JPS63117037A - Organosilazane polymer and production of ceramics therefrom - Google Patents

Organosilazane polymer and production of ceramics therefrom

Info

Publication number
JPS63117037A
JPS63117037A JP61261634A JP26163486A JPS63117037A JP S63117037 A JPS63117037 A JP S63117037A JP 61261634 A JP61261634 A JP 61261634A JP 26163486 A JP26163486 A JP 26163486A JP S63117037 A JPS63117037 A JP S63117037A
Authority
JP
Japan
Prior art keywords
manufacturing
polymer
organosilicon compound
methyltrichlorosilane
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61261634A
Other languages
Japanese (ja)
Other versions
JPH0219135B2 (en
Inventor
Yoshifumi Takeda
竹田 好文
Minoru Takamizawa
高見沢 稔
Akira Hayashida
章 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP61261634A priority Critical patent/JPS63117037A/en
Priority to US07/114,111 priority patent/US4869854A/en
Priority to DE3736914A priority patent/DE3736914C2/en
Priority to FR8715124A priority patent/FR2606777B1/en
Publication of JPS63117037A publication Critical patent/JPS63117037A/en
Publication of JPH0219135B2 publication Critical patent/JPH0219135B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Silicon Polymers (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To facilitate the formation of the title polymer which is excellent in heat resistance and moldability and can give a ceramic molding excellent in strength and elastic modulus, by polymerizing an ammonolysis product obtained by reacting methyldichlorosilane, methyltrichlorosilane and a specified organosilicon compound with ammonia. CONSTITUTION:A mixture of 55-90mol% methyldichlorosilane (A) with 5-30mol% methyltrichlorosilane (B) and an organosilicon compound (C) of the formula (wherein R1 is Cl, Br, CH3, C2H5 or phenyl, R2 is H or R1, R3-4 are each H or CH3 and X is Cl or Br) is reacted with NH3 to give an ammonolysis product. This product is polymerized at 0-200 deg.C in the presence of a deprotonating basic catalyst (D) such as an alkali (alkaline earth) metal hydride or a metal amide (e.g., KH or NaNH2) in a solvent (E) such as tetrahydrofuran, hexane or toluene, and the remaining catalyst is decomposed with, e.g., methyl iodide. The formed insoluble matter is filtered off and the solvent is distilled off from the mixture to give the title polymer of an intrinsic viscosity of 0.06-0.09.

Description

【発明の詳細な説明】 11よ叫五1分更 本発明は、セラミックス前駆体として好適に使用される
有機シラザン重合体の製造方法及び該有機シラザン重合
体を用いたセラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an organic silazane polymer suitably used as a ceramic precursor, and a method for producing ceramics using the organic silazane polymer.

の   び 日が  しようと る□ 占セラミックス
は、耐熱性、耐摩耗性、高温強度等に優れた材料として
注目を集めているが、固く。
The sun is about to grow □ Although ceramics are attracting attention as materials with excellent heat resistance, abrasion resistance, and high-temperature strength, they are hard.

そして脆いため、セラミックスを加工することは極めて
困難である。従って、セラミックス製品を製造する場合
、セラミックス材料の微粉末を加圧等の方法により予め
所望の形状に成形した後、焼結する方法、或いはセラミ
ックス前駆体としての有機重合体を溶融若しくは溶剤に
溶解し、これを所望の形状に加工した後、焼成して無機
化する前駆体法等が採用されている。上記前駆体法の最
大の特徴は、微粉末による焼結法では不可能な形状のセ
ラミックス製品を得ることができ、従って繊維状或いは
シート状といった特殊形状の製品を製造し得ることであ
る。
And because of their brittleness, it is extremely difficult to process ceramics. Therefore, when manufacturing ceramic products, it is necessary to form fine powder of ceramic material into a desired shape by applying pressure or other methods and then sintering it, or by melting or dissolving an organic polymer as a ceramic precursor in a solvent. However, a precursor method is adopted in which the material is processed into a desired shape and then fired to make it inorganic. The most important feature of the precursor method is that it is possible to obtain ceramic products in shapes that are impossible with the sintering method using fine powder, and therefore it is possible to produce products in special shapes such as fibers or sheets.

この場合、一般にセラミックスと呼ばれるもののうちS
iC及びSi、N4は、それぞれSiCが耐熱性、高温
強度に優れ、Si、N、が耐熱衝撃性、破壊靭性に優れ
るなど、高温での優れた特性を有するために広く注目を
集めており、このため従来より、下記■〜■に示すよう
に、前駆体法による5iC−8i3N、系セラミックス
の製造方法及びその有機珪素前駆体の製造方法に関する
種々の提案がなされているが、これらの提案はいずれも
問題点を有するものであった。即ち、 ■米国特許第3,853,567号明細書には、クロロ
シラン類とアミン類とを反応させ、次いで200〜80
0℃に加熱してカルボシラザンを得た後、これを紡糸、
不融化して800〜2000℃で高温焼成することによ
り、5iC−SilN4系セラミツクスを得る方法が開
示されている。しかし、この方法は、カルボシラザンを
得るために520〜650℃という高温が必要であって
、工業的製法として極めて困難であること、またカルボ
シラザンを無機化する際にセラミック収率が約55%と
いう低収率となることといった欠点を有する。なお、こ
の米国特許明細書の実施例には、クロロシラン類として
はメチルトリクロロシラン、ジメチルジクロロシラン、
アミン類としてはメチルアミンの例しか記述されていな
い。
In this case, among what is generally called ceramics, S
iC, Si, and N4 are attracting wide attention because they have excellent properties at high temperatures, with SiC having excellent heat resistance and high-temperature strength, and Si and N having excellent thermal shock resistance and fracture toughness. For this reason, various proposals have been made in the past regarding methods for producing 5iC-8i3N based ceramics and methods for producing organosilicon precursors thereof using precursor methods, as shown in (1) to (3) below. All of them had problems. That is, (2) U.S. Pat. No. 3,853,567 discloses that chlorosilanes and amines are reacted, and then
After heating to 0°C to obtain carbosilazane, this is spun,
A method for obtaining 5iC-SilN4 ceramics by making it infusible and firing at a high temperature of 800 to 2000°C is disclosed. However, this method requires a high temperature of 520 to 650°C to obtain carbosilazane, which is extremely difficult as an industrial production method, and the ceramic yield is about 55% when mineralizing carbosilazane. The disadvantage is that the yield is low. In addition, in the examples of this US patent specification, the chlorosilanes include methyltrichlorosilane, dimethyldichlorosilane,
As for amines, only methylamine is mentioned.

■米国特許第4,097,294号明細書には、種々の
珪素を含有するポリマーが熱分解によってセラミック物
質に変換されることが示されている。
■U.S. Pat. No. 4,097,294 shows that various silicon-containing polymers can be converted into ceramic materials by pyrolysis.

しかし、シラザンポリマーに関しては僅かに一例しか開
示されておらず、しかもそのセラミック化収率は最大で
12%という低収率である。また、この米国特許明細書
にはセラミックスの繊維化、薄膜化等も可能であると記
載されているが、単にその可能性を示唆したに過ぎず、
前駆体法で最も重要とされるポリマーの成形性、加工性
については全く言及されていない。
However, only one example of a silazane polymer has been disclosed, and the ceramicization yield thereof is as low as 12% at maximum. Furthermore, although this US patent specification states that it is possible to make ceramics into fibers and thin films, this is merely a suggestion of that possibility.
There is no mention of polymer moldability and processability, which are most important in precursor methods.

