成形性、加工性が高い点を利用し、次に示す
ようにセラミックスの前駆体として適宜形状、特に繊維
状又はシート状に形成する。
The organic silazane polymer thus obtained takes advantage of its high moldability and processability, and is formed into a suitable shape as a ceramic precursor, particularly in the form of fiber or sheet, as shown below. To do.

【0036】本発明に係るセラミックスの製造方法は、
上述した有機シラザン重合体を溶融、成形し、更に不融
化した後、焼成するものである。この場合、上記重合体
としては、融点が60〜250℃、分子量800〜50
00(ベンゼンモル凝固点降下法)のものを用いること
が好ましい。
The method for producing ceramics according to the present invention is
The above-mentioned organic silazane polymer is melted, molded, further infusibilized, and then fired. In this case, the polymer has a melting point of 60 to 250 ° C. and a molecular weight of 800 to 50.
It is preferable to use the one of 00 (benzene molar freezing point depression method).

【0037】更にここで、上記反応で得られた有機シラ
ザン重合体をそのまま溶融、成形に供してもよいが、シ
ラザン重合体をヘキサン,ベンゼン,トルエン,テトラ
ヒドロフラン等の有機溶媒に溶解し、濾過後に溶媒を減
圧留去するか、あるいは溶融液を熱時にそのまま濾過し
て不溶物を除去することが好ましい。このような処理を
行なうことにより、上記融点や分子量を有するシラザン
重合体をより確実に得ることができ、重合体の溶融、成
形を容易に行なうことができる。
Further, the organic silazane polymer obtained by the above reaction may be melted and molded as it is, but the silazane polymer is dissolved in an organic solvent such as hexane, benzene, toluene, tetrahydrofuran, etc., and after filtration. It is preferable to remove the insoluble matter by distilling off the solvent under reduced pressure or filtering the melt as it is when it is hot. By carrying out such a treatment, a silazane polymer having the above melting point and molecular weight can be obtained more reliably, and the polymer can be easily melted and molded.

【0038】また、有機シラザン重合体の溶融、成形及
び焼成の方法に特に制限はなく、重合体を適宜形状に成
形し、これを焼成することによって種々形状のセラミッ
クス製品を得ることができる。
The method of melting, shaping and firing the organic silazane polymer is not particularly limited, and various shaped ceramic products can be obtained by shaping the polymer into an appropriate shape and firing it.

【0039】例えば、セラミックス繊維を製造する場
合、まず有機シラザン重合体を加熱溶融し、溶融紡糸法
で紡糸を行なうことができる。この場合、この工程にお
いて紡糸温度は重合体の融点によって異なるが、通常1
00〜300℃の範囲で実施することが好ましい。
For example, in the case of producing ceramic fibers, the organic silazane polymer can be first melted by heating and then spun by the melt spinning method. In this case, the spinning temperature in this step depends on the melting point of the polymer, but usually 1
It is preferably carried out in the range of 00 to 300 ° C.

【0040】次に、この紡糸工程で得られた糸状体を空
気中で加熱したり、真空中或いはN2ガス中等で電子線
照射を行なって不融化するか、或いはN2ガスやArガ
ス中等の不活性雰囲気中で紫外線を照射して光不融化す
る。この工程において、空気中での加熱は融点より低い
温度、例えば50〜200℃の温度範囲で行なうことが
好ましい。この場合、温度が50℃より低いと不融化せ
ず、200℃より高いとポリマーが溶融することがあ
る。また、電子線照射は真空中又はN2ガス雰囲気で1
0〜2000Mradの照射量で行なうことが好適であ
り、10Mradより少ないと焼成時に繊維同志が融着
する場合がある。
Next, the filament obtained in this spinning step is heated in air or irradiated with an electron beam in vacuum or in N 2 gas to make it infusible, or in N 2 gas or Ar gas. UV irradiation is performed in the inert atmosphere described above to make the material infusibilized. In this step, heating in air is preferably performed at a temperature lower than the melting point, for example, in the temperature range of 50 to 200 ° C. In this case, if the temperature is lower than 50 ° C, the polymer does not become infusible, and if the temperature is higher than 200 ° C, the polymer may melt. The electron beam irradiation is performed in vacuum or in an N 2 gas atmosphere at 1
The irradiation is preferably performed at an irradiation amount of 0 to 2000 Mrad, and if the irradiation amount is less than 10 Mrad, the fibers may be fused together during firing.

