JPH0798437A - Light beam scanning device - Google Patents

Light beam scanning device

Info

Publication number
JPH0798437A
JPH0798437A JP24232393A JP24232393A JPH0798437A JP H0798437 A JPH0798437 A JP H0798437A JP 24232393 A JP24232393 A JP 24232393A JP 24232393 A JP24232393 A JP 24232393A JP H0798437 A JPH0798437 A JP H0798437A
Authority
JP
Japan
Prior art keywords
rotary deflector
light beam
scanning device
beam scanning
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24232393A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
弘 中村
Jun Kosaka
純 向坂
Etsuko Shibata
悦子 芝田
Masanori Yamamoto
雅典 山本
Takeshi Hamada
健史 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP24232393A priority Critical patent/JPH0798437A/en
Publication of JPH0798437A publication Critical patent/JPH0798437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep the deformation amount of a deflection surface small and surface accuracy excellent by essentially composing a rotary deflecting device of a resin material and making thickness in the vicinity of the deflection surface larger than that in the vicinity of the center of rotation. CONSTITUTION:A motor 5 is constituted of a stator fixed on a substrate 1, a rotor 7 which can rotate around the stator, and a rotary shaft 8 rotatably provided at the axial center part of the stator. A pedestal 10 is coupled with the rotor 7 and the rotary shaft 8, and the three of them can integrally rotate. The rotary deflecting device 15 is integrally molded of the synthetic resin material such as polycarbonate or acrylic by injection molding, and is constituted as a regular square body provided with the deflection surfaces 16a to 16d on the outer peripheral surface. The deflection surfaces 16a to 16d are finished as mirror surfaces. Then, the device 15 is provided with a hole 17 in its center part and a depression formed in a central part, and it is constituted so that the thickness (a) of the peripheral part 18a in the vicinity of the deflection surface is larger than the thickness (c) of the central part 18b being the vicinity part of the center of rotation. The device 15 is fixed on the rotary shaft 8 by the center hole 17 through the pedestal 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ビーム走査装置、詳
しくは、回転偏向器の定速回転によって光ビームを偏向
し、受光面上を走査する光ビーム走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam scanning device, and more particularly to a light beam scanning device for deflecting a light beam by rotating a rotary deflector at a constant speed and scanning the light receiving surface.

【0002】[0002]

【従来の技術】従来、レーザプリンタやイメージリーダ
に用いられている光ビーム走査装置として回転偏向器を
備えたものが知られている。回転偏向器は、外周面に複
数の偏向面を有する正多角体であって、モータの回転軸
に取り付けられ、モータの回転に伴って回転し、半導体
レーザ等から放射された光ビームを各偏向面で等角速度
に偏向する。
2. Description of the Related Art Conventionally, as a light beam scanning device used in a laser printer or an image reader, a device provided with a rotary deflector is known. The rotary deflector is a regular polygonal body having a plurality of deflection surfaces on its outer peripheral surface, is attached to the rotation shaft of a motor, rotates with the rotation of the motor, and deflects a light beam emitted from a semiconductor laser or the like. The surface is deflected to a constant angular velocity.

【0003】回転偏向器は、従来ではアルミニウム等の
金属やガラスを材料として製作されている。しかし、近
年では軽量化や量産性を目的として、樹脂材料で製作す
ることが種々試みられている。しかし、樹脂材料からな
る回転偏向器は、回転によって生じる遠心力によって偏
向面が僅かに凹形状又は凸形状に変形するという問題が
ある。偏向面が凹形状又は凸形状に変形すると、面精度
が悪化し、像面が受光面から外れ、十分な光学的性能を
得ることができない。
Conventionally, the rotary deflector is made of metal such as aluminum or glass. However, in recent years, various attempts have been made to manufacture a resin material for the purpose of weight reduction and mass productivity. However, the rotary deflector made of a resin material has a problem that the deflecting surface is slightly deformed into a concave shape or a convex shape due to the centrifugal force generated by the rotation. When the deflecting surface is deformed into a concave shape or a convex shape, the surface accuracy is deteriorated, the image plane is deviated from the light receiving surface, and sufficient optical performance cannot be obtained.