■特開昭57−117532号公報には、クロロジシラ
ン類とジシラザン類との反応により、特開[57−13
9124号公報にはクロロシラン類とジシラザン類との
反応により、特開昭58−63725号公報にはクロロ
ジシラン類とアンモニアとの反応により、特開昭60−
135431号公報にはトリクロロシランとジシラザン
類との反応により、それぞれシラザンポリマーを得るこ
とが示されている。また、米国特許第4,535,00
7号明細書にはクロロシラン類及びジシラザン類に金属
ハロゲン化物を添加することにより、特開昭60−20
8331号公報にはクロロジシラン類及びジシラザン類
に金属ハロゲン化物を添加することにより、それぞれシ
ラザンポリマーを製造することが開示されている0以上
のシラザンポリマーは、いずれも熱分解によってセラミ
ック化が可能であるとされている。しかしながら、セラ
ミック化収率はいずれのシラザンポリマーも50〜60
%であって低収率である。また、上記各刊行物は、■の
明細書と同様に前駆体法で最も重要であるポリマーの成
形性、加工性については詳しく記載されておらず、特に
、繊維化の実施例のないもの、或いは繊維化した実施例
はあってもそのセラミック化繊維の強度については言及
していないものが殆どである。僅かに特開昭60−20
8331号公報に強度の記載が見られるが、この場合も
引張強度で53 kg / m2或いは63 kg /
 m”という極めて強度の低いものしか得られていない
■Unexamined Japanese Patent Publication No. 57-117532 discloses that the reaction between chlorodisilanes and disilazane
No. 9124 discloses the reaction between chlorosilanes and disilazanes, and JP-A-58-63725 discloses the reaction between chlorodisilanes and ammonia.
Publication No. 135431 discloses that silazane polymers can be obtained by reacting trichlorosilane and disilazane. Also, U.S. Patent No. 4,535,00
In the specification of No. 7, by adding metal halides to chlorosilanes and disilazane, JP-A-60-20
Publication No. 8331 discloses that silazane polymers are produced by adding metal halides to chlorodisilanes and disilazanes. All of the silazane polymers of 0 or more can be made into ceramics by thermal decomposition. It is said that there is. However, the ceramization yield was 50-60 for any silazane polymer.
%, which is a low yield. In addition, the above-mentioned publications do not describe in detail the moldability and processability of polymers, which are the most important in the precursor method, as in the specification (2), and in particular, the publications without examples of fiberization Or, even if there are examples of fiberized fibers, most do not mention the strength of the ceramicized fibers. Slightly JP-A-60-20
The description of strength can be found in Publication No. 8331, but in this case as well, the tensile strength is 53 kg/m2 or 63 kg/m2.
Only extremely low strength specimens, ie, "m", have been obtained.

で示される有機珪素化合物とアンモニアとの反応により
、アンモノリシス生成物を得た後、この生成物をアルカ
リ金属又はアルカリ土類金属の水素化物で脱水素縮合さ
せてシラザンポリマーを得る方法が開示されている。こ
の方法で得られるポリマーは、脱水素縮合の度合いによ
ってその性状をオイル状から融点を持たない固体まで種
々調整することが可能であるとされている。しかし、ポ
リマーを溶融した状態から成形、加工する場合、例えば
溶融紡糸法で連続繊維を製造する場合には、ポリマーが
一定重合度でかつ熱的に安定であることが必要であるが
、上記方法では重合を途中で停止させないとポリマーが
融点を持たない固体となってしまい、溶融可能なポリマ
ーを得るためには反応時間1反応温度、触媒量、溶媒量
等の微妙なコントロールを必要とし、その調整が非常に
困難であると共に、再現性に欠けるという問題がある。
A method is disclosed in which an ammonolysis product is obtained by the reaction of the organosilicon compound represented by the formula with ammonia, and then this product is subjected to dehydrogenation condensation with an alkali metal or alkaline earth metal hydride to obtain a silazane polymer. There is. It is said that the properties of the polymer obtained by this method can be varied depending on the degree of dehydrogenation condensation, from oil-like to solid with no melting point. However, when molding and processing a polymer from a molten state, for example when producing continuous fibers by melt spinning, it is necessary that the polymer has a certain degree of polymerization and is thermally stable. If the polymerization is not stopped midway, the polymer will become a solid with no melting point, and in order to obtain a meltable polymer, delicate control of reaction time, reaction temperature, amount of catalyst, amount of solvent, etc. is required. There are problems in that adjustment is extremely difficult and reproducibility is lacking.

更に、この方法によって得られるポリマーは熱的に安定
でなく、ゲル状物の生成を伴うといった欠点があり1以
上の二つの点から上記方法はシラザ、で示される化合物
とモノメチルアミンとから環状シラザンを形成し、この
環状シラザンとアンモニアとを反応させることによって
シラザンポリマーを得る方法が示されている。しかし、
上記公報には該ポリマーが化学蒸着用材料として好適で
あると述べられているが、ポリマーについては物性等に
関する詳細な記述が全くなされておらず、またセラミッ
ク収率についても全く触れられていない。
Furthermore, the polymer obtained by this method has the disadvantage that it is not thermally stable and is accompanied by the formation of a gel-like substance.From one or more of these points, the above method is suitable for producing a cyclic silazane from a compound represented by silazane and monomethylamine. A method is shown in which a silazane polymer is obtained by forming a cyclic silazane and reacting this cyclic silazane with ammonia. but,
Although the above publication states that the polymer is suitable as a material for chemical vapor deposition, there is no detailed description of the physical properties of the polymer, nor is there any mention of ceramic yield.

上述したように、従来提案されているセラミックス前駆
体としてのポリシラザン重合体は工業的生産に不適当な
ものであり、しかもセラミック繊維等の前駆体としての
成形性、加工性に劣る上、セラミックス収率が低いもの
であった。また、従来のポリシラザン重合体を前駆体と
して製造したセラミックス製品1例えばセラミック繊維
は、強度1弾性率等の種々の物性に劣るものであった。
As mentioned above, polysilazane polymers that have been proposed in the past as ceramic precursors are unsuitable for industrial production, have poor formability and processability as precursors for ceramic fibers, etc., and have poor ceramic yield. The rate was low. Furthermore, ceramic products 1 such as ceramic fibers manufactured using conventional polysilazane polymers as precursors are inferior in various physical properties such as strength and elastic modulus.

本発明は、上記事情に鑑みなされたもので、工業的生産
に適し、かつ成形性、加工性に優れ、しかもセラミック
ス収率が高いセラミックス前駆体の製造方法及び該セラ
ミックス前駆体を用いた高品質のセラミックスの製造方
法を提供することを目的とする。
The present invention was made in view of the above circumstances, and includes a method for producing a ceramic precursor that is suitable for industrial production, has excellent moldability and workability, and has a high ceramic yield, and a high-quality ceramic precursor using the ceramic precursor. The purpose of the present invention is to provide a method for manufacturing ceramics.

。  を  するための   び 即ち、本発明者らは、前駆体法に属するセラミックス製
品の製造方法及びこのセラミック製品の製造に好適に用
いられる工業性、加工性等に優れたセラミックス前駆体
の製造方法を開発するため。
. In order to do so, the present inventors have developed a method for manufacturing a ceramic product that belongs to the precursor method, and a method for manufacturing a ceramic precursor that is suitable for manufacturing this ceramic product and has excellent industrial efficiency and workability. To develop.

