JPH079845B2 - Permanent magnet type uniform magnetic field magnet - Google Patents

Permanent magnet type uniform magnetic field magnet

Info

Publication number
JPH079845B2
JPH079845B2 JP61019326A JP1932686A JPH079845B2 JP H079845 B2 JPH079845 B2 JP H079845B2 JP 61019326 A JP61019326 A JP 61019326A JP 1932686 A JP1932686 A JP 1932686A JP H079845 B2 JPH079845 B2 JP H079845B2
Authority
JP
Japan
Prior art keywords
permanent magnet
section
magnetic field
plate
uniform magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61019326A
Other languages
Japanese (ja)
Other versions
JPS62177903A (en
Inventor
正樹 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61019326A priority Critical patent/JPH079845B2/en
Publication of JPS62177903A publication Critical patent/JPS62177903A/en
Publication of JPH079845B2 publication Critical patent/JPH079845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は核磁気共鳴コンピュータ断層像撮影装置(以下
NMR−CTと略称する)などに用いられる永久磁石形均一
磁場マグネットに関する。
Description: TECHNICAL FIELD The present invention relates to a nuclear magnetic resonance computed tomography apparatus (hereinafter
The present invention relates to a permanent magnet type uniform magnetic field magnet used for NMR-CT).

〔従来技術とその問題点〕[Prior art and its problems]

NMR−CTにおいては、均一磁場マグネットに包囲された
空間の中央部の直径400〜500mm程度の均一磁場空間に、
磁場の強さの均一度が数10PPMという均一磁場を発生さ
せる必要があり、永久磁石を使用することにより、常電
導均一磁場コイルを用いる方式における膨大な電力消
費,また超電導マグネット方式における冷却用電力消費
等が排除でき、したがって運転コストの低い均一磁場マ
グネットが得られる利点があり注目を集めている。しか
しながら、永久磁石と銅線材の価格を比較した場合、フ
ェライト磁石で数倍,希土類磁石では100倍に達する程
永久磁石が効果であるために、永久磁石の使用量が少
く、かつ小形軽量な永久磁石形均一磁場マグネットの出
現が求められている。
In the NMR-CT, a uniform magnetic field space having a diameter of 400 to 500 mm in the central portion of the space surrounded by the uniform magnetic field magnets,
It is necessary to generate a uniform magnetic field with a homogeneity of the magnetic field strength of several tens of PPM, and by using a permanent magnet, huge power consumption in the system using the normal conducting uniform magnetic field coil and cooling power in the superconducting magnet system are achieved. It has attracted attention because it has the advantage that a uniform magnetic field magnet can be obtained that consumes less and thus has a lower operating cost. However, when comparing the prices of permanent magnets and copper wire rods, the permanent magnets are effective enough to reach several times in ferrite magnets and 100 times in rare earth magnets. Appearance of a magnet type uniform magnetic field magnet is required.

第11図は従来技術を示す要部の正面図であり、方形筒状
に形成されたコア1の均一磁場の方向100に垂直な内壁
面2A,2Bに、均一磁場方向100と同方向に磁化された永久
磁石3A,3Bと漏れ磁束を阻止するための環状突起5を有
する鉄板等の軟質磁性材からなる磁極片4A,4Bとを設
け、一対の磁極片4A,4B間の空隙6の中央部に直径400な
いし500mm程度の均一磁場空間10を形成するよう構成さ
れている。ところが、磁極片4A,4B間の空隙6の磁気抵
抗が高いために、磁極片の外周からコア1側に漏れ出す
漏れ磁束101を完全に阻止することは不可能であり、磁
極とコアとの間の距離Sを大きくとって漏れ磁束101を
低減するよう構成しても、なお漏れ磁束による空隙6の
磁束の変歪により均一磁場10の磁場の均一度が低下す
る。したがって、均一磁場10の磁場の均一度を保持する
ために永久磁石3A,3Bの直径が大きくなり高価な永久磁
石材を多量に必要とし、それに伴なって総発生磁束量が
増大するためにこれを還流するコア1の断面積が増大
し、距離Sを保持するためのコア1の磁路長の増大と併
せて均一磁場マグネットが高重量化するという問題があ
り、設置スペースの増大を考慮した場合にはさらに大き
な経済的不利益をもたらす欠点がある。
FIG. 11 is a front view of the main part showing the prior art. Magnetization is performed in the same direction as the uniform magnetic field direction 100 on the inner wall surfaces 2A, 2B of the rectangular cylindrical core 1 which are perpendicular to the uniform magnetic field direction 100. The permanent magnets 3A, 3B and the magnetic pole pieces 4A, 4B made of a soft magnetic material such as an iron plate having the annular projection 5 for preventing the leakage magnetic flux are provided, and the center of the gap 6 between the pair of magnetic pole pieces 4A, 4B is provided. A uniform magnetic field space 10 having a diameter of about 400 to 500 mm is formed in the portion. However, since the magnetic resistance of the air gap 6 between the magnetic pole pieces 4A and 4B is high, it is impossible to completely prevent the leakage magnetic flux 101 leaking from the outer circumference of the magnetic pole piece to the core 1 side. Even if the distance S is increased to reduce the leakage flux 101, the homogeneity of the magnetic field of the uniform magnetic field 10 is lowered due to the distortion of the magnetic flux in the air gap 6 due to the leakage flux. Therefore, in order to maintain the homogeneity of the magnetic field of the uniform magnetic field 10, the diameter of the permanent magnets 3A, 3B becomes large and a large amount of expensive permanent magnet material is required, which increases the total amount of magnetic flux generated. There is a problem that the cross-sectional area of the core 1 that recirculates the magnetic field increases, and the magnetic field length of the core 1 for maintaining the distance S increases, and the weight of the uniform magnetic field magnet becomes high. In some cases, there are drawbacks that result in greater economic disadvantage.