【0041】更に、紫外線照射は波長250〜400n
mの入手容易な市販の紫外線ランプを使用し、有機シラ
ザン重合体の不融化性能に応じて光源の強さ、照射距離
や照射時間を適宜選択して紫外線の光量を調節すること
が好ましい。更に、紫外線で光不融化する場合は、置換
基R2としてビニル基を比較的多量に含有した式〔I
I〕の有機珪素化合物から得られた有機シラザン重合体
を使用することが好ましい。なお、ビニル基含量の少な
い有機シラザン重合体も、この有機シラザン重合体に予
め光増感剤や加硫剤等を添加することにより、紫外線で
光不融化することができる。この場合、一般に光増感剤
や加硫剤を多量に添加すると重合体の諸特性に影響を及
ぼすことから、0.001〜5重量%程度の添加量が好
適である。なお、添加量が0.001重量%より少ない
と融着が起こる場合がある。ここで、増感剤としてはベ
ンゾフェノン、ローズベンガル、アセトフェノン等、加
硫剤としては二硫化ジフェニル、1,3−ベンゼンジチ
オール、2,2’−ジチオビス(ベンゾチアゾール)等
が例示される。
Further, the irradiation of ultraviolet rays has a wavelength of 250 to 400 n.
It is preferable to use an easily available commercially available UV lamp and to appropriately control the intensity of the light source, the irradiation distance, and the irradiation time according to the infusibilizing performance of the organic silazane polymer to adjust the amount of ultraviolet light. Furthermore, when light infusibilized in the ultraviolet, the formula [I was relatively high content vinyl group as a substituent R 2
It is preferable to use an organic silazane polymer obtained from the organosilicon compound of [I]. It should be noted that an organic silazane polymer having a low vinyl group content can also be photo-infusible with ultraviolet rays by previously adding a photosensitizer or a vulcanizing agent to the organic silazane polymer. In this case, generally, when a large amount of the photosensitizer or the vulcanizing agent is added, various properties of the polymer are affected, so that the addition amount of about 0.001 to 5% by weight is preferable. If the addition amount is less than 0.001% by weight, fusion may occur. Examples of the sensitizer include benzophenone, rose bengal and acetophenone, and examples of the vulcanizing agent include diphenyl disulfide, 1,3-benzenedithiol and 2,2′-dithiobis (benzothiazole).

【0042】次いで、不融化した糸状物を無張力下又は
張力下において高温焼成することにより、SiC,Si
34を主体とする強度、弾性率に優れたセラミックス繊
維を得ることができる。この工程において、焼成は真空
中或いはArなどの不活性ガス,N2ガス,H2ガス,N
3ガス等の1種又は2種以上のガス中において700
〜2000℃、特に700〜1500℃で行なうことが
好適である。この場合、張力下で焼成することが特に好
ましく、これによって引張強度230〜310kg/m
2、弾性率16〜30t/mm2の物性を有する高品質
のセラミックス繊維を製造できる。
Then, the infusibilized filamentous material is fired at a high temperature under no tension or tension to obtain SiC, Si.
It is possible to obtain a ceramic fiber mainly composed of 3 N 4 and having excellent strength and elastic modulus. In this process, firing is performed in vacuum or in an inert gas such as Ar, N 2 gas, H 2 gas, N 2 .
700 in one or more gases such as H 3 gas
It is preferable to carry out at ˜2000 ° C., especially 700˜1500 ° C. In this case, firing under tension is particularly preferred, which results in a tensile strength of 230-310 kg / m.
It is possible to manufacture high-quality ceramic fibers having physical properties of m 2 and an elastic modulus of 16 to 30 t / mm 2 .

【0043】また、焼成において、有機シラザン重合体
をアルミナ,炭化珪素,窒化珪素,窒化ホウ素等から選
ばれる1種又は2種以上の無機化合物粉末に結合剤とし
て添加すると、容易に高品位のセラミックス成形体を得
ることができる。
In addition, when the organic silazane polymer is added to the powder of one or more kinds of inorganic compounds selected from alumina, silicon carbide, silicon nitride, boron nitride, etc. as a binder during firing, high-quality ceramics can be easily obtained. A molded body can be obtained.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
熱的に安定で一定の重合度を有し、従って成形性、加工
性に優れている上、良好な不融化性を有し、更には高強
度で可撓性に富むが故に取扱い性にも優れ、しかもセラ
ミックス収率が高く、このためセラミックス繊維用前駆
体として特に好適に使用し得る有機シラザン重合体を工
業的に有利に製造することができ、かかる有機シラザン
重合体を用いて高品質のSiC,Si34を主体とする
セラミックスを高セラミックス収率で得ることができ
る。この場合、本発明方法によれば、所望形状のセラミ
ックス製品、例えばセラミックス繊維、セラミックスシ
ート、セラミックス成形体等を高い歩留りで、しかも安
定した品質で製造することができ、これにより強度、弾
性率に優れたセラミックス繊維、シート成形体等を得る
ことができる。
As described above, according to the present invention,
It is thermally stable and has a certain degree of polymerization, so it has excellent moldability and processability, and also has good infusibilization properties. Furthermore, it has high strength and flexibility, so it is easy to handle. An organic silazane polymer, which is excellent and has a high ceramic yield and can be particularly preferably used as a precursor for ceramic fibers, can be industrially advantageously produced, and a high-quality organic silazane polymer can be used. Ceramics mainly composed of SiC and Si 3 N 4 can be obtained with a high ceramic yield. In this case, according to the method of the present invention, a ceramic product having a desired shape, such as a ceramic fiber, a ceramic sheet, or a ceramic molded body, can be manufactured with a high yield and with stable quality. It is possible to obtain excellent ceramic fibers, sheet moldings and the like.