【0004】[0004]

【発明の目的、構成、作用、効果】そこで、本発明の目
的は、回転時における偏向面の変形量が小さく、面精度
を良好に維持できる回転偏向器を備え、十分な光学的性
能を有する光ビーム走査装置を提供することにある。以
上の目的を達成するため、本発明に係る光ビーム走査装
置は、樹脂材料を主成分としてなり、外周面に複数の偏
向面を有する正多角体をなす回転偏向器を、偏向面近傍
の厚さが回転中心部近傍の厚さよりも大きく設定し、こ
の回転偏向器をモータの回転軸に台座を介して回転軸と
一体的に取り付けた。偏向面近傍の厚さを回転中心部近
傍の厚さよりも大きくすることにより、偏向面近傍の剛
性が相対的に大きくなり、回転時における偏向面の変形
量が小さくなり、必要な光学的性能を維持することとな
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a rotary deflector capable of maintaining a good surface accuracy with a small amount of deformation of a deflecting surface during rotation, and having sufficient optical performance. An object is to provide a light beam scanning device. In order to achieve the above object, the light beam scanning device according to the present invention includes a rotary deflector which is made of a resin material as a main component and has a regular polygonal shape having a plurality of deflection surfaces on its outer peripheral surface. The thickness was set to be larger than the thickness in the vicinity of the center of rotation, and this rotary deflector was attached to the rotary shaft of the motor integrally with the rotary shaft via the pedestal. By making the thickness in the vicinity of the deflection surface larger than the thickness in the vicinity of the center of rotation, the rigidity in the vicinity of the deflection surface becomes relatively large, and the amount of deformation of the deflection surface at the time of rotation becomes small. Will be maintained.

【0005】さらに、本発明に係る光ビーム走査装置
は、回転偏向器をその対角線方向の厚さが偏向面方向の
厚さよりも小さく設定した。これにて、偏向面近傍の剛
性が相対的に大きくなり、回転時における偏向面の変形
量が小さくなり、必要な光学的性能を維持することとな
る。
Further, in the light beam scanning device according to the present invention, the rotary deflector is set so that the thickness in the diagonal direction is smaller than the thickness in the deflecting surface direction. As a result, the rigidity in the vicinity of the deflecting surface becomes relatively large, the amount of deformation of the deflecting surface during rotation becomes small, and the required optical performance is maintained.

【0006】さらに、本発明に係る光ビーム走査装置
は、樹脂材料を主成分とする回転偏向器の偏向面近傍と
その他の部分とで物性値を異ならしめた。例えば、剛性
の必要な部分とその他の部分とで材料を異ならしめ、剛
性の必要な部分はヤング率の大きい材料を使用した。こ
れにて、回転時における偏向面の変形量が小さくなり、
必要な光学的性能を維持することとなる。
Further, in the light beam scanning device according to the present invention, the physical property values are made different in the vicinity of the deflecting surface of the rotary deflector whose main component is a resin material and in other portions. For example, different materials were used for the portion requiring rigidity and the other portions, and a material having a large Young's modulus was used for the portion requiring rigidity. This reduces the amount of deformation of the deflecting surface during rotation,
It will maintain the required optical performance.

【0007】さらに、本発明に係る光ビーム走査装置
は、回転偏向器を台座と取付け部材とで上下方向から挟
み込んで固定し、固定部分を回転偏向器の変形の大きな
部分に設定することにより、取付け部材の剛性で回転時
の各偏向面の変形を抑制するようにした。
Further, in the light beam scanning device according to the present invention, the rotary deflector is fixed by being sandwiched between the pedestal and the mounting member in the vertical direction, and the fixed portion is set to a portion where the deformation of the rotary deflector is large. The rigidity of the mounting member suppresses the deformation of each deflection surface during rotation.