第12図は改善された従来技術を示す要部の正面図であ
り、8個の台形棒状の永久磁石13を八角筒状に組合わせ
てその内側に八角形の均一磁場空間16を形成するよう構
成されており、図中実線矢印で示す各永久磁石の磁化の
方向102を、均一磁場の方向100に対して各永久磁石がな
す角度θの2倍の角度方向とすることにより、発生磁束
を八角筒状の均一磁場マグネット内に閉じ込めることが
でき、コアを用いずに漏れ磁束101の量を低減できると
ともに、均一磁場マグネットの中空部を広く均一磁場空
間として利用できることにより総発生磁束量も少くてす
み、外径寸法を縮小できるなどの利点を有する。しかし
ながら、永久磁石13を総発生磁束の循環通路に利用して
いるために台形の高さ方向の寸法が大きくなり、高価な
永久磁石材を多量に使用する必要があり、経済的不利益
をまねくとともに、永久磁石13それぞれの磁化の方向が
異なるために、その着磁処理および組立加工に困難が伴
うと考えられる。
FIG. 12 is a front view of an essential part showing the improved prior art, in which eight trapezoidal rod-shaped permanent magnets 13 are combined in an octagonal tube shape to form an octagonal uniform magnetic field space 16 therein. The magnetizing direction 102 of each permanent magnet shown by the solid line arrow in the figure is set to be an angle direction twice the angle θ formed by each permanent magnet with respect to the direction 100 of the uniform magnetic field. It can be confined in an octagonal tube-shaped uniform magnetic field magnet, the amount of leakage flux 101 can be reduced without using a core, and the total amount of magnetic flux generated can be reduced by utilizing the hollow part of the uniform magnetic field magnet as a wide uniform magnetic field space. It has the advantages that the outer diameter can be reduced. However, since the permanent magnet 13 is used for the circulation passage of the total generated magnetic flux, the dimension of the trapezoid in the height direction becomes large, and it is necessary to use a large amount of expensive permanent magnet material, which causes an economic disadvantage. At the same time, since the magnetization directions of the permanent magnets 13 are different, it is considered that the magnetizing process and the assembling process are difficult.

〔発明の目的〕 本発明は前述の状況に鑑みてなされたもので、コアの中
空部を均一磁場として広く活用できることにより総発生
磁束量が少く、かつ永久磁石材の使用量の少い永久磁石
形均一磁場マグネットを提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above-mentioned situation, and the total amount of magnetic flux generated is small because the hollow portion of the core can be widely used as a uniform magnetic field, and the permanent magnet material is used in a small amount. An object is to provide a uniform magnetic field magnet.

〔発明の要点〕[Main points of the invention]

本発明は、永久磁石材料の比透磁率が空気のそれに近く
中空部の磁場を乱さないこと、板状の永久磁石の断面形
状とその磁化の方向との組合せにより特定の面に所定の
電流が板の長さ方向に一様に流れる断面積が零の理想導
体(カーレントシートと呼ぶ)に置きかえて考えられる
ことなどに着目することによりなされたもので、総発生
磁束の循環通路となる軟質磁性材よりなるコアを多角筒
状に形成し、その内側面のうち均一磁場方向に垂直な内
側面には、台形断面を有する板状に形成され互いに平行
な二面に垂直な方向に磁化された台形断面を有する板状
永久磁石を,幅の広い底面側が前記内壁面を密接して覆
うよう配し、前記内壁面と異なる角度方向の内壁面に
は、断面が長辺,短辺および中辺を有する不等辺三角形
に形成され中辺側の面に垂直な方向に磁化された不等辺
三角形断面を有する板状の永久磁石を長辺側の面が内側
面を密接して覆うよう配するとともに、例えば不等辺三
角形断面を有する板状の永久磁石の短辺側の面および台
形断面を有する板状の永久磁石の傾斜面とからなり内壁
面の境界線を通る共通の接合面の中空部側の端すなわち
不等辺三角形断面を有する板状の永久磁石の頂点の一つ
を、前記境界線を中心とし前記台形断面を有する板状の
永久磁石の厚みを半径とする円周上の接線と一致させる
よう構成したことにより、中空部と永久磁石との界面に
おけるカーレントシートは永久磁石の磁化の方向がこの
面に直交するという条件により消去されてこの面におけ
る磁場の乱れが排除され、隣接する永久磁石の接合面に
おけるカーレントシートは接合面の位置を前述の条件に
適合させることにより消去されて接合部における磁場の
乱れが排除され、その結果、不等辺三角形断面を有する
板状の永久磁石とコアの内壁面との境界にのみカーレン
トシートを配したと等価な状態とすることが可能となり
均一磁場と異なる方向の漏れ磁束を阻止できることによ
り、各板状の永久磁石の極性方向を内壁面が均一磁場方
向に対してなす角度に対応して均一磁場の発生に好適な
極性とすることにより、コアの内側の板状の永久磁石を
除く中空部全体に均一磁場を発生できるようにしたもの
である。
According to the present invention, the relative magnetic permeability of the permanent magnet material does not disturb the magnetic field in the hollow portion close to that of air, and a predetermined current is applied to a specific surface by the combination of the cross-sectional shape of the plate-shaped permanent magnet and the direction of its magnetization. This was done by paying attention to the fact that it can be considered as an ideal conductor (called a current sheet) that has a zero cross-sectional area that uniformly flows in the length direction of the plate. A core made of a magnetic material is formed into a polygonal cylindrical shape, and a plate shape having a trapezoidal cross section is formed on an inner side surface of the inner side surface perpendicular to the uniform magnetic field direction and magnetized in a direction perpendicular to two parallel surfaces. The plate-shaped permanent magnet having a trapezoidal cross section is arranged so that the wide bottom surface closely covers the inner wall surface, and the inner wall surface in an angle direction different from the inner wall surface has a cross section of long side, short side, and middle side. Formed in an isosceles triangle with sides A plate-shaped permanent magnet having an isosceles triangular cross-section magnetized in a direction perpendicular to the direction is arranged so that the surface on the long side closely covers the inner side surface, and, for example, a plate-shaped permanent magnet having an isosceles triangular cross section. The end of the common joint surface that passes through the boundary line of the inner wall surface, that is, the inclined side of the plate-shaped permanent magnet having the trapezoidal section and the surface on the short side, that is, the plate-shaped permanent section having the unequal triangle section. By configuring one of the vertices of the magnet to coincide with a tangential line on the circumference having the thickness of the plate-shaped permanent magnet having the trapezoidal cross section as the center, the hollow portion and the permanent magnet The current sheet at the interface of is erased by the condition that the magnetization direction of the permanent magnet is orthogonal to this surface, and the disturbance of the magnetic field on this surface is eliminated. Rank By eliminating the disturbance of the magnetic field at the joint by adapting the above condition to the above condition, and as a result, the curent sheet is provided only at the boundary between the plate-shaped permanent magnet having an isosceles triangular cross section and the inner wall surface of the core. Since it is possible to make the state equivalent to the arrangement and prevent leakage flux in a direction different from the uniform magnetic field, the polar direction of each plate-shaped permanent magnet corresponds to the angle formed by the inner wall surface with respect to the uniform magnetic field direction. By making the polarity suitable for the generation of a uniform magnetic field, a uniform magnetic field can be generated in the entire hollow portion excluding the plate-shaped permanent magnet inside the core.