【0045】[0045]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記実施例に限定されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0046】〔実施例〕重合工程 〔1,2−ビス(メチルジクロロシリル)エタン〕撹拌
機、温度計、ガス導入管、蒸留装置を装備し、乾燥した
500mlの4つ口フラスコに1,2−ビス(メチルジ
クロロシリル)エタン76.8g(0.3mol)及び
{(CH33Si}2NH177.5g(1.1mo
l)を仕込んだ。次いで、N2雰囲気下で混合物を徐々
に加熱し(釜温が92℃に達したところで還流が開始
し、その蒸気温度は59℃であった)、生成してくる揮
発性成分を系外に留出させながら徐々に反応温度を30
0℃まで上げ、この温度で3時間保持した。N 2気流
下、この反応物を室温まで冷却し、反応物に100ml
の脱水ヘキサンを加えて溶解させて不溶物を濾過した
後、ヘキサン及び低分子量物を200℃、10mmHg
下でストリップした。残留物はガラス状黄色固体の重合
体で59g得た。このものは分子量2650(ベンゼン
モル凝固点降下法、以下同じ。)、融点130℃であ
り、電位差滴定から残存塩素は100ppm以下であっ
た。また、IRからは3400cm-1にNH,2980
cm-1にCH,1260cm-1にSiCH3の各々の吸
収が認められた。重合工程 〔1,2−ビス(メチルジクロロシリル)エタン:メチ
ルジクロロシラン=80:20(モル%)〕1,2−ビ
ス(メチルジクロロシリル)エタン61.4g(0.2
4mol)、メチルジクロロシラン6.9g(0.06
mol)、{(CH33Si}2NH177.5g
(1.1mol)を重合工程と同様に500mlの4
つ口フラスコに仕込み、反応温度300℃で1時間保持
して反応させ、冷却して同様に処理した。薄黄色固体5
3gが得られ、このものは分子量2100、融点82℃
であった。重合工程 〔1,2−ビス(メチルジクロロシリル)エタン:メチ
ルトリクロロシラン=70:30(モル%)〕1,2−
ビス(メチルジクロロシリル)エタン53.8g(0.
24mol)、メチルトリクロロシラン13.4g
(0.06mol)、{(CH33Si}2NH194
g(1.2mol)を重合工程と同様に500mlの
4つ口フラスコに仕込み、反応温度280℃で30分間
反応させ、処理した。薄黄色固体43.7gが得られ、
このものは分子量1800、融点70℃であった。重合工程 〔1,2−ビス(メチルジクロロシリル)エタン:ビニ
ルトリクロロシラン=70:30(モル%)〕1,2−
ビス(メチルジクロロシリル)エタン125.4g
(0.49mol)、ビニルトリクロロシラン33.9
g(0.21mol)、{(CH33Si}2NH25
8.2g(1.6mol)を重合工程と同様に1リッ
トルの4つ口フラスコに仕込み、反応温度250℃で3
時間反応させ、処理した。薄黄色固体103.5gが得
られ、このものは分子量3100、融点110℃であっ
た。また、IRからは3400cm-1にNH,2950
cm-1にC−H,1260cm-1にSi−Me,142
0cm-1にCH2=CH−の各々の吸収が認められた。重合工程 〔1,2−ビス(トリクロロシリル)エタン:メチルジ
クロロシラン:メチルビニルジクロロシラン=50:2
5:25(モル%)〕1,2−ビス(トリクロロシリ
ル)エタン44.6g(0.15mol)、メチルジク
ロロシラン8.6g(0.075mol)、メチルビニ
ルジクロロシラン10.6g(0.075mol)、
{(CH33Si}2NH129g(0.8mol)を
重合工程と同様に500mlの4つ口フラスコに仕込
み、反応温度260℃で2時間反応させた。薄黄色固体
45gが得られ、このものは分子量2720、融点12
5℃であった。また、IRからは3400cm-1にN
H,2950cm-1にC−H,2150cm-1にSi−
H,1260cm-1にSi−Me,1420cm-1にC
2=CH−の各々の吸収が認められた。重合工程 〔1,2−ビス(メチルジクロロシリル)エタン:ビニ
ルトリクロロシラン=98:2(モル%)〕1,2−ビ
ス(メチルジクロロシリル)エタン75.3g(0.2
94mol)、ビニルトリクロロシラン0.9g(0.
06mol)、{(CH33Si}2NH218.9g
(1.356mol)を重合工程と同様に500ml
の4つ口フラスコに仕込み、反応温度240℃で1.5
時間反応させた。白色固体57gが得られ、このものは
分子量2250、融点86℃であった。また、IRから
は3400cm-1にNH,2950cm-1にC−H,1
420cm-1にCH2=CH−,1260cm-1にSi
−Meの各々の吸収が認められた。重合工程 〔1,2−ビス(メチルジクロロシリル)エタン:1,
2−ビス(トリクロロシリル)エタン:ビニルトリクロ
ロシラン=50:20:30(モル%)〕1,2−ビス
(メチルジクロロシリル)エタン38.4g(0.15
mol)、1,2−ビス(トリクロロシリル)エタン1
7.8g(0.06mol)、ビニルトリクロロシラン
13.5g(0.09mol)、{(CH33Si}2
NH184g(1.14mol)を重合工程と同様に
500mlの4つ口フラスコに仕込み、反応温度250
℃で2時間反応させた。白色固体49gが得られ、この
ものは分子量4200、融点220℃であった。また、
IRからは3400cm-1にNH,2950cm-1にC
−H,1420cm-1にCH2=CH−,1260cm
-1にSi−Meの各々の吸収が認められた。
[Example]Polymerization process [1,2-bis (methyldichlorosilyl) ethane] stirring
Equipped with a machine, thermometer, gas inlet tube, distillation device, and dried
In a 500 ml four-necked flask, 1,2-bis (methyldiethyl)
76.8 g (0.3 mol) of chlorosilyl) ethane and
{(CH3)3Si}2NH177.5g (1.1mo
I) was charged. Then N2Gradually mix the mixture under atmosphere
(The reflux starts when the pot temperature reaches 92 ° C.)
However, the vapor temperature was 59 ° C.)
The reaction temperature is gradually raised to 30 while distilling the volatile components out of the system.
It was raised to 0 ° C. and kept at this temperature for 3 hours. N 2air flow
Underneath, cool the reaction to room temperature and add 100 ml to the reaction.
Dehydrated hexane was added and dissolved, and the insoluble matter was filtered.
After that, add hexane and low molecular weight substances at 200 ° C, 10 mmHg
Stripped below. Residue is a glassy yellow solid polymerized
59 g was obtained in a body. This product has a molecular weight of 2650 (benzene
Molar freezing point depression method, and so on. ), Melting point 130 ° C.
The residual chlorine was 100 ppm or less from the potentiometric titration.
It was Also, from the IR, 3400 cm-1NH, 2980
cm-1CH, 1260cm-1On SiCH3Each of the sucking