SiC及びSi、N4の有する優れた高温特性を併せ持
つ5iC−8i、N4系セラミツクスに着目し、前駆体
法による5iC−3i、N、系セラミックスの製造方法
につき鋭意研究を行なった結果、メチルジクロロシラン
、メチルトリクロロシラン、下記−般式(1) (但し、R1は塩素、臭素、メチル基、エチル基又はフ
ェニル基、R2は水素、塩素、臭素、メチル基、エチル
基又はフェニル基、R□及びR4は水素又はメチル基、
Xは塩素又は臭素をそれぞれ示す、)で示される有機珪
素化合物の3種のクロロシランを混合し、アンモニアと
反応させてアンモノリシス生成物を得た後、該アンモノ
リシス生成物をアルカリ金属若しくはアルカリ土類金属
の水素化物又は金属アミド等の脱プロトン化が可能な触
媒を用いて脱水素縮合させ、この縮合反応を完結させる
ことにより、熱安定性に優れ、かつ一定重合度のポリシ
ラザン重合体が得られること、更にこの雫 ポリシラザン重合体を溶融、成形後、空気中加熱或いは
電子線照射等により不融化し、焼成することによって高
品質のSiC,Si、N4を主体とするセラミックスを
得ることができることを知見し、本発明をなすに至った
ものである。
Focusing on 5iC-8i, N4-based ceramics, which have the excellent high-temperature properties of SiC, Si, and N4, we conducted intensive research on a method for manufacturing 5iC-3i, N, based ceramics using a precursor method, and found that methyldichlorosilane , methyltrichlorosilane, the following general formula (1) (However, R1 is chlorine, bromine, methyl group, ethyl group, or phenyl group, R2 is hydrogen, chlorine, bromine, methyl group, ethyl group, or phenyl group, R□ and R4 is hydrogen or a methyl group,
Three types of chlorosilanes of organosilicon compounds represented by X represent chlorine or bromine, respectively) are mixed and reacted with ammonia to obtain an ammonolysis product. By carrying out dehydrogenation condensation using a catalyst capable of deprotonation such as a hydride or metal amide, and completing this condensation reaction, a polysilazane polymer with excellent thermal stability and a constant degree of polymerization can be obtained. Furthermore, it was discovered that high-quality ceramics mainly composed of SiC, Si, and N4 could be obtained by melting and molding this droplet polysilazane polymer, making it infusible by heating in air or irradiating it with electron beams, and firing it. However, the present invention has been completed.

従って1本発明は、メチルジクロロシラン、メチルトリ
クロロシラン及び上記(1)式で示される有機珪素化合
物の混合物とアンモニアとを反応させてアンモノリシス
生成物を得ると共に、このアンモノリシス生成物を脱プ
ロトン化が可能な塩基性触媒により重合させて有機シラ
ザン重合体を得ることを特徴とする有機シラザン重合体
の製造方法を提供する。
Therefore, 1 the present invention provides an ammonolysis product by reacting a mixture of methyldichlorosilane, methyltrichlorosilane, and an organosilicon compound represented by the above formula (1) with ammonia, and also deprotonates this ammonolysis product. Provided is a method for producing an organic silazane polymer, characterized in that the organic silazane polymer is obtained by polymerization using a basic catalyst.

更に1本発明は、メチルジクロロシラン、メチルトリク
ロロシラン及び(1)式の有機珪素化合物の混合物とア
ンモニアとを反応させてアンモノリシス生成物を得ると
共に、このアンモノリシス生成物を脱プロトン化が可能
な塩基性触媒により重合させて有機シラザン重合体を得
1次いでこの有機シラザン重合体を溶融、成形し、更に
不融化した後、焼成してセラミックスを得ることを特徴
とするセラミックスの製造方法を提供する。
Furthermore, the present invention provides an ammonolysis product obtained by reacting a mixture of methyldichlorosilane, methyltrichlorosilane, and an organosilicon compound of formula (1) with ammonia, and a base capable of deprotonating the ammonolysis product. To provide a method for producing ceramics, which comprises: first obtaining an organic silazane polymer by polymerizing with a chemical catalyst, then melting and molding the organic silazane polymer, making it infusible, and then firing it to obtain ceramics.

本発明に係る有機シラザン重合体の製造方法は、出発原
料としてメチルジクロロシラン、メチルトリクロロシラ
ン及び(1)式の有機珪素化合物の3種を用いたことに
より、これらの混合物とアンモニアとを反応させた後、
その生成物に触媒を作用させ、脱水素縮合を完結させる
だけで、熱安定性に優れた一定重合度の有機シラザン重
合体を得ることができる。従って、本発明方法によれば
、成形性、加工性に優れ、セラミックス収率の高い(通
常70〜80%)高品質の有機シラザン重合体を反応時
間1反応温度、触媒量、溶媒量等の微妙なコントロール
を要することなく、かつ重合を途中で停止させるなどの
面倒な操作を要することなく、工業的に容易に製造する
ことができる。
The method for producing an organosilazane polymer according to the present invention uses three types of starting materials: methyldichlorosilane, methyltrichlorosilane, and the organosilicon compound of formula (1), and allows a mixture of these to react with ammonia. After
An organic silazane polymer with excellent thermal stability and a constant degree of polymerization can be obtained simply by applying a catalyst to the product and completing the dehydrogenation condensation. Therefore, according to the method of the present invention, a high-quality organic silazane polymer with excellent moldability and processability and a high ceramic yield (usually 70 to 80%) can be produced using a reaction time, a reaction temperature, a catalyst amount, a solvent amount, etc. It can be easily produced industrially without requiring delicate control or troublesome operations such as stopping the polymerization midway.

更に1本発明者らはメチルジクロロシラン、ジメチルジ
クロロシラン、メチルトリクロロシランの三成分系を用
いた有機シラザン重合体の製造方法を先に提案した(特
願昭61−135437号)が、この製造方法に比べ、
本発明は出発原料に上記(1)式の有機珪素化合物を用
いたことで、その取り得る組成範囲が広く、工業的に有
利である。
Furthermore, the present inventors had previously proposed a method for producing an organic silazane polymer using a three-component system of methyldichlorosilane, dimethyldichlorosilane, and methyltrichlorosilane (Japanese Patent Application No. 135437/1983); Compared to the method
Since the present invention uses the organosilicon compound of formula (1) above as a starting material, it has a wide range of possible compositions and is industrially advantageous.

また1本発明に係るセラミックスの製造方法は。Further, there is a method for manufacturing ceramics according to the present invention.

上述した有機シラザン重合体を前駆体として用いたこと
により、優れた物性を有する適宜形状のセラミック製品
を容易に製造することができるものである。
By using the above-described organic silazane polymer as a precursor, it is possible to easily produce a ceramic product having an appropriate shape and having excellent physical properties.

なお、セラミックス前駆体であるシラザン重合体の製造
原料としてクロロシラン類を用いることは上述したよう
に従来より知られている。しかしながら、クロロシラン
類として上述した3種のものを選択すると共に、これら
をアンモノリシスした後、その生成物に触媒を作用させ
て脱水素縮合を完結させることにより、従来にない優れ
た特性のシラザン重合体が得られるということは、本発
明者らの新たな知見である。即ち、メチルジクロロシラ
ンとメチルトリクロロシランと(1)式の有機珪素化合
物との3者を併用すること、好ましくはこれらを55〜
90モル%:5〜30モル%=2〜30モル%の割合で
併用することにより゛、特開昭60−226890号公
報等に記載されたようなメチルジクロロシランを単独で
使用することによって得られるシラザン重合体とは異な
る構造を有し、°種々の繰り返し単位及びこれら繰り返
し単位の結合構造が入り混じった新規なシラザン重合体
が得られること、そしてこのような従来のシラザン重合
体構造とは相違する新規構造のシラザン重合体をセラミ
ックス前駆体として用いることにより、従来のこの種の
前駆体法によるセラミックスの製造法に比ベセラミック
ス収率が大幅に向上すると共に、引張強度、弾性率等の
物性が顕著に改善されたセラミックスが製造されるとい
うことを、本発明者らは初めて見い出したものである。
As mentioned above, it has been known to use chlorosilanes as raw materials for producing silazane polymers, which are ceramic precursors. However, by selecting the three types of chlorosilanes mentioned above, ammonolyzing them, and then catalyzing the product to complete the dehydrogenation, a silazane polymer with unprecedented properties has been created. It is a new finding of the present inventors that this can be obtained. That is, methyldichlorosilane, methyltrichlorosilane, and the organosilicon compound of formula (1) are used in combination, and preferably these are
By using 90 mol%: 5 to 30 mol% = 2 to 30 mol%, methyldichlorosilane as described in JP-A No. 60-226890 etc. can be used alone. It is possible to obtain a new silazane polymer having a structure different from that of the conventional silazane polymer, in which various repeating units and bond structures of these repeating units are mixed, and what is the structure of such conventional silazane polymers. By using a silazane polymer with a new and different structure as a ceramic precursor, the yield of ceramics is greatly improved compared to the conventional method of manufacturing ceramics using this type of precursor method, and the yield of ceramics is improved, such as tensile strength and modulus of elasticity. The present inventors have discovered for the first time that ceramics with significantly improved physical properties can be produced.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係る有機シラザン重合体の製造方法においては
、出発原料としてメチルジクロロシランとメチルトリク
ロロシランと上記(1)式に示される有機珪素化合物と
を併用するものである。この場合、その併用割合は55
〜90モル%:5〜30モル%=2〜30モル%とする
ことが好適であり、この組成比を外れた場合は得られる
重合体がオイル状となったり、溶融できない高融点(3
00℃以上)のものとなる場合がある。
In the method for producing an organosilazane polymer according to the present invention, methyldichlorosilane, methyltrichlorosilane, and the organosilicon compound represented by the above formula (1) are used in combination as starting materials. In this case, the combination ratio is 55
~90 mol%: 5 to 30 mol% = 2 to 30 mol% is suitable; if the composition ratio is outside this range, the obtained polymer may become oily or have a high melting point (3
00°C or higher).