〔発明の実施例〕Example of Invention

以下本発明を実施例に基づいて説明する。 The present invention will be described below based on examples.

第1図は本発明の実施例装置の概略斜視図、第2図は第
1図の正面図である。図において、21は鉄板,けい素鋼
板等の軟質磁性材からなる方形筒状のコアであり、均一
磁場方向100に垂直な内壁面2Aおよび2Bには主磁束を発
生する一対の台形断面を有する板状の永久磁石23A,23B
が、また均一磁場方向100に平行な内壁面2C,2D側には、
不等辺三角形断面を有する4個の板状の永久磁石24A,24
B,25A,25Cが、長辺側の面が内壁面2C,2Dに密接し、短辺
側の面が台形断面を有する板状の永久磁石23A,23Bの傾
斜面にそれぞれ接合して内壁面の境界線27を通る接合面
28を形成するとともに、各永久磁石は中空部26との界面
に垂直な方向に、かつ図中N←Sで示す極性方向に一様
に磁化されることにより、中空部26の長さ方向の中央部
に方形の中空部26全体に広がった均一磁場10を発生でき
るよう構成されている。
FIG. 1 is a schematic perspective view of an apparatus according to an embodiment of the present invention, and FIG. 2 is a front view of FIG. In the figure, 21 is a rectangular cylindrical core made of a soft magnetic material such as an iron plate and a silicon steel plate, and has a pair of trapezoidal cross sections that generate a main magnetic flux on inner wall surfaces 2A and 2B perpendicular to the uniform magnetic field direction 100. Plate-shaped permanent magnets 23A, 23B
However, on the inner wall surface 2C, 2D side parallel to the uniform magnetic field direction 100,
Four plate-shaped permanent magnets 24A, 24 having an isosceles triangular cross section
B, 25A, 25C are the inner wall surfaces where the long side faces are in close contact with the inner wall faces 2C, 2D and the short side faces are joined to the inclined surfaces of the plate-like permanent magnets 23A, 23B having a trapezoidal cross section. A joint surface passing through the boundary line 27 of
28 and the permanent magnets are uniformly magnetized in the direction perpendicular to the interface with the hollow portion 26 and in the polar direction indicated by N ← S in the figure, the longitudinal direction of the hollow portion 26 is reduced. It is configured so that a uniform magnetic field 10 that spreads over the entire rectangular hollow portion 26 can be generated in the central portion.

第3図は不等辺三角形断面を有する板状の永久磁石の形
状決定とカーレントシートへの置きかえの原理的説明図
であり、第2図の右上の部分を例に説明しようとするも
のである。図において長辺ABが内壁面2Dの幅の半分に相
当する長さを有する不等辺三角形断面ABCに形成される
板状の永久磁石24Aの中辺BCの位置は、頂点A(内壁面
の境界線27)を中心とし、台形断面を有する板状の永久
磁石23Aの厚みdを半径とする円周面29と頂点Bとを結
ぶ接線BDに一致するよう決められ、頂点Cの位置は上記
接線BDと台形断面を有する板状の永久磁石の中空部側の
底辺とが交差する位置に決められることにより、両永久
磁石の間に共通の接合面28(辺AC)が形成される。
FIG. 3 is a principle explanatory view of determining the shape of a plate-shaped permanent magnet having an isosceles triangular cross section and replacing the permanent magnet with a current sheet, and the upper right portion of FIG. 2 will be described as an example. . In the figure, the position of the middle side BC of the plate-shaped permanent magnet 24A formed in the scalene triangular cross section ABC with the long side AB having a length corresponding to half the width of the inner wall surface 2D is the vertex A (the boundary of the inner wall surface). It is determined so as to coincide with a tangent line BD connecting a vertex B with a circumferential surface 29 having a thickness d of a plate-shaped permanent magnet 23A having a trapezoidal cross section with a line 27) as the center, and the position of the vertex C is the above tangent line. A common joint surface 28 (side AC) is formed between the permanent magnets by determining the position where BD and the bottom side of the plate-shaped permanent magnet having a trapezoidal cross section on the hollow portion side intersect.