Income was recognized.Polymerization process [1,2-bis (methyldichlorosilyl) ethane: methyl
Ludichlorosilane = 80: 20 (mol%)] 1,2-bi
61.4 g (0.2%) of (methyldichlorosilyl) ethane
4 mol), 6.9 g (0.06) of methyldichlorosilane
mol), {(CH3)3Si}2NH177.5g
(1.1 mol) was added to 500 ml of 4 as in the polymerization step.
Charged in a one-necked flask and kept at a reaction temperature of 300 ° C for 1 hour.
Was reacted, cooled and treated in the same manner. Light yellow solid 5
3 g was obtained, which had a molecular weight of 2100 and a melting point of 82 ° C.
Met.Polymerization process [1,2-bis (methyldichlorosilyl) ethane: methyl
Lutrichlorosilane = 70: 30 (mol%)] 1,2-
53.8 g of bis (methyldichlorosilyl) ethane (0.
24 mol), 13.4 g of methyltrichlorosilane
(0.06 mol), {(CH3)3Si}2NH194
g (1.2 mol) of 500 ml as in the polymerization step
Charge in a 4-neck flask and react at reaction temperature of 280 ° C for 30 minutes.
Reacted and treated. 43.7 g of a pale yellow solid are obtained,
This product had a molecular weight of 1800 and a melting point of 70 ° C.Polymerization process [1,2-bis (methyldichlorosilyl) ethane: vinyl
Lutrichlorosilane = 70: 30 (mol%)] 1,2-
Bis (methyldichlorosilyl) ethane 125.4g
(0.49 mol), vinyltrichlorosilane 33.9
g (0.21 mol), {(CH3)3Si}2NH25
8.2 g (1.6 mol) was added to 1 liter as in the polymerization step.
Charge to a 4-necked 4-necked flask at a reaction temperature of 250 ° C.
It was allowed to react for a time and treated. 103.5 g of a light yellow solid is obtained
It has a molecular weight of 3100 and a melting point of 110 ° C.
It was Also, from the IR, 3400 cm-1NH, 2950
cm-1C-H, 1260 cm-1Si-Me, 142
0 cm-1To CH2Each absorption of = CH- was observed.Polymerization process [1,2-bis (trichlorosilyl) ethane: methyldi
Chlorosilane: Methylvinyldichlorosilane = 50: 2
5:25 (mol%)] 1,2-bis (trichlorosilyl)
Le) ethane 44.6 g (0.15 mol), methyldi
8.6 g (0.075 mol) of lorosilane, methyl vinyl
10.6 g (0.075 mol) of ludichlorosilane,
{(CH3)3Si}2NH129g (0.8mol)
As in the polymerization process, charge into a 500 ml four-necked flask.
Then, the reaction was carried out at a reaction temperature of 260 ° C. for 2 hours. Light yellow solid
45 g were obtained, which had a molecular weight of 2720 and a melting point of 12
It was 5 ° C. Also, from the IR, 3400 cm-1To N
H, 2950 cm-1C-H, 2150 cm-1To Si-
H, 1260 cm-1On Si-Me, 1420 cm-1To C
H2Each absorption of = CH- was observed.Polymerization process [1,2-bis (methyldichlorosilyl) ethane: vinyl
Lutrichlorosilane = 98: 2 (mol%)] 1,2-bi
75.3 g of su (methyldichlorosilyl) ethane (0.2
94 mol) and 0.9 g of vinyltrichlorosilane (0.
06 mol), {(CH3)3Si}2NH218.9g
500 ml of (1.356 mol) as in the polymerization step
In a 4-necked flask with a reaction temperature of 240 ° C for 1.5
Reacted for hours. 57 g of a white solid are obtained, which is
It had a molecular weight of 2250 and a melting point of 86 ° C. Also, from IR
Is 3400 cm-1NH, 2950 cm-1C-H, 1
420 cm-1To CH2= CH-, 1260cm-1To Si
-Each absorption of Me was observed.Polymerization process [1,2-bis (methyldichlorosilyl) ethane: 1,
2-bis (trichlorosilyl) ethane: vinyl trichloro
Rosilane = 50:20:30 (mol%)] 1,2-bis
(Methyldichlorosilyl) ethane 38.4 g (0.15
mol), 1,2-bis (trichlorosilyl) ethane 1
7.8 g (0.06 mol), vinyltrichlorosilane
13.5 g (0.09 mol), {(CH3)3Si}2
NH184g (1.14 mol) was used in the same manner as in the polymerization step.
Charge into a 500 ml four-necked flask, and set the reaction temperature to 250.
The reaction was carried out at 0 ° C for 2 hours. 49 g of a white solid are obtained, which
The product had a molecular weight of 4200 and a melting point of 220 ° C. Also,
3400 cm from IR-1NH, 2950 cm-1To C
-H, 1420 cm-1To CH2= CH-, 1260cm
-1Each absorption of Si-Me was recognized.