また、本発明は上記クロロシラン類の混合物にアンモニ
アを反応させてアンモノリシス生成物を得るものである
。この場合、アンモニアを反応させる方法には限定はな
いが、例えば上記混合物を有機溶媒中で気体状NH3と
反応させ、副生ずる塩化アンモニウムを除去した後、有
機溶媒をストリップする等の方法が好適に採用される。
The present invention also provides an ammonolysis product by reacting the mixture of the chlorosilanes with ammonia. In this case, there is no limitation on the method of reacting ammonia, but for example, a method such as reacting the above mixture with gaseous NH3 in an organic solvent, removing by-produced ammonium chloride, and then stripping the organic solvent is preferable. Adopted.

次いで1本発明においては、上記アンモノリシス生成物
を脱プロトン化が可能な塩基性触媒により重合させるも
のである。この場合、脱プロトン化に際してはアンモノ
リンス生成物を溶媒中において触媒により脱水素縮合さ
せ、反応を完結させることが好ましい、ここで、脱プロ
トン化が可能な塩基性触媒としては、K Hv N a
 Hp N a N Hz vKNH,等のアルカリ金
属若しくはアルカリ土類金属の水素化物又は金属アミド
などを好適に使用し得る。また1重合工程において使用
できる溶媒としては、THF、ジアルキルエーテル等の
エーテル類、ペンタン、ヘキサン等の脂肪族炭化水素。
Next, in one aspect of the present invention, the above-mentioned ammonolysis product is polymerized using a basic catalyst capable of deprotonation. In this case, during deprotonation, it is preferable to dehydrogenate the ammonorinse product in a solvent with a catalyst to complete the reaction. Here, the basic catalyst capable of deprotonation is K Hv N a
Hydrides or metal amides of alkali metals or alkaline earth metals such as Hp Na N Hz vKNH, etc. can be suitably used. Examples of solvents that can be used in one polymerization step include ethers such as THF and dialkyl ethers, and aliphatic hydrocarbons such as pentane and hexane.

ベンゼン、トルエン、キシレン等の芳香族炭化水素など
の1種又は2種以上を使用できる。なお1重合は常温に
おいて行なうことができるが、溶媒の種類によっては重
合温度を0〜200℃の範囲で適宜選択することもでき
る。
One or more aromatic hydrocarbons such as benzene, toluene, and xylene can be used. Incidentally, one polymerization can be carried out at room temperature, but depending on the type of solvent, the polymerization temperature can be appropriately selected in the range of 0 to 200°C.

更に、本発明の方法では、上記脱水素縮合反応を完結さ
せた後、残存する塩基性触媒種を沃化メチル等のような
求電子化合物で分解し、生成した不溶物を一過によって
除き、更に溶媒を減圧留去することが好ましく、これに
より融点60〜200”C1固有粘度0.06〜0.0
9(7)ポリシラザン重合体を得ることができる。この
場合、上記縮合反応の完結は1発生ガスの停止によって
確認することができる。
Furthermore, in the method of the present invention, after completing the dehydrogenation condensation reaction, the remaining basic catalyst species are decomposed with an electrophilic compound such as methyl iodide, and the generated insoluble matter is removed by passing; Furthermore, it is preferable to distill off the solvent under reduced pressure.
9(7) polysilazane polymer can be obtained. In this case, completion of the condensation reaction can be confirmed by stopping the gas generated.

なお、シラザン重合体の重合度、融点はクロロシラン類
の配合比を変更することによって適宜調整することがで
きる。
The degree of polymerization and melting point of the silazane polymer can be adjusted as appropriate by changing the blending ratio of chlorosilanes.

このようにして得られた有機シラザン重合体は、その成
形性、加工性が高い点を利用し1次に示すようにセラミ
ックスの前駆体として適宜形状、特に繊維状又はシート
状に形成することが好適であるが、バインダー或いは接
着剤としての利用も可能である。
The organic silazane polymer obtained in this way can be formed into an appropriate shape, especially a fiber or sheet shape, as a ceramic precursor, as shown in the following, by taking advantage of its high moldability and processability. Although preferred, use as a binder or adhesive is also possible.

本発明に係るセラミックスの製造方法は、上述した有機
シラザン重合体を溶融、成形し、更に不融化した後、焼
成するものである。この場合、上配本合体としては、融
点が60〜200℃、固有粘度が0.06〜0.09の
ものを用いることが好ましく、これにより重合体の溶融
、成形を容易に行なうことができる。
The method for producing ceramics according to the present invention involves melting and shaping the above-mentioned organic silazane polymer, making it infusible, and then firing it. In this case, it is preferable to use a polymer having a melting point of 60 to 200 DEG C. and an intrinsic viscosity of 0.06 to 0.09 as the main body polymer, which allows the polymer to be easily melted and molded.

また、有機シラザン重合体の溶融、成形及び焼成の方法
に特に制限はなく、重合体を適宜形状に成形し、これを
焼成することによって種々形状のセラミック製品を得る
ことができる。
Furthermore, there are no particular limitations on the methods of melting, shaping and firing the organic silazane polymer, and ceramic products of various shapes can be obtained by shaping the polymer into an appropriate shape and firing it.

例えば、セラミック繊維を製造する場合、まず有機シラ
ザン重合体を加熱溶融し、溶融紡糸法で紡糸を行なうこ
とができる。この場合、この工程において紡糸温度は重
合体の融点によって異なるが、通常100〜300℃の
範囲で実施することが好ましい1次に、この紡糸工程で
得られた糸状体を空気中で加熱したり、真空中或いはN
2ガスや不活性ガス中等で電子線照射を行なうことなど
により、不融化する。この工程において、空気中での加
熱は50〜150℃の温度で行なうことが好ましく、ま
た電子線照射は50〜200Mradの照射量で行なう
ことが好ましい0次いで。
For example, when producing ceramic fibers, an organic silazane polymer can be first melted by heating and then spun using a melt spinning method. In this case, the spinning temperature in this step varies depending on the melting point of the polymer, but it is usually preferably carried out in the range of 100 to 300°C.First, the filament obtained in this spinning step is heated in air or , in vacuum or N
It is made infusible by electron beam irradiation in a gas, inert gas, etc. In this step, heating in air is preferably carried out at a temperature of 50 to 150°C, and electron beam irradiation is preferably carried out at a dose of 50 to 200 Mrad.

不融化した糸状物を無張力下又は張力下において高温焼
成することにより、 Sxc e S 13 N4を主
体とする強度、弾性率に優れたセラミック繊維を得るこ
とができる。この工程において、焼成は真空中或いはA
rなどの不活性ガス、N2ガス、N2ガス。
By firing the infusible filament at high temperature under no tension or under tension, it is possible to obtain ceramic fibers mainly composed of Sxc e S 13 N4 and having excellent strength and elastic modulus. In this process, firing is performed in vacuum or in
Inert gas such as r, N2 gas, N2 gas.