上述のように形状決定され保磁力Hcで中辺BCに垂直な方
向に磁化された不等辺三角形断面を有する板状の永久磁
石24Aは、短辺ACと長辺AB上に互いに逆向きの電流Iを
通ずる細線を想定して長さdなるAD方向に均等な密度で
配列した状態、すなわちカーレントシートに置きかえて
考えることができ、カーレントシートそれぞれのアンペ
アターンは保磁力Hcと辺ADの長さdとの積で与えられ
る。また台形断面を有する板状の永久磁石23Aの傾斜面A
Cについても電流Iを通ずる細線を厚みd方向に均等に
配列したカーレントシートに置き換えて考えることがで
き、接合面28における二つのカーレントシートの大きさ
が等しく電流が逆向きとなることによりカーレントシー
トは互いに打消しあって零となり、不等辺三角形断面を
有する板状の永久磁石24Aの長辺AB側に配されたカーレ
ントシートのみが残される。
The plate-shaped permanent magnet 24A having an isosceles triangular cross-section whose shape is determined as described above and which is magnetized in the direction perpendicular to the medial side BC with the coercive force Hc has opposite currents on the short side AC and the long side AB. A thin wire passing through I is assumed to be arranged at a uniform density in the AD direction of length d, that is, it can be replaced by a carrent sheet, and the ampere-turn of each carrent sheet can be considered as coercive force Hc and side AD. It is given by the product of length d. Also, the inclined surface A of the plate-shaped permanent magnet 23A having a trapezoidal cross section
Regarding C, it is possible to consider by replacing the thin wires that pass the current I with a curent sheet in which the currents are evenly arranged in the thickness d direction. The carrent sheets cancel each other out to zero, and only the carrent sheet arranged on the long side AB side of the plate-shaped permanent magnet 24A having the unequal triangle cross section is left.

第4図は第2図のように形成された均一磁場マグネット
のカーレントシートの状態を示す説明図であり、コア21
の内壁面2Cおよび2Dに配され電流の向きをクロス・ドッ
ト記号で示すカーレントシート30C,30Dで均一磁場マグ
ネットを等価的に置き換えることができる。
FIG. 4 is an explanatory view showing the state of the current sheet of the uniform magnetic field magnet formed as shown in FIG.
The uniform magnetic field magnets can be equivalently replaced by the carrent sheets 30C and 30D which are arranged on the inner wall surfaces 2C and 2D of which the direction of the current is indicated by cross dot symbols.

第5図は前述の実施例における磁束分布図であり、第4
図に示すカーレントシート配置により等価的に求められ
たものである。図から明らかなように、カーレントシー
ト30C,30Dにより内壁面2C,2Dに交差する漏れ磁束を完全
に排除できるので、磁束線110は完全に直線かつ等間隔
であり、永久磁石を含めたコア21の中空部全体に均一磁
場空間10を発生できることを示している。なお永久磁石
23A,24Aの永久磁石材を比透磁率が1.05以下のバリウム
フェライト磁石あるいは希土類磁石で形成するととも
に、永久磁石の磁化曲線を減磁処理などにより直線化す
れば、カーレントシートを永久磁石で置き換えても第5
図に示すと同様な均一磁場を発生する永久磁石形均一磁
場マグネットを得ることができる。
FIG. 5 is a magnetic flux distribution chart in the above-mentioned embodiment,
It is equivalently determined by the carrent sheet arrangement shown in the figure. As can be seen from the figure, since the leakage magnetic flux intersecting the inner wall surfaces 2C, 2D can be completely eliminated by the carrent sheets 30C, 30D, the magnetic flux lines 110 are perfectly straight and evenly spaced, and the core including the permanent magnets. It is shown that the uniform magnetic field space 10 can be generated over the entire hollow portion of 21. A permanent magnet
If the permanent magnet material of 23A, 24A is made of barium ferrite magnet or rare earth magnet with relative permeability of 1.05 or less, and if the magnetization curve of the permanent magnet is linearized by demagnetization treatment, etc., the curent sheet is replaced with the permanent magnet. Even 5th
A permanent magnet type uniform magnetic field magnet that generates a uniform magnetic field similar to that shown in the figure can be obtained.

第6図は前述の実施例の比較例を示す磁束分布図であ
り、不等辺三角形断面を有する板状の永久磁石24Aの磁
化の方向N←Sを内壁面2Dに密接した長辺AB側の面に垂
直な方向とした点が前述の実施例と異なっており、この
場合にはカーレントシートを中辺BC側の中空部との界面
と短辺AC側の接合面28とに配した等価となるために、不
等辺三角形断面を有する板状の永久磁石24A内における
磁束線110が大幅に乱れ、内壁面2Dに垂直な漏れ磁束102
が発生する。この磁束線の乱れが均一磁場空間10の磁場
の均一度にも影響を及ぼすので前述の実施例に比べ磁場
の均一度は大幅に低下する。
FIG. 6 is a magnetic flux distribution diagram showing a comparative example of the above-mentioned embodiment, in which the magnetization direction N ← S of the plate-shaped permanent magnet 24A having an isosceles triangular cross section is measured on the long side AB side close to the inner wall surface 2D. It is different from the above-mentioned embodiment in that the direction perpendicular to the plane was adopted, and in this case, the equivalent of arranging the current sheet at the interface with the hollow portion on the side BC of the middle side and the joint surface 28 on the side AC of the short side. Therefore, the magnetic flux lines 110 in the plate-shaped permanent magnet 24A having an isosceles triangular cross section are significantly disturbed, and the leakage magnetic flux 102 perpendicular to the inner wall surface 2D is generated.
Occurs. The turbulence of the magnetic flux lines also affects the homogeneity of the magnetic field in the uniform magnetic field space 10, so that the homogeneity of the magnetic field is significantly reduced as compared with the above-described embodiment.