【0047】繊維化工程 重合工程で得られたシラザン重合体30gをモノホー
ル紡糸装置により190℃にて溶融紡糸した。紡糸は3
時間後も非常に良好で、巻取速度400m/minで実
施した。得られた生糸は従来になく強いもので、引張強
度を測定したところ10kg/mm2であった。次いで
得られた生糸を電子線にて2000Mradで不融化処
理を行なった。その後、わずかな張力下、N2気流中1
00℃/Hrの昇温速度で1100℃にて30分間焼成
した。セラミックス収率は72%であり、得られた繊維
は繊維径8μ、引張強度270kg/mm2、弾性率1
8t/mm2という物性であった。また、繊維組成を元
素分析により分析したところ、Si58.8%、C2
5.8%,N15.2%,O0.2%からなるSiC−
Si34を主体とする繊維であることが確認された。繊維化工程 重合工程で得られたシラザン重合体20gを繊維化工
程と同様の紡糸装置を用いて140℃にて溶融紡糸し
た。巻取速度420m/minで、紡糸は非常に良好で
あった。更に得られた生糸をわずかな張力下、電子線装
置にて500Mradで不融化処理を行なった。次い
で、無張力下、N2気流中で100℃/Hrの昇温速度
で1200℃にて30分間焼成した。セラミックス収率
は70%であり、得られた繊維は繊維径7μ、引張強度
280kg/mm2、弾性率20t/mm2であった。繊
維組成を元素分析したところ、SiC−Si34を主体
とする繊維であった。繊維化工程 重合工程で得られたシラザン重合体20gを繊維化工
程と同様の紡糸装置を用いて130℃にて溶融紡糸し
た。巻取速度450m/minで、紡糸は非常に良好で
あった。更に得られた生糸を空気中にて50〜80℃
(5℃/Hr)で加熱して不融化を行なった。次いで、
わずかな張力下、N2気流中で100℃/Hrの昇温速
度で1150℃にて30分間焼成した。セラミックス収
率は68%であり、繊維径6μ、引張強度230kg/
mm2、弾性率19t/mm2のSiC−Si34を主体
とする繊維であった。繊維化工程 重合工程で得られたシラザン重合体30gに光増感剤
としてローズベンガル0.06gを加え、テトラヒドロ
フランに溶解、混合させた後、テトラヒドロフランを1
00℃、5mmHgの減圧下で除去した。次いで、繊維
化工程と同様の紡糸装置を用いて170℃、巻取速度
420m/minで溶融紡糸した。得られた生糸をわず
かな張力下、N2気流中で紫外線照射装置(東芝光化学
用水銀ランプH−400P型)を用いて距離15cmの
ところから3時間光照射し、不融化を行なった。その
後、得られた繊維を張力下N2気流中100℃/Hrの
昇温速度で1200℃にて1時間焼成した。セラミック
ス収率は74%であり、繊維径7μ、引張強度250k
g/mm2、弾性率23t/mm2のSiC−Si34
主体とする繊維であった。繊維化工程 重合工程で得られたシラザン重合体30gに加硫剤と
して二硫化ジフェニル0.06gを加え、テトラヒドロ
フランに溶解、混合させた後、テトラヒドロフランを1
00℃、5mmHgの減圧下で除去した。次いで、繊維
化工程と同様の紡糸装置を用いて溶融紡糸した。得ら
れた生糸を繊維化工程と同様の紫外線装置を用いて光
照射し、不融化処理を行なった。その後、得られた生糸
を張力下N2気流中で100℃/Hrの昇温速度で11
00℃にて30分間焼成した。セラミックス収率は68
%であり、繊維径8μ、引張強度235kg/mm2
弾性率20.5t/mm2のSiC−Si34を主体と
する繊維であった。繊維化工程 重合工程で得られたシラザン重合体30gに加硫剤と
して1,3−ベンゼンジチオール0.003gを加え、
更に増感剤としてベンゾフェノン3mgを1リットルの
テトラヒドロフランに溶解し、この溶液100mlを加
えて溶解させた。次いでテトラヒドロフランを減圧留去
し、繊維化工程と同様の紡糸装置を用いて170℃に
て溶融紡糸を行なった。更に得られた生糸を繊維化工程
と同様に光不融化処理を行なった後、わずかな張力下
2気流中で100℃/Hrの昇温速度で1100℃に
て30分間焼成した。セラミックス収率は70%であ
り、繊維径9μ、引張強度260kg/mm2、弾性率
20t/mm2のSiC−Si34を主体とする繊維で
あった。
The melt spun silazane polymer 30g obtained in the fiberization step polymerization process at 190 ° C. The mono-hole spinning apparatus. 3 spinning
After a lapse of time, it was very good, and the winding speed was 400 m / min. The raw silk thus obtained was stronger than ever before, and its tensile strength was measured and found to be 10 kg / mm 2 . Then, the obtained raw silk was infusibilized with an electron beam at 2000 Mrad. After that, under slight tension, 1 in N 2 stream
Baking was performed at 1100 ° C. for 30 minutes at a heating rate of 00 ° C./Hr. The ceramic yield was 72%, the obtained fiber had a fiber diameter of 8μ, a tensile strength of 270 kg / mm 2 , and an elastic modulus of 1.
The physical properties were 8 t / mm 2 . In addition, when the fiber composition was analyzed by elemental analysis, Si58.8%, C2
SiC-containing 5.8%, N15.2%, and O0.2%
It was confirmed that the fiber was mainly composed of Si 3 N 4 . The silazane polymer 20g obtained in the fiberization process polymerization step was melt-spun at 140 ° C. using the same spinning apparatus and fiberizing process. At a winding speed of 420 m / min, spinning was very good. Further, the obtained raw silk was infusibilized at 500 Mrad with an electron beam device under a slight tension. Then, it was calcined at 1200 ° C. for 30 minutes at a temperature rising rate of 100 ° C./Hr in a N 2 stream under no tension. The ceramic yield was 70%, and the obtained fiber had a fiber diameter of 7 μ, a tensile strength of 280 kg / mm 2 , and an elastic modulus of 20 t / mm 2 . Elemental analysis of the fiber composition revealed that the fiber was mainly composed of SiC-Si 3 N 4 . The silazane polymer 20g obtained in the fiberization process polymerization step was melt-spun at 130 ° C. using the same spinning apparatus and fiberizing process. At a winding speed of 450 m / min, spinning was very good. Further, the obtained raw silk in the air at 50 to 80 ° C
It was made infusible by heating at (5 ° C./Hr). Then
Firing was performed at 1150 ° C. for 30 minutes at a temperature rising rate of 100 ° C./Hr in a N 2 stream under a slight tension. Ceramic yield is 68%, fiber diameter 6μ, tensile strength 230kg /
mm 2, was fibers mainly composed of SiC-Si 3 N 4 modulus 19t / mm 2. Fiberizing process To 30 g of the silazane polymer obtained in the polymerization process, 0.06 g of rose bengal as a photosensitizer was added, dissolved in tetrahydrofuran and mixed, and then 1 tetrahydrofuran was added.
It was removed under reduced pressure of 00 ° C. and 5 mmHg. Next, melt spinning was performed at 170 ° C. and a winding speed of 420 m / min using the same spinning device as in the fiberizing step. The raw silk thus obtained was irradiated with light for 3 hours at a distance of 15 cm by using an ultraviolet irradiation device (mercury lamp H-400P type for Toshiba photochemistry) under N 2 flow under slight tension to infusibilize. Then, the obtained fiber was fired under tension in N 2 gas stream at 1200 ° C. for 1 hour at a temperature rising rate of 100 ° C./Hr. Ceramic yield is 74%, fiber diameter 7μ, tensile strength 250k
g / mm 2, was fibers mainly composed of SiC-Si 3 N 4 modulus 23t / mm 2. Fiberizing step To 30 g of the silazane polymer obtained in the polymerization step, 0.06 g of diphenyl disulfide as a vulcanizing agent was added, dissolved and mixed in tetrahydrofuran, and then 1 tetrahydrofuran was added.
It was removed under reduced pressure of 00 ° C. and 5 mmHg. Next, melt spinning was performed using the same spinning device as in the fiberizing step. The raw silk thus obtained was irradiated with light using an ultraviolet device similar to that used in the fiberizing step to carry out infusibilization treatment. Then, the raw silk thus obtained was subjected to a tension of 11 ° C. in a N 2 gas stream at a heating rate of 100 ° C./Hr.
It was baked at 00 ° C for 30 minutes. Ceramic yield is 68
%, Fiber diameter 8 μ, tensile strength 235 kg / mm 2 ,
It was a fiber mainly composed of SiC-Si 3 N 4 having an elastic modulus of 20.5 t / mm 2 . Fiberizing step 0.003 g of 1,3-benzenedithiol as a vulcanizing agent was added to 30 g of the silazane polymer obtained in the polymerization step,
Further, 3 mg of benzophenone as a sensitizer was dissolved in 1 liter of tetrahydrofuran, and 100 ml of this solution was added and dissolved. Then, tetrahydrofuran was distilled off under reduced pressure, and melt spinning was performed at 170 ° C. using the same spinning device as in the fiberizing step. Further, the raw silk thus obtained was subjected to an optical infusibilization treatment in the same manner as in the fiberizing step, and was then calcined at 1100 ° C. for 30 minutes at a temperature rising rate of 100 ° C./Hr in a N 2 gas stream under a slight tension. The ceramic yield was 70%, and the fiber was mainly composed of SiC-Si 3 N 4 having a fiber diameter of 9 μ, a tensile strength of 260 kg / mm 2 , and an elastic modulus of 20 t / mm 2 .