【0008】[0008]

【実施例】以下、本発明に係る光ビーム走査装置の実施
例につき、添付図面を参照して説明する。 (第1実施例、図1〜図12参照)図1、図2におい
て、光ビーム走査装置は、概略、基板1と、モータ5
と、台座10と、回転偏向器15と、取付け具20とで
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a light beam scanning device according to the present invention will be described below with reference to the accompanying drawings. (First Embodiment, see FIGS. 1 to 12) In FIGS. 1 and 2, a light beam scanning device is roughly composed of a substrate 1 and a motor 5.
The pedestal 10, the rotary deflector 15, and the fixture 20.

【0009】基板1は、必要な剛性を有し、モータ5を
支持すると共に、モータ5の駆動制御回路を構成する各
種電子部品が実装されている。モータ5は、基板1に固
定されたステータ6と、ステータ6の周囲を回転可能な
ロータ7と、ステータ6の軸心部に回転可能に設けた回
転軸8とで構成されている。台座10はロータ7及び回
転軸8と結合され、この三者は一体的に回転可能であ
る。台座10は金属材料からなり、その中央部分には研
磨された台部11を有している。
The substrate 1 has a required rigidity, supports the motor 5, and is mounted with various electronic parts constituting a drive control circuit of the motor 5. The motor 5 is composed of a stator 6 fixed to the substrate 1, a rotor 7 rotatable around the stator 6, and a rotary shaft 8 rotatably provided at the axial center of the stator 6. The pedestal 10 is connected to the rotor 7 and the rotating shaft 8, and these three members can rotate integrally. The pedestal 10 is made of a metal material, and has a polished pedestal portion 11 in its central portion.

【0010】回転偏向器15は、ポリカーボネイト、ア
クリル等の合成樹脂材料から射出成形によって一体的に
成形したもので、外周面に四つの偏向面16a〜16d
を有する正四角体をなし、偏向面16a〜16dは鏡面
に仕上げられている。さらに、回転偏向器15は、中心
部に孔17を有し、中央部分に窪みが形成され、各偏向
面近傍の周辺部分18aの厚さaは回転中心近傍部分の
中央部分18bの厚さcよりも大きい(図3参照)。
The rotary deflector 15 is integrally molded by injection molding from a synthetic resin material such as polycarbonate or acrylic, and has four deflection surfaces 16a to 16d on its outer peripheral surface.
Is formed, and the deflection surfaces 16a to 16d are mirror-finished. Further, the rotary deflector 15 has a hole 17 in the center and a recess is formed in the center, and the thickness a of the peripheral portion 18a near each deflecting surface is the thickness c of the center portion 18b near the center of rotation. Larger than that (see FIG. 3).

【0011】前記回転偏向器15は中心孔17を前記回
転軸8の上部に嵌合し、前記台座10の台部11上に搭
載する。そして、取付け具20を回転軸8の上端面に乗
せた状態で、さらに座金25,26を介在させて、ビス
27を回転軸8の上部に形成したねじ孔に螺着する。こ
れにて、回転偏向器15が回転軸8に固定される。取付
け具20は、図4に示すように、中心にビス27の挿入
孔21、両側にくさび状の突片22を有している。ビス
27からの締付け力によって突片22の尖端が回転偏向
器15の表面に突き刺さり、回転偏向器15を押圧す
る。回転偏向器15はこの取付け具20の押圧力で台座
10上において回転軸8と一体的に結合される。
The rotary deflector 15 has a center hole 17 fitted on the upper portion of the rotary shaft 8 and is mounted on the pedestal 11 of the pedestal 10. Then, with the mounting tool 20 placed on the upper end surface of the rotary shaft 8, the screws 27 are screwed into the screw holes formed on the upper part of the rotary shaft 8 with further washers 25 and 26 interposed. Thus, the rotary deflector 15 is fixed to the rotary shaft 8. As shown in FIG. 4, the fixture 20 has an insertion hole 21 for the screw 27 in the center and wedge-shaped projections 22 on both sides. Due to the tightening force from the screw 27, the tip of the projecting piece 22 pierces the surface of the rotary deflector 15 and presses the rotary deflector 15. The rotary deflector 15 is integrally connected to the rotary shaft 8 on the pedestal 10 by the pressing force of the fixture 20.