前述の第5図および第6図を比較することにより明らか
なように、台形断面を有する板状の永久磁石と不等辺三
角形断面を有する板状の永久磁石とを単に額縁状に接合
するだけでは均一磁場を発生させることは不可能であ
り、両永久磁石の磁化をそれぞれ中空部との界面に垂直
方向に行うことによって界面のカーレントシートを排除
し、不等辺三角形断面を有する板状の永久磁石の形状を
特定することにより両永久磁石の接合面におけるカーレ
ントシートを排除し、不等辺三角形断面を有する板状の
永久磁石の内壁側界面にのみカーレントシートを残すよ
う構成するとともに、両永久磁石の磁化の極性を第2図
に示すように内壁面2C,2Dに直交する漏れ磁束を反発す
る極性とすることにより、内壁面2C,2Dに直交する漏れ
磁束110は完全に排除され、コア21の内側の中空部全体
に広がる均一磁場10を発生させることができる。したが
って、台形断面を有する板状の永久磁石23A,23Bの厚み
dは均一磁場空間10に均一磁場を発生させるに必要な最
小重量ですむので永久磁石を軽量化することができ、か
つ均一磁場空間としての中空部の利用率が高く,漏れ磁
束が排除されて総発生磁束量が減るのでコア21の寸法,
重量を必要最小限に低減することができる。
As is clear by comparing FIGS. 5 and 6 described above, it is not necessary to simply join a plate-shaped permanent magnet having a trapezoidal cross section and a plate-shaped permanent magnet having an isosceles triangular cross section in a frame shape. It is impossible to generate a uniform magnetic field, and the curent sheet at the interface is eliminated by magnetizing both permanent magnets in the direction perpendicular to the interface with the hollow part, and a plate-shaped permanent magnet with an isosceles triangular cross section is eliminated. By specifying the shape of the magnet, the curent sheet on the joint surface of both permanent magnets is eliminated, and the curent sheet is left only on the inner wall side interface of the plate-shaped permanent magnet having an isosceles triangular cross section. By setting the polarity of the magnetization of the permanent magnets so as to repel the leakage flux orthogonal to the inner wall surfaces 2C and 2D as shown in FIG. 2, the leakage flux 110 orthogonal to the inner wall surfaces 2C and 2D is completely eliminated, It is possible to generate a uniform magnetic field 10 that spreads over the entire hollow portion inside the core 21. Therefore, since the thickness d of the plate-shaped permanent magnets 23A and 23B having a trapezoidal cross section is the minimum weight required to generate a uniform magnetic field in the uniform magnetic field space 10, it is possible to reduce the weight of the permanent magnets and the uniform magnetic field space. Since the utilization rate of the hollow part is high, the leakage flux is eliminated and the total amount of generated magnetic flux is reduced.
The weight can be reduced to the minimum necessary.

第7図は本発明の異なる実施例を示す正面図、第8図は
カーレントシートの状態の説明図であり、方形筒状のコ
ア31の内側に台形断面を有する板状の永久磁石33Aと、
これに接合した一対の不等辺三角形断面を有する板状の
永久磁石34A,35Aのみを配した非対称構造とした点が前
述の実施例と異なっているが、カーレントシートは第8
図に示すように前述の実施例と同じになり、不等辺三角
形断面を有する板状の永久磁石の総断面積が前述の実施
例のそれの2倍になることを除けば前述の実施例と同様
な性能を得ることができる。
FIG. 7 is a front view showing a different embodiment of the present invention, and FIG. 8 is an explanatory view of a state of a current sheet, in which a plate-shaped permanent magnet 33A having a trapezoidal cross section is formed inside a rectangular tubular core 31. ,
It differs from the above-mentioned embodiment in that it has an asymmetrical structure in which only a pair of plate-shaped permanent magnets 34A, 35A having a pair of isosceles triangular sections joined to this are arranged, but the current sheet is
As shown in the figure, it is the same as the above-mentioned embodiment, except that the total cross-sectional area of the plate-like permanent magnet having an isosceles triangular cross section is twice that of the above-mentioned embodiment. Similar performance can be obtained.