【0048】セラミックス成形体 重合工程で得られたシラザン重合体0.5gとSiC
微粉末10g、ヘキサン2gを分散混練した後、ヘキサ
ンを蒸発させた。この粉末を1000kg/mm2の成
形圧で加圧成形して直径25mm×厚さ10mmの圧粉
成形体を得た。次いでこの圧粉体をアルゴン雰囲気中で
室温から1000℃まで2時間、1000℃から195
0℃まで1時間かけて昇温し、1950℃にて30分間
保持した後冷却したところ、密度2.85g/cm3
曲げ強度30kg/mm2のSiC成形体が得られた。
0.5 g of the silazane polymer obtained in the step of polymerizing the ceramic molded body and SiC
10 g of fine powder and 2 g of hexane were dispersed and kneaded, and then hexane was evaporated. This powder was pressure-molded at a molding pressure of 1000 kg / mm 2 to obtain a powder compact having a diameter of 25 mm and a thickness of 10 mm. Then, this green compact was heated in an argon atmosphere from room temperature to 1000 ° C. for 2 hours, and then from 1000 ° C. to 195 ° C.
When the temperature was raised to 0 ° C. over 1 hour, the temperature was kept at 1950 ° C. for 30 minutes and then cooled, the density was 2.85 g / cm 3 ,
A SiC molded body having a bending strength of 30 kg / mm 2 was obtained.