NH,ガス等の1種又は2種以上のガス中において70
0〜2000℃、特に700〜1500℃で行なうこと
が好適である。この場合、張力下で焼成することが特に
好ましく、これによって引張強度200〜300kg/
閣2、弾性率15〜30t/1rys”の物性を有する
高品質のセラミック繊維を製造できる。
70 in one or more gases such as NH, gas, etc.
It is preferable to carry out the reaction at a temperature of 0 to 2000°C, particularly 700 to 1500°C. In this case, it is particularly preferable to fire under tension, which results in a tensile strength of 200 to 300 kg/
2. High quality ceramic fibers with physical properties of elastic modulus of 15 to 30 t/1rys can be produced.

又更二羞米 以上説明したように、本発明に係る有機シラザン重合体
の製造方法によれば、熱的に安定で一定の重合度を有し
、従って成形性、加工性に優れ、しかもセラミックス収
率が高く、このためセラミック繊維用前駆体として特に
好適に使用し得る有機シラザン重合体を工業的に有利に
製造することができる。
Furthermore, as explained above, according to the method for producing an organic silazane polymer according to the present invention, it is thermally stable and has a certain degree of polymerization, and therefore has excellent moldability and processability, and is also suitable for use in ceramics. The organic silazane polymer, which has a high yield and can therefore be particularly suitably used as a precursor for ceramic fibers, can be industrially advantageously produced.

また1本発明に係るセラミックスの製造方法によれば、
高品質のSiC,Si、N、を主体とするセラミックス
を高セラミックス収率で得ることができる。この場合、
本発明方法によれば、所望形状のセラミック製品、例え
ばセラミック繊維、セラミックシート等を良好に製造し
得、これにより強度、弾性率に優れたセラミック繊維、
シート等を得ることができる。
Furthermore, according to the method for manufacturing ceramics according to the present invention,
High-quality ceramics mainly composed of SiC, Si, and N can be obtained with a high ceramic yield. in this case,
According to the method of the present invention, ceramic products of a desired shape, such as ceramic fibers, ceramic sheets, etc., can be successfully produced, and as a result, ceramic fibers with excellent strength and elastic modulus,
You can get sheets etc.

更に1本発明は出発原料に(1)式の有機珪素化合物を
用いることで、その取り得る組成範囲が広いという有利
性がある。
Furthermore, the present invention has the advantage that by using the organosilicon compound of formula (1) as a starting material, the range of possible compositions thereof is wide.

以下実施°例及び比較例を示し1本発明を具体的に説明
するが、本発明は下記実施例に限定されるものではない
EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例〕〔Example〕

アンモノリシスエ の 〔メチルジクロロシラン:メチルトリクロロシラン:1
,2−ビス(メチルジクロロシリル)エタン=75:1
0:15(モル%)〕 攪拌機、温度計、NH,導入管、深冷コンデンサーを装
備し、乾燥したIQの4つロフラスコにヘキサン850
aQを仕込んだ後、メチルジクロロシラン43 、1 
g eメチルトリクロロシラン7.5g、1.2−ビス
(メチルジクロロシリル)エタン19.2 gを加え、
−20℃に冷却した。過剰の気体状アンモニアを450
/Hrの速度で1.5時間この溶液に加えた(NH,全
添加量3.0モル)。
Ammonolysis [Methyldichlorosilane: Methyltrichlorosilane: 1
, 2-bis(methyldichlorosilyl)ethane = 75:1
0:15 (mol%)] Equipped with a stirrer, thermometer, NH, inlet tube, and deep-cooled condenser, add 850 mol of hexane to a dry IQ four-loaf flask.
After charging aQ, methyldichlorosilane 43,1
g eAdd 7.5 g of methyltrichlorosilane and 19.2 g of 1,2-bis(methyldichlorosilyl)ethane,
Cooled to -20°C. Excess gaseous ammonia to 450
/Hr for 1.5 hours (NH, total addition 3.0 mol).

この反応混合物を室温まで温め、その際未反応NH,が
逃げられるよう冷却器を空冷凝縮器に変えた。次に、ド
ライボックス中で反応混合物から副生じた塩化アンモニ
ウムを一過により除去した。
The reaction mixture was warmed to room temperature, while the condenser was replaced with an air-cooled condenser to allow unreacted NH, to escape. Next, by-product ammonium chloride was removed from the reaction mixture in a dry box by passing it through.

更にケークを200−のヘキサンで洗浄し、P液から減
圧下(60℃71 m+8g)においてへキサンをスト
リップした。残留物(アンモノリシス生成物)は透明な
流動性の液体で、31gを得た。
The cake was further washed with 200-hexane, and the hexane was stripped from the P solution under reduced pressure (60° C., 71 m+8 g). The residue (ammonolysis product) was a clear fluid liquid, 31 g was obtained.

アンモノリシスエ ■ 〔メチルジクロロシラン:メチルトリクロロシラン:1
,2−ビス(メチルジクロロシリル)エタン=65:2
5:10(モル%)〕 上記と同様な装備をもつIQの4つロフラスコにヘキサ
ン850mRを仕込み、これにメチルジクロロシラン3
7.4gtメチルトリクロロシラン18.6 g、1,
2−ビス(メチルジクロロシリル)エタン12.8 g
を加え、−20’Cに冷却した。
Ammonolysis ■ [Methyldichlorosilane: Methyltrichlorosilane: 1
, 2-bis(methyldichlorosilyl)ethane = 65:2
5:10 (mol %)] 850 mR of hexane was charged into an IQ 4-bottle flask equipped with the same equipment as above, and 3 ml of methyldichlorosilane was added to this.
7.4gt Methyltrichlorosilane 18.6g, 1,
2-bis(methyldichlorosilyl)ethane 12.8 g
was added and cooled to -20'C.

気体状アンモニアを451/Hrの速度で1.5時間こ
の溶液に加えた。その後、上記のと同様の処理を行ない
、透明な流動性の液体(アンモノリシス生成物)30g
を得た。
Gaseous ammonia was added to this solution at a rate of 451/Hr for 1.5 hours. Thereafter, 30g of clear fluid liquid (ammonolysis product) was treated in the same manner as above.
I got it.

アンモノリシスエ ■ 〔メチルジクロロシラン:メチルトリクロロシラン=1
,2−ビス(トリクロロシリル)エタン=75:15:
10(モル%)〕 上記と同様な装備をもっ2Qの4つロフラスコに脱水ヘ
キサン1500mQを入れ、メチルジクロロシランs 
9 、 Og vメチルトリクロロシラン17.9 g
、1,2−ビス(トリクロロシリル)エタン23.8 
gを加え、同様に気体状アンモニアと反応させた。その
後、上記■と同様に処理し、透明な流動性液体(アンモ
ノリシス生成物)48gを得た。
Ammonolysis ■ [Methyldichlorosilane: Methyltrichlorosilane = 1
, 2-bis(trichlorosilyl)ethane = 75:15:
10 (mol%)] Put 1500 mQ of dehydrated hexane into a 2Q four-bottle flask equipped with the same equipment as above, and add methyldichlorosilane s.
9, Og v methyltrichlorosilane 17.9 g
, 1,2-bis(trichlorosilyl)ethane 23.8
g was added thereto and reacted with gaseous ammonia in the same manner. Thereafter, it was treated in the same manner as in (1) above to obtain 48 g of a transparent fluid liquid (ammonolysis product).

ユj」Jiq 300 m1Lの3つロフラスコに攪拌機、温度計、滴
下ロートをとりつけ、ドライボックス中で水素化カリウ
ム0.2g(5ミリモル)及びNaHで脱水処理したT
HF125dをフラスコに注入した。
A 300 mL three-bottle flask was equipped with a stirrer, a thermometer, and a dropping funnel, and T was dehydrated with 0.2 g (5 mmol) of potassium hydride and NaH in a dry box.
HF125d was injected into the flask.