第9図は本発明のさらに異なる実施例を示す正面図、第
10図はカーレントシートの状態の説明図である。第9図
において、コア41は六角筒状に形成されており、その内
壁面には台形断面を有する板状の永久磁石43Aと不等辺
三角形断面を有する板状の永久磁石44A,45Bからなる永
久磁石と、この永久磁石組とこの永久磁石組と対称に配
された43B,44B,45Bからなる永久磁石組とが配され、そ
れぞれの永久磁石が均一磁場空間10との界面に垂直な方
向に図中矢印で示す極性に磁化されることにより、均一
磁場空間10内に均一磁場方向100で示す均一磁場を発生
するよう構成されている。なお、不等辺三角形断面を有
する板状の永久磁石の形状および接合面の位置の決定は
第3図に基づいて説明した前述の実施例と同様である
が、不等辺三角形断面を有する板状の永久磁石の磁化の
方向の厚みの内壁面に沿った変化量は、内壁面が均一磁
場方向100に対してなす角度θの余弦に比例し、θの増
大とともに減少する。第9図のように構成された均一磁
場マグネットは、第10図に示すカーレントシート配置に
置きかえることができる。また第9図,第10図から明ら
かなように、不等辺三角形断面を有する板状の永久磁石
は、台形断面を有する板状の永久磁石で発生した主磁束
の変歪を阻止するのみでなく、主磁束の一部を発生する
機能をはたしていることがわかる。
FIG. 9 is a front view showing a further different embodiment of the present invention,
FIG. 10 is an explanatory view of the state of the carrent sheet. In FIG. 9, a core 41 is formed in a hexagonal tube shape, and an inner wall surface thereof is composed of a plate-shaped permanent magnet 43A having a trapezoidal cross section and plate-shaped permanent magnets 44A, 45B having an isosceles triangular cross section. A magnet and a permanent magnet group consisting of this permanent magnet group and 43B, 44B, 45B symmetrically arranged with this permanent magnet group are arranged, and each permanent magnet is arranged in a direction perpendicular to the interface with the uniform magnetic field space 10. It is configured to generate a uniform magnetic field indicated by the uniform magnetic field direction 100 in the uniform magnetic field space 10 by being magnetized to the polarity shown by the arrow in the figure. The shape of the plate-shaped permanent magnet having an isosceles triangular cross section and the position of the joint surface are determined in the same manner as in the above-described embodiment described with reference to FIG. The amount of change in the thickness of the permanent magnet along the inner wall surface in the direction of magnetization is proportional to the cosine of the angle θ formed by the inner wall surface with respect to the uniform magnetic field direction 100, and decreases as θ increases. The uniform magnetic field magnet configured as shown in FIG. 9 can be replaced with the current sheet arrangement shown in FIG. Further, as is clear from FIGS. 9 and 10, the plate-shaped permanent magnet having an isosceles triangular cross section not only prevents the deformation of the main magnetic flux generated in the plate-shaped permanent magnet having the trapezoidal cross section, It can be seen that it has a function of generating a part of the main magnetic flux.

なお、前述の各実施例において、永久磁石材の比透磁率
が1より僅かに大きいことが問題となる永久磁石形均一
磁場マグネットにおいては、不等辺三角形断面を有する
板状の永久磁石の磁化の方向を所定の算式に基づいて均
一磁場の界面に対して垂直な方向から僅かに変位させる
ことにより、中空部における磁場の乱れを補正すること
が可能である。
In each of the above-mentioned embodiments, in the permanent magnet type uniform magnetic field magnet in which the relative magnetic permeability of the permanent magnet material is slightly larger than 1, the magnetization of the plate-shaped permanent magnet having an isosceles triangular cross section By slightly shifting the direction from the direction perpendicular to the interface of the uniform magnetic field based on a predetermined formula, it is possible to correct the disturbance of the magnetic field in the hollow portion.