【0049】〔比較例〕重合工程 撹拌機、温度計、ガス導入管、蒸留装置を装備した50
0mlの乾燥した4つ口フラスコにメチルトリクロロシ
ラン35.8g(10.24mol)、ジメチルジクロ
ロシラン7.7g(0.06mol)、{(CH33
i}2NH137.2g(0.85mol)を仕込ん
だ。以下、上記実施例の重合工程と同様の方法で、反
応温度270℃で30分間反応させた後、常温に冷却し
た。青黄色固体21gが得られ、このものは分子量17
00、融点65℃であった。
[Comparative Example] Polymerization step 50 equipped with a stirrer, a thermometer, a gas introduction tube, and a distillation apparatus
In a 0 ml dry four-necked flask, 35.8 g (10.24 mol) of methyltrichlorosilane, 7.7 g (0.06 mol) of dimethyldichlorosilane, and {(CH 3 ) 3 S were added.
i} 2 NH137.2 g (0.85 mol) was charged. Then, the reaction was carried out at a reaction temperature of 270 ° C. for 30 minutes in the same manner as in the polymerization step of the above-mentioned example, and then cooled to room temperature. 21 g of a blue-yellow solid is obtained, which has a molecular weight of 17
00, melting point 65 ° C.

【0050】繊維化工程 得られたシラザン重合体20gをモノホール(ノズル、
直径0.5mm)紡糸装置に仕込み、N2気流下120
℃で溶融させ、紡糸を行なった。紡糸は糸切れが激し
く、かつ得られた生糸は非常に脆いものであり、生糸の
強度を測定したところ0.5kg/mm2であった。次
いで、この生糸を電子線装置を用いて2000Mrad
で不融化処理し、N2気流下100℃/Hrの昇温速度
で1100℃にて30分間焼成した。セラミックス収率
は48%であり、得られた繊維は一部融着したものであ
った。また、未融着部の繊維物性を測定したところ、繊
維径8μ、引張強度20kg/mm2、弾性率4t/m
2で非常に低物性であった。
Fiberizing Step 20 g of the obtained silazane polymer was added to a monohole (nozzle,
(Diameter 0.5 mm) Charged into a spinning machine and under a N 2 gas flow of 120
It was melted at ° C and spun. The spinning was severe in yarn breakage, and the obtained raw yarn was very brittle. The strength of the raw yarn was measured and found to be 0.5 kg / mm 2 . Then, this raw silk is 2000 Mrad using an electron beam device.
Was infusibilized and baked at 1100 ° C. for 30 minutes at a temperature rising rate of 100 ° C./Hr under N 2 gas flow. The ceramic yield was 48%, and the obtained fibers were partially fused. Moreover, the fiber physical properties of the unfused portion were measured, and the fiber diameter was 8 μ, the tensile strength was 20 kg / mm 2 , and the elastic modulus was 4 t / m.
It had very low physical properties at m 2 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/589 D01F 9/10 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C04B 35/589 D01F 9/10 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式〔I〕 【化1】 で示される有機珪素化合物又は前記式〔I〕及び下記一
般式〔II〕 【化2】 で示される有機珪素化合物の混合物と、下記一般式〔I
II〕 【化3】 で示されるジシラザンとを無水雰囲気下において温度2
5〜350℃で反応させ、副生する揮発性成分を系外に
留出させて有機シラザン重合体を得、次いでこの有機シ
ラザン重合体を溶融、成形し、更に不融化した後、焼成
してセラミックスを得ることを特徴とするセラミックス
の製造方法。
1. The following general formula [I]: Or an organic silicon compound represented by the above formula [I] and the following general formula [II] And a mixture of an organosilicon compound represented by the following general formula [I
II] With a disilazane represented by
The reaction is carried out at 5 to 350 ° C, the volatile component produced as a by-product is distilled out of the system to obtain an organic silazane polymer, and then the organic silazane polymer is melted and molded, further infusibilized, and then fired. A method for producing ceramics, which comprises obtaining the ceramics.
【請求項2】 有機シラザン重合体を無機化合物粉末に
結合剤として添加し、焼成する特許請求の範囲第1項記
載の製造方法。
2. The production method according to claim 1, wherein the organic silazane polymer is added to the inorganic compound powder as a binder and fired.
JP3306489A 1991-10-25 1991-10-25 Ceramics manufacturing method Expired - Lifetime JPH0798866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306489A JPH0798866B2 (en) 1991-10-25 1991-10-25 Ceramics manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306489A JPH0798866B2 (en) 1991-10-25 1991-10-25 Ceramics manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62043493A Division JPS63210133A (en) 1987-02-25 1987-02-25 Organosilazane polymer and production of ceramics therefrom