このフラスコをドライボックス中よりとり出し、窒素管
路に連結した。常温下、混合物を攪拌してKHを分散さ
せながら滴下ロートよりTHF75−に溶解したアンモ
ノリシス工程■で得られた生成物Logを15分かけて
ゆっくりと加えた。この添加の間に大量の気体の発生が
みられ、1時間後に気体の発生が停止した。沃化メチル
3gを加えるとKIの白色沈殿が生じた。更に30分間
攪拌後、大部分のTHF溶媒を減圧で除去し、残留する
白色スラリーに80dのヘキサンを加えた。
This flask was taken out of the dry box and connected to a nitrogen pipe. At room temperature, while stirring the mixture to disperse KH, the product Log obtained in the ammonolysis step (2) dissolved in THF75- was slowly added over 15 minutes from the dropping funnel. A large amount of gas evolution was observed during this addition, and the gas evolution stopped after 1 hour. When 3 g of methyl iodide was added, a white precipitate of KI formed. After stirring for an additional 30 minutes, most of the THF solvent was removed under reduced pressure and 80 d of hexane was added to the remaining white slurry.

この混合物を一過し、P液を減圧下(1mdg)70℃
にてヘキサンを除去すると、9.1gの粘稠固体(シラ
ザン重合体)が得られた。
This mixture was passed through, and the P solution was removed under reduced pressure (1 mdg) at 70°C.
When hexane was removed, 9.1 g of viscous solid (silazane polymer) was obtained.

このものは固有粘度(ベンゼン、20℃)0.06、融
点90℃で、ヘキサン、ベンゼン、THF及びその他の
有機溶媒に可溶性であった。また、IRからは3400
備−1にNH,298哩「1にC−H。
This product had an intrinsic viscosity (benzene, 20°C) of 0.06, a melting point of 90°C, and was soluble in hexane, benzene, THF, and other organic solvents. Also, 3400 from IR
NH on Bei-1, 298 km "C-H on 1.

2150(1m−1に5L−H,1260a1−1に5
iCH。
2150 (5L-H in 1m-1, 5L-H in 1260a1-1
iCH.

の各々の吸収が認められた。また、ベンゼン凝固点降下
法による分子量測定では820であった。
Absorption of each of these was observed. Further, the molecular weight was determined to be 820 by the benzene freezing point depression method.

凰企工払皇 アンモノリシス工程■で得られたアンモノリシス生成物
Logを重合工程■と同様にTHF中KH0,2gで9
0分反応させた。ガスの発生停止後CH,Iを添加し、
以下同様の処理をした。
The ammonolysis product Log obtained in the ammonolysis step ⑰ was mixed with 0.2 g of KH in THF in the same manner as in the polymerization step ②.
It was allowed to react for 0 minutes. After gas generation stopped, CH and I were added,
The same process was performed below.

粘稠固体(シラザン重合体)9.3gが得られ、このも
のは固有粘度0.08.融点120”Cであった。
9.3 g of a viscous solid (silazane polymer) was obtained, which had an intrinsic viscosity of 0.08. The melting point was 120"C.

重”xH領 アンモノリシス工程■で得られたアンモノリシス生成物
Logを重合工程■と同様にTHF中KH0,2gで9
0分反応させた。ガスの発生停止後CH,Iを添加し、
以下同様の処理をした。
The ammonolysis product Log obtained in the heavy"
It was allowed to react for 0 minutes. After gas generation stopped, CH and I were added,
The same process was performed below.

粘稠固体(シラザン重合体)9.1 gが得られ、この
ものは固有粘度0.07.融点115℃であった。
9.1 g of a viscous solid (silazane polymer) was obtained, which had an intrinsic viscosity of 0.07. The melting point was 115°C.

獲扛良工丘1 重合工程■で得られたシラザン重合体30gをモノホー
ル紡糸装置により130℃にて溶融紡糸した。紡糸は4
時間後も非常に良好で、捲取速度400 m/+++i
nで実施し、更に得られた生糸を電子線にて120 M
radで不融化処理を行なった。その後、わずかな張力
下、N2気流中100’C/ Hrの昇温速度で110
0℃にて30分間焼成した。セラミック収率は75%で
あり、得られた繊維は繊維径6μ、引張強度230kg
/w+”。
30 g of the silazane polymer obtained in the polymerization step (1) was melt-spun at 130° C. using a monohole spinning device. Spinning is 4
Very good even after hours, winding speed 400 m/+++i
The raw silk obtained was further heated to 120 M with an electron beam.
Infusibility treatment was performed using rad. Then, under slight tension, at a heating rate of 100'C/Hr in a N2 stream,
It was baked at 0°C for 30 minutes. The ceramic yield was 75%, and the obtained fibers had a fiber diameter of 6μ and a tensile strength of 230kg.
/w+”.

弾性率22t/m”という物性であった。また、繊維組
成を元素分析により分析したところ、5L58.6%、
C19,0%、N 20.4%、02%からなる5iC
−8L、N4を主体とする繊維であることが確認された
The physical property was an elastic modulus of 22t/m''.Furthermore, when the fiber composition was analyzed by elemental analysis, it was found that 5L was 58.6%;
5iC consisting of C19.0%, N 20.4%, 02%
It was confirmed that the fibers were mainly composed of -8L and N4.

棟致傷工長生 重合工程■で得られたシラザン重合体Logを繊維化工
程■と同様の紡糸装置を用いて160℃にて溶融紡糸し
た。捲取速度は420 m/minで、紡糸は非常に良
好であった。更に得られた生糸をわずかな張力下、空気
中にて90〜110℃(5℃/Hr)で加熱して不融化
を行なった0次いで無張力下N2気流中で100℃/ 
Hrの昇温速度で1200℃にて30分間焼成した。セ
ラミック収率は80%であり、得られた繊維は繊維径8
μ、引張強度200kg/l1m”、弾性率17t/m
”であった、繊維組成を元素分析したところ、5155
.6%、C17,8%、N  17.4%、09.2%
からなる5iC−8i□N、を主体とする繊維であった
The silazane polymer Log obtained in the polymerization step (2) was melt-spun at 160° C. using the same spinning device as in the fiberization step (2). The winding speed was 420 m/min, and the spinning was very good. Furthermore, the obtained raw silk was heated at 90 to 110°C (5°C/Hr) in air under slight tension to make it infusible.
It was baked at 1200° C. for 30 minutes at a temperature increase rate of 100 hr. The ceramic yield was 80%, and the obtained fibers had a fiber diameter of 8.
μ, tensile strength 200kg/l1m”, elastic modulus 17t/m
”, elemental analysis of the fiber composition revealed that it was 5155
.. 6%, C17.8%, N 17.4%, 09.2%
The fiber was mainly composed of 5iC-8i□N.

盪1」口」【1 重合工程■で得られたシラザン重合体20.をドライボ
ックス中において繊維化工程■と同様の紡糸装置を用い
て150℃にて450 m/winの捲取速度で溶融紡
糸した。紡糸は終始良好であった。得られた生糸を真空
中電子線装置にて90 Mradの照射を行ない、不融
化した。その後、得られた繊維を張力下N3気流中12
50℃(100℃/Hr)にて30分間焼成した。セラ
ミック収率は77%であった。また、繊維は繊維径6μ
、引張強度250kg/閣81弾性率23t/■2であ
った。
2. Silazane polymer obtained in 2. was melt-spun in a dry box at 150° C. and at a winding speed of 450 m/win using the same spinning device as in the fiberization step ①. The spinning was good from beginning to end. The obtained raw silk was irradiated with 90 Mrad using an electron beam device in a vacuum to make it infusible. Thereafter, the obtained fibers were placed under tension in a N3 stream for 12
It was baked at 50°C (100°C/Hr) for 30 minutes. Ceramic yield was 77%. In addition, the fiber diameter is 6μ
The tensile strength was 250 kg/Kaku 81 and the elastic modulus was 23 t/■2.