〔発明の効果〕〔The invention's effect〕

本発明は前述のように、永久磁石材の比透磁率が1に近
いことに着目し、軟質磁性材からなるコアを多角筒状に
形成し、その中空部の均一磁場方向に垂直な内壁面には
台形断面を有する板状の永久磁石を,前記内壁面とは異
なる角度方向の内壁面には不等辺三角形断面を有する板
状の永久磁石をそれぞれ長辺側の面が内壁面を覆うよう
密接して配し、各永久磁石を中空部との界面に垂直な方
向に磁化するとともに、不等辺三角形断面を有する板状
の永久磁石の断面形状およびその短辺側の面を含む隣接
永久磁石の接合面を長辺側の面にのみカーレントシート
が残る条件を満たすよう決めるよう構成した。その結
果、不等辺三角形断面を有する板状の永久磁石側の内壁
面に交差する漏れ磁束およびそれに基づく永久磁石内部
の磁場の乱れをほぼ完全に排除することができ、したが
って多角形の中空部全体に広がる均一磁場を発生するこ
とが可能となり、一対の円板状永久磁石を用いた従来技
術において漏れ磁束による磁場の乱れを廻避するに必要
とされた永久磁石径の増大,それに基づく総発生磁束量
の増大,コアの断面積および磁路長の増大等永久磁石材
の使用量の増加や均一磁場マグネットの高重量化をうな
がす問題点が排除され、中空部の均一磁場空間としての
利用率が高く,永久磁石材の使用量および総発生磁束量
が少く、したがって小形,軽量な永久磁石形均一磁場マ
グネットを経済的に有利に提供することができる。ま
た、コアを有しない従来の永久磁石形均一磁場マグネッ
トにおいて問題となった永久磁石を発生磁束の循環通路
に利用することによって永久磁石材の使用量が増大する
という問題点を、小形かつ安価な多角筒状のコアを用い
ることにより排除できる利点が得られる。さらに、多角
筒状のコアは方形筒状,六角筒状等多種類の形状の中か
ら人体を収納するに好適な形状を選択できる利点が得ら
れる。
As described above, the present invention focuses on the fact that the relative magnetic permeability of the permanent magnet material is close to 1, and the core made of the soft magnetic material is formed into a polygonal cylindrical shape, and the inner wall surface of the hollow part thereof perpendicular to the uniform magnetic field direction. Is a plate-shaped permanent magnet with a trapezoidal cross section, and a plate-shaped permanent magnet with an isosceles triangular cross section on the inner wall surface in an angle direction different from the inner wall surface so that the long side surface covers the inner wall surface. Adjacent permanent magnets that are arranged in close contact with each other and magnetize each permanent magnet in a direction perpendicular to the interface with the hollow portion, and that include the cross-sectional shape of a plate-shaped permanent magnet having an isosceles triangular cross section and the surface on the short side thereof. The joining surface of was determined so that the condition that the curent sheet remained only on the long side was satisfied. As a result, it is possible to almost completely eliminate the leakage magnetic flux intersecting the inner wall surface of the plate-shaped permanent magnet having an isosceles triangular cross section and the disturbance of the magnetic field inside the permanent magnet due to the leakage magnetic flux, and thus the entire polygonal hollow portion. It is possible to generate a uniform magnetic field that spreads over a wide area, and in the prior art using a pair of disk-shaped permanent magnets, the increase in the diameter of the permanent magnet required to avoid the disturbance of the magnetic field due to the leakage flux, and the total generated magnetic flux based on it The problem of increasing the amount of permanent magnets used and increasing the weight of a uniform magnetic field magnet, such as an increase in the volume, cross-sectional area of the core and magnetic path length, was eliminated, and the utilization rate of the hollow part as a uniform magnetic field space was eliminated. It is possible to provide a compact and lightweight permanent magnet type uniform magnetic field magnet economically and advantageously because it is high, the amount of permanent magnet material used and the total amount of magnetic flux generated are small. In addition, the problem of increasing the amount of permanent magnet material used by utilizing the permanent magnet in the circulation passage of the generated magnetic flux, which has been a problem in the conventional permanent magnet type uniform magnetic field magnet without a core, is small and inexpensive. There is an advantage that can be eliminated by using a polygonal tubular core. Further, the polygonal tubular core has an advantage that a shape suitable for accommodating a human body can be selected from various shapes such as a rectangular tubular shape and a hexagonal tubular shape.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す斜視図、第2図は第1図
の正面図、第3図は実施例の原理的説明図、第4図は実
施例におけるカーレントシートの配置説明図、第5図は
実施例における磁束分布図、第6図は比較例における磁
束分布図、第7図は異なる実施例を示す正面図、第8図
は第7図におけるカーレントシート配置説明図、第9図
はさらに異なる実施例を示す正面図、第10図は第9図に
おけるカーレントシート配置説明図、第11図は従来技術
を示す正面図、第12図は改善された従来技術を示す正面
図である。 1,21,31,41…多角筒状コア、2A,2B…均一磁場に垂直な
内壁面、2C,2D…異なる角度方向の内壁面、23A,23B,33
A,43A,43B…台形断面を有する板状の永久磁石、24A,24
B,25A,25B,34A,35A…不等辺三角形断面を有する板状の
永久磁石、26…中空部、10…均一磁場空間、30C,30D…
カーレントシート、100…均一磁場方向、S→N…磁化
の方向、d…台形台面を有する板状の永久磁石の厚み、
27…内壁面の境界線、28…接合面、101,102…漏れ磁束
線、110…主磁束線。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a front view of FIG. 1, FIG. 3 is a principle explanatory view of the embodiment, and FIG. FIG. 5 is a magnetic flux distribution diagram in the embodiment, FIG. 6 is a magnetic flux distribution diagram in the comparative example, FIG. 7 is a front view showing a different embodiment, and FIG. FIG. 9 is a front view showing a further different embodiment, FIG. 10 is an explanatory view of the arrangement of a carrent seat in FIG. 9, FIG. 11 is a front view showing a conventional technique, and FIG. 12 is an improved conventional technique. It is a front view shown. 1,21,31,41 ... Polygonal cylindrical core, 2A, 2B ... Inner wall surface perpendicular to the uniform magnetic field, 2C, 2D ... Inner wall surface in different angle directions, 23A, 23B, 33
A, 43A, 43B ... Plate-shaped permanent magnets having a trapezoidal cross section, 24A, 24
B, 25A, 25B, 34A, 35A ... Plate-shaped permanent magnet having an isosceles triangular cross section, 26 ... Hollow part, 10 ... Uniform magnetic field space, 30C, 30D ...
Carrent sheet, 100 ... Direction of uniform magnetic field, S → N ... Direction of magnetization, d ... Thickness of plate-shaped permanent magnet having trapezoidal trapezoidal surface,
27 ... Boundary of inner wall surface, 28 ... Bonding surface, 101, 102 ... Leakage magnetic flux line, 110 ... Main magnetic flux line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】互いに平行な複数対の内壁面を有する多角
筒状に形成された軟質磁性材料からなるコア、ならびに
このコアの複数対の内壁面を覆うように固着された複数
の永久磁石により、前記コアの内側の中空部に軸線に垂
直な一方向の均一磁場を発生するものであって、台形断
面を有する板状の互いに平行な二面の長辺側の面が前記
コアの均一磁場に垂直な内壁面に固着され前記二面に垂
直な方向に磁化された台形断面を有する板状の永久磁石
と、不等辺三角形断面を有する板状に形成され長辺側の
面が前記台形断面を有する板状の永久磁石とは異なる角
度方向の内壁面に固着され、短辺側の面が隣接する内壁
面との境界線を通る共通の接合面を形成して隣接する前
記台形断面を有する永久磁石の傾斜面と接合するよう
に、前記接合面のコアの中空部側の端が不等辺三角形断
面を有する板状の永久磁石の長辺側および中辺側の交点
と、前記境界線を中心とし台形断面を有する板状の永久
磁石の厚みを半径とする円周上とを結ぶ接線上に位置す
るように設け、前記中空部に接する中辺側の面に垂直な
方向に磁化されてなる不等辺三角形断面を有する板状の
永久磁石を備えてなることを特徴とする永久磁石形均一
磁場マグネット。
1. A core made of a soft magnetic material formed in a polygonal cylinder shape having a plurality of pairs of inner wall surfaces parallel to each other, and a plurality of permanent magnets fixed so as to cover the plurality of pairs of inner wall surfaces. A uniform magnetic field in one direction perpendicular to the axis is generated in the hollow portion inside the core, the two parallel long sides of a plate having a trapezoidal cross section having a uniform magnetic field of the core. A plate-shaped permanent magnet having a trapezoidal section magnetized in a direction perpendicular to the two surfaces and fixed to an inner wall surface perpendicular to the two sides, and a plate having a trapezoidal section having an isosceles triangular section, and the long side surface having the trapezoidal section. Has a trapezoidal cross section which is fixed to an inner wall surface in an angle direction different from that of a plate-shaped permanent magnet having, and has a adjoining trapezoidal section whose short side faces form a common joint surface that passes through a boundary line with an adjacent inner wall surface. The joint surface of the permanent magnet should be joined so that it joins the inclined surface of the permanent magnet. The end of the hollow side of the is the intersection of the long side and the middle side of the plate-shaped permanent magnet having an isosceles triangular cross section, and the radius of the thickness of the plate-shaped permanent magnet having a trapezoidal cross section with the boundary line as the center. And a plate-shaped permanent magnet having an isosceles triangular cross-section, which is magnetized in a direction perpendicular to the surface on the medial side in contact with the hollow portion. A permanent magnet type uniform magnetic field magnet characterized by the above.
JP61019326A 1986-01-31 1986-01-31 Permanent magnet type uniform magnetic field magnet Expired - Lifetime JPH079845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61019326A JPH079845B2 (en) 1986-01-31 1986-01-31 Permanent magnet type uniform magnetic field magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61019326A JPH079845B2 (en) 1986-01-31 1986-01-31 Permanent magnet type uniform magnetic field magnet