Publications (2)

Publication Number Publication Date
JPH0532787A JPH0532787A (en) 1993-02-09
JPH0798866B2 true JPH0798866B2 (en) 1995-10-25

Family

ID=17957638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306489A Expired - Lifetime JPH0798866B2 (en) 1991-10-25 1991-10-25 Ceramics manufacturing method

Country Status (1)

Country Link
JP (1) JPH0798866B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212365B4 (en) * 2012-07-13 2021-05-20 Bjs Ceramics Gmbh Process for producing a polysilane
CN114085644B (en) * 2021-12-03 2023-05-02 上海电缆研究所有限公司 High-temperature-resistant sealant and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0532787A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
US4847345A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPS62290730A (en) Production of organosilazane polymer and production of ceramics using said polymer
EP0417526B1 (en) Methods for preparing polytitanocarbosilazane polymers and ceramics therefrom
US4954596A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPH0798866B2 (en) Ceramics manufacturing method
US5183875A (en) Method for manufacturing a hafnium-containing silazane polymer and a method for manufacturing a ceramic from said polymer
JP2518119B2 (en) Ceramics manufacturing method
US5200371A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
JPH0798865B2 (en) Ceramics manufacturing method
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
US5210058A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
JPS63243328A (en) Production of ceramics
JPH0577691B2 (en)
JP2507762B2 (en) Method for producing methylpolysilazane
JPH0313188B2 (en)
US5008348A (en) Infusibilization of organic silazane polymers
JPH0234565A (en) Method of in fusibilising organic silazane polymer
JPH07119283B2 (en) Method for infusibilizing organic silazane polymer
JPS63117037A (en) Organosilazane polymer and production of ceramics therefrom
JPH04153226A (en) Preparation of boron-containing silazane polymer and preparation of ceramic from the polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080320

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

EXPY Cancellation because of completion of term