〔比較例〕[Comparative example]

アンモノ譬シスエ 攪拌機、温度計、NH,導入管、深冷コンデンサーを装
備した1Ωの4つロフラスコに脱水ヘキサン850dを
仕込んだ後、メチルジクロロシラン46gを加えた。こ
れに気体状アンモニアを12Q/hrの速度で3.5時
間導入し1反応させた。以下、上記実施例のアンモノリ
シス工程■と同様の処理を行ない、20g(85%)の
透明な流動性液体を得た。
After 850 d of dehydrated hexane was charged into a 1Ω four-bottle flask equipped with an ammonium sieve stirrer, a thermometer, NH, an inlet tube, and a deep-cooled condenser, 46 g of methyldichlorosilane was added. Gaseous ammonia was introduced into the mixture at a rate of 12 Q/hr for 3.5 hours to cause one reaction. Thereafter, the same treatment as in the ammonolysis step (2) of the above example was carried out to obtain 20 g (85%) of a transparent fluid liquid.

1立盃監 300idの3つロフラスコにKHo、2gとTHF 
L 25−を注入後、攪拌してKHを分散させ1滴下ロ
ートよりTHF75dと前に得られた透明な流動性液体
Logの混合物を常温にて15分かけて滴下した0滴下
終了後、30分して反応を途中で停止するためCH,I
2gを加えた。以下、一実施例の重合工程■と同様の処
理を行ない。
KHo, 2g and THF in 3 300id flasks
After injecting L 25-, KH was dispersed by stirring, and a mixture of THF75d and the previously obtained transparent fluid liquid Log was added dropwise from the dropping funnel over 15 minutes at room temperature. 30 minutes after the completion of the 0 drop addition. to stop the reaction midway through CH,I
Added 2g. Hereinafter, the same treatment as in the polymerization step (2) of one example was performed.

粘稠固体9.0gを得た。このものの固有粘度は0.0
B、融点は75℃であった。
9.0 g of a viscous solid was obtained. The intrinsic viscosity of this material is 0.0
B. The melting point was 75°C.

なお、この系での重合を温度、触媒量、重合時間をコン
トロールしてポリマーの重合度を一定にしようと試みた
が全く再現性に欠けるものであった。
An attempt was made to control the temperature, amount of catalyst, and polymerization time to maintain a constant degree of polymerization in this system, but the results lacked reproducibility.

遺lHLm艮 得られたシラザン重合体8gをモノホール(ノズル0 
、5 amφ)紡糸装置に仕込み、110℃にて溶融さ
せ、紡糸を行なった。初めはノズルよりの吐出もよく、
紡糸可能であったが、30分後ノズルより吐出しなくな
った。温度を徐々に上げたが全く吐出せず、冷却後、ポ
リマーを取り出し、融点を測定したところ、300℃で
も溶融せず、更には溶媒にも不溶なものであった。多少
紡糸できた生糸を電子線にて90 Mrad照射後、N
2気流中100℃/ Hrの昇温速度で1100℃にて
30分間焼成した。セラミック収率は58%であり、得
られた繊維は繊維径7μで、引張強度50kg/mum
”、弾性率5t/am”と低物性であった。
8g of the obtained silazane polymer was poured into a monohole (nozzle 0
, 5 amφ) was charged into a spinning device, melted at 110° C., and spun. At first, the discharge from the nozzle was good,
Although spinning was possible, the nozzle stopped discharging after 30 minutes. Although the temperature was gradually raised, the polymer did not discharge at all. After cooling, the polymer was taken out and its melting point was measured. It was found that it did not melt even at 300° C. and was also insoluble in the solvent. After irradiating the slightly spun raw silk with an electron beam at 90 Mrad, N
It was fired at 1100°C for 30 minutes in two air streams at a heating rate of 100°C/Hr. The ceramic yield was 58%, and the obtained fibers had a fiber diameter of 7 μm and a tensile strength of 50 kg/mum.
The physical properties were low, with an elastic modulus of 5 t/am.

Claims (1)