Publications (2)

Publication Number Publication Date
JPS62177903A JPS62177903A (en) 1987-08-04
JPH079845B2 true JPH079845B2 (en) 1995-02-01

Family

ID=11996282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019326A Expired - Lifetime JPH079845B2 (en) 1986-01-31 1986-01-31 Permanent magnet type uniform magnetic field magnet

Country Status (1)

Country Link
JP (1) JPH079845B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998976A (en) * 1987-10-07 1991-03-12 Uri Rapoport Permanent magnet arrangement
US5063934A (en) * 1987-10-07 1991-11-12 Advanced Techtronics, Inc. Permanent magnet arrangement
JPH0744105B2 (en) * 1988-01-22 1995-05-15 三菱電機株式会社 electromagnet
US5280209A (en) * 1989-11-14 1994-01-18 The United States Of America As Represented By The Secretary Of The Army Permanent magnet structure for use in electric machinery
US5162770A (en) * 1990-02-22 1992-11-10 Esaote Biomedica Terminations of cylindrical permanent magnets
JPH05211104A (en) * 1991-12-05 1993-08-20 Hitachi Medical Corp Static magnetic field generating equipment for magnetic resonance imaging equipment
US5621324A (en) * 1992-03-18 1997-04-15 Sumitomo Special Metals Company Limited Magnetic field generator for MRI
JP3150248B2 (en) * 1993-12-27 2001-03-26 住友特殊金属株式会社 Magnetic field generator for MRI
US6835048B2 (en) * 2002-12-18 2004-12-28 Varian, Inc. Ion pump having secondary magnetic field

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193557U (en) * 1982-06-18 1983-12-23 三菱製鋼磁材株式会社 Magnet device for ion pump
JPS60166110U (en) * 1984-04-11 1985-11-05 住友特殊金属株式会社 magnetic field generator

Also Published As

Publication number Publication date
JPS62177903A (en) 1987-08-04

Similar Documents

Publication Publication Date Title
JPH0335802B2 (en)
KR100362042B1 (en) Magnetic field generating device for mri
JPH0831635A (en) Mri magnetic field generating device
US20110248715A1 (en) Compact Inhomogeneous Permanent Magnetic Field Generator for Magnetic Resonance Imaging
US4870380A (en) Magnet arrangements
US7293468B2 (en) Electromagnetic flowmeter
JPH079845B2 (en) Permanent magnet type uniform magnetic field magnet
JP2767659B2 (en) Magnetic field generator
JP3019266B2 (en) High efficiency coupled permanent magnet
KR0135210B1 (en) Magnetic field generating apparatus for use in mri
JPH05217761A (en) Magnetic core with gap and inductance element
JPH0378592B2 (en)
JP2002514952A (en) Device for generating uniform magnetic field with magnetic wedge
US4884235A (en) Micromagnetic memory package
JPH0787141B2 (en) Permanent magnet type uniform magnetic field magnet
JP4214736B2 (en) Magnetic field generator for MRI
JP3056883B2 (en) Magnetic field generator for MRI
JPH0345886B2 (en)
JPH0247845B2 (en) GENZOYOJISHAKUROORUNOSEIZOHOHO
US3690172A (en) Magnetic flowmeter having ferrous field armature
Abele Generation and confinement of uniform magnetic fields with surface currents
JPH02184003A (en) Magnetic field generator for mri
JPH06151160A (en) Magnetic field generating device for mri
US6906519B2 (en) Superconducting magnet, particularly for MRI imaging apparati and method of using same
JPH04130416U (en) coil device