【特許請求の範囲】 1、メチルジクロロシラン、メチルトリクロロシラン及
び下記一般式(1) ▲数式、化学式、表等があります▼・・・・・・(1) (但し、 R_1は塩素、臭素、メチル基、エチル基又
はフェニル基、R_2は水素、塩素、臭素、メチル基、
エチル基又はフェニル基、R_3及びR_4は水素又は
メチル基、Xは塩素又は臭素をそれぞれ示す。)で示さ
れる有機珪素化合物の混合物とアンモニアとを反応させ
てアンモノリシス生成物を得ると共に、このアンモノリ
シス生成物を脱プロトン化が可能な塩基性触媒により重
合させて有機シラザン重合体を得ることを特徴とする有
機シラザン重合体の製造方法。 2、メチルジクロロシランとメチルトリクロロシランと
前記一般式(1)で示される有機珪素化合物との混合比
が55〜90モル%:5〜30モル%:2〜30モル%
である特許請求の範囲第1項記載の製造方法。 3、(1)式の有機珪素化合物が1、2−ビス(クロロ
ジメチルシリル)エタンである特許請求の範囲第1項又
は第2項記載の製造方法。 4、(1)式の有機珪素化合物が1、2−ビス(ジクロ
ロメチルシリル)エタンである特許請求の範囲第1項又
は第2項記載の製造方法。 5、(1)式の有機珪素化合物が1、2−ビス(トリク
ロロシリル)エタンである特許請求の範囲第1項又は第
2項記載の製造方法。 6、塩基性触媒としてKH、NaH、NaNH_2又は
KNH_2を用いた特許請求の範囲第1項乃至第5項の
いずれか1項に記載の製造方法。 7、メチルジクロロシラン、メチルトリクロロシラン及
び(1)式の有機珪素化合物の混合物とアンモニアとを
反応させてアンモノリシス生成物を得ると共に、このア
ンモノリシス生成物を脱プロトン化が可能な塩基性触媒
により重合させて有機シラザン重合体を得、次いでこの
有機シラザン重合体を溶融、成形し、更に不融化した後
、焼成してセラミックスを得ることを特徴とするセラミ
ックスの製造方法。 8、メチルジクロロシランとメチルトリクロロシランと
(1)式の有機珪素化合物との混合比が55〜90モル
%:5〜30モル%:2〜30モル%である特許請求の
範囲第7項記載の製造方法。 9、有機シラザン重合体が融点60〜200℃のもので
ある特許請求の範囲第7項又は第8項記載の製造方法。 10、有機シラザン重合体を溶融、成形した後、空気中
で50〜150℃に加熱して不融化するようにした特許
請求の範囲第7項乃至第9項のいずれか1項に記載の製
造方法。 11、有機シラザン重合体を溶融、成形した後、真空中
又はN_2ガス中において50〜200Mradの照射
量で電子線照射を行なって不融化するようにした特許請
求の範囲第7項乃至第9項のいずれか1項に記載の製造
方法。 12、成形工程が紡糸工程であり、溶融した有機シラザ
ン重合体を紡糸してセラミック繊維を得るようにした特
許請求の範囲第7項乃至第11項のいずれか1項に記載
の製造方法。 13、焼成温度が700〜2000℃である特許請求の
範囲第7項乃至第12項のいずれか1項に記載の製造方
法。 14、焼成雰囲気が真空中又は不活性ガス、N_2ガス
、H_2ガス、及びNH_3ガスから選ばれるガス中で
ある特許請求の範囲第7項乃至第13項のいずれか1項
に記載の製造方法。
[Claims] 1. Methyldichlorosilane, methyltrichlorosilane and the following general formula (1) ▲There are numerical formulas, chemical formulas, tables, etc.▼・・・・・・(1) (However, R_1 is chlorine, bromine, Methyl group, ethyl group or phenyl group, R_2 is hydrogen, chlorine, bromine, methyl group,
Ethyl group or phenyl group, R_3 and R_4 represent hydrogen or methyl group, and X represents chlorine or bromine, respectively. ) is reacted with ammonia to obtain an ammonolysis product, and this ammonolysis product is polymerized with a basic catalyst capable of deprotonation to obtain an organosilazane polymer. A method for producing an organic silazane polymer. 2. The mixing ratio of methyldichlorosilane, methyltrichlorosilane, and the organosilicon compound represented by the general formula (1) is 55 to 90 mol%: 5 to 30 mol%: 2 to 30 mol%
The manufacturing method according to claim 1. 3. The manufacturing method according to claim 1 or 2, wherein the organosilicon compound of formula (1) is 1,2-bis(chlorodimethylsilyl)ethane. 4. The manufacturing method according to claim 1 or 2, wherein the organosilicon compound of formula (1) is 1,2-bis(dichloromethylsilyl)ethane. 5. The manufacturing method according to claim 1 or 2, wherein the organosilicon compound of formula (1) is 1,2-bis(trichlorosilyl)ethane. 6. The manufacturing method according to any one of claims 1 to 5, using KH, NaH, NaNH_2, or KNH_2 as the basic catalyst. 7. A mixture of methyldichlorosilane, methyltrichlorosilane, and the organosilicon compound of formula (1) is reacted with ammonia to obtain an ammonolysis product, and this ammonolysis product is polymerized using a basic catalyst capable of deprotonation. A method for producing ceramics, which comprises: obtaining an organic silazane polymer, then melting and shaping the organic silazane polymer, making it infusible, and then firing it to obtain ceramics. 8. Claim 7, wherein the mixing ratio of methyldichlorosilane, methyltrichlorosilane, and the organosilicon compound of formula (1) is 55 to 90 mol%: 5 to 30 mol%: 2 to 30 mol%. manufacturing method. 9. The manufacturing method according to claim 7 or 8, wherein the organic silazane polymer has a melting point of 60 to 200°C. 10. The production according to any one of claims 7 to 9, wherein the organic silazane polymer is melted and molded, and then heated in air to 50 to 150°C to make it infusible. Method. 11. After the organic silazane polymer is melted and molded, it is irradiated with an electron beam at a dose of 50 to 200 Mrad in vacuum or N_2 gas to make it infusible.Claims 7 to 9 The manufacturing method according to any one of the above. 12. The manufacturing method according to any one of claims 7 to 11, wherein the forming step is a spinning step, and the ceramic fiber is obtained by spinning a molten organic silazane polymer. 13. The manufacturing method according to any one of claims 7 to 12, wherein the firing temperature is 700 to 2000°C. 14. The manufacturing method according to any one of claims 7 to 13, wherein the firing atmosphere is in a vacuum or in a gas selected from inert gas, N_2 gas, H_2 gas, and NH_3 gas.
JP61261634A 1986-10-31 1986-10-31 Organosilazane polymer and production of ceramics therefrom Granted JPS63117037A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61261634A JPS63117037A (en) 1986-10-31 1986-10-31 Organosilazane polymer and production of ceramics therefrom
US07/114,111 US4869854A (en) 1986-10-31 1987-10-27 Process for manufacturing organic silazane polymers and ceramics therefrom
DE3736914A DE3736914C2 (en) 1986-10-31 1987-10-30 Process for the production of organic silazane polymers and ceramic materials formed therefrom
FR8715124A FR2606777B1 (en) 1986-10-31 1987-10-30 PROCESS FOR THE MANUFACTURE OF ORGANIC SILAZANE POLYMERS AND USE OF SUCH POLYMERS FOR MANUFACTURING CERAMICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61261634A JPS63117037A (en) 1986-10-31 1986-10-31 Organosilazane polymer and production of ceramics therefrom

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1244168A Division JPH02120279A (en) 1989-09-19 1989-09-19 Production of ceramic

Publications (2)

Publication Number Publication Date
JPS63117037A true JPS63117037A (en) 1988-05-21
JPH0219135B2 JPH0219135B2 (en) 1990-04-27

Family

ID=17364618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61261634A Granted JPS63117037A (en) 1986-10-31 1986-10-31 Organosilazane polymer and production of ceramics therefrom

Country Status (1)

Country Link
JP (1) JPS63117037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605530A (en) * 2020-05-07 2023-01-13 默克专利有限公司(De) Polycarbosilazanes, compositions comprising the same, and methods of making silicon-containing films using the same
US11999827B2 (en) 2020-05-07 2024-06-04 Merck Patent Gmbh Polycarbosilazane, and composition comprising the same, and method for producing silicon-containing film using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117532A (en) * 1981-01-15 1982-07-22 Dow Corning Manufacture of poly(disilyl)silazane polymer
US4397828A (en) * 1981-11-16 1983-08-09 Massachusetts Institute Of Technology Stable liquid polymeric precursor to silicon nitride and process
JPS60226890A (en) * 1984-01-19 1985-11-12 マサチユ−セツツ・インステチユ−ト・オブ・テクノロジ− Preseramic organosilazane polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117532A (en) * 1981-01-15 1982-07-22 Dow Corning Manufacture of poly(disilyl)silazane polymer
US4397828A (en) * 1981-11-16 1983-08-09 Massachusetts Institute Of Technology Stable liquid polymeric precursor to silicon nitride and process
JPS60226890A (en) * 1984-01-19 1985-11-12 マサチユ−セツツ・インステチユ−ト・オブ・テクノロジ− Preseramic organosilazane polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605530A (en) * 2020-05-07 2023-01-13 默克专利有限公司(De) Polycarbosilazanes, compositions comprising the same, and methods of making silicon-containing films using the same
JP2023510050A (en) * 2020-05-07 2023-03-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング POLYCARBOSILAZANE, COMPOSITION CONTAINING SAME, AND METHOD FOR PRODUCING SILICON-CONTAINING MEMBRANE USING THE SAME
US11999827B2 (en) 2020-05-07 2024-06-04 Merck Patent Gmbh Polycarbosilazane, and composition comprising the same, and method for producing silicon-containing film using the same

Also Published As

Publication number Publication date
JPH0219135B2 (en) 1990-04-27

Similar Documents

Publication Publication Date Title
JPS62290730A (en) Production of organosilazane polymer and production of ceramics using said polymer
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
US4847345A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
EP0295062B1 (en) Polysilacyclobutasilazanes
US4954596A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
EP0417526B1 (en) Methods for preparing polytitanocarbosilazane polymers and ceramics therefrom
JPS63243328A (en) Production of ceramics
JPS63117037A (en) Organosilazane polymer and production of ceramics therefrom
JPH02120279A (en) Production of ceramic
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPS63193930A (en) Organic silazane polymer and production of ceramics using said polymer
JP2518119B2 (en) Ceramics manufacturing method
JPH0615619B2 (en) Method for producing hafnium-containing silazane polymer and method for producing ceramics using the polymer
JPH0798865B2 (en) Ceramics manufacturing method
US5200371A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
EP0361181B1 (en) Infusibilization of organic silazane polymers and preparation of hollow ceramic fibers
JPH0384035A (en) Organic metal ceramic precursor based on boron, nitrogen and silicon
JPH0234565A (en) Method of in fusibilising organic silazane polymer
JPH0532787A (en) Production of ceramics
JPH04213331A (en) Silazane polymer containing sicl group, its manufacture, ceramic raw material which contains silicon nitride and can be made therefrom, and manufacture of this material
JPH0214220A (en) Insolubilization of organic silazane polymer
US5008348A (en) Infusibilization of organic silazane polymers
JPH04153226A (en) Preparation of boron-containing silazane polymer and preparation of ceramic from the polymer
JPH0468027A (en) Production of organic silazane polymer and production of ceramic from said polymer
JPH01118528A (en) Preparation of methyl polysilazane