【0012】ここで、回転偏向器15の周辺部分18a
の厚さa及び幅bと中央部分18bの厚さcに対する回
転時における偏向面16a〜16dの変形量を説明す
る。以下の説明で、「r方向」とは中心からラジアル方
向、「x方向」とは各偏向面から垂直な方向、「y方
向」とは各偏向面の長手方向を意味する。「軸面間距
離」とは回転中心から各偏向面までの距離を意味し、図
3ではRで示されている。「変形量」とは回転時におけ
る偏向面のy方向各点におけるx方向又はr方向の移動
量をいう。「面精度」とは変形量の最大値と最小値の差
をいう。なお、変形量、面精度は偏向面のy方向全長に
わたって良好である必要はなく、画像の形成に使用され
る有効偏向領域で良好であればよい。
Here, the peripheral portion 18a of the rotary deflector 15
The amount of deformation of the deflecting surfaces 16a to 16d during rotation with respect to the thickness a and width b and the thickness c of the central portion 18b will be described. In the following description, “r direction” means a radial direction from the center, “x direction” means a direction perpendicular to each deflecting surface, and “y direction” means a longitudinal direction of each deflecting surface. “Axial surface distance” means the distance from the center of rotation to each deflection surface, and is indicated by R in FIG. The “deformation amount” refers to the amount of movement in the x direction or the r direction at each point in the y direction of the deflection surface during rotation. "Surface accuracy" means the difference between the maximum value and the minimum value of the amount of deformation. The deformation amount and the surface accuracy do not have to be good over the entire length of the deflection surface in the y direction, and may be good in the effective deflection area used for image formation.

【0013】本第1実施例においては、幅b及び厚さc
を以下の表1に示す8種類に設定し、回転時における偏
向面の変形量を求めた。図5及び以下の変形量を示すグ
ラフは、特定の形状及び物性値を有する各種回転偏向器
をモデルとして有限要素法を用いてシュミレートした結
果である。そして、図5及び以下のグラフにおいて、横
軸には偏向面の中央を起点とするy方向の長さをとり、
縦軸にはx方向又はr方向の変形量をとっている。
In the first embodiment, the width b and the thickness c
Was set to 8 types shown in Table 1 below, and the amount of deformation of the deflecting surface during rotation was determined. FIG. 5 and the following graphs showing the amount of deformation are results obtained by simulating various rotary deflectors having specific shapes and physical property values using the finite element method as a model. Then, in FIG. 5 and the following graphs, the horizontal axis represents the length in the y direction starting from the center of the deflection surface,
The vertical axis represents the amount of deformation in the x direction or the r direction.

【0014】[0014]

【表1】 [Table 1]

【0015】実験例1〜8でモデルとされた回転偏向器
は、軸面間距離が15mm、中心孔17の直径が5mm
の正四角体であり、ヤング率が210kgf/mm2
ポアソン比が0.35、比重が1.2の物性値を有し、
6685.5rpmで回転させた。図5は実験例1、図
6は実験例2、図7は実験例3、図8は実験例4、図9
は実験例5、図10は実験例6、図11は実験例7、図
12は実験例8におけるx方向変形量をそれぞれ曲線5
1,61,71,81,91,101,111,121
で示す。
The rotary deflectors modeled in Experimental Examples 1 to 8 have an axial distance of 15 mm and a central hole 17 having a diameter of 5 mm.
Is a regular tetragon and has a Young's modulus of 210 kgf / mm 2 ,
Poisson's ratio is 0.35 and specific gravity is 1.2,
It was rotated at 6685.5 rpm. 5 is Experimental Example 1, FIG. 6 is Experimental Example 2, FIG. 7 is Experimental Example 3, FIG. 8 is Experimental Example 4, and FIG.
Is Experimental Example 5, FIG. 10 is Experimental Example 6, FIG. 11 is Experimental Example 7, and FIG.
1, 61, 71, 81, 91, 101, 111, 121
Indicate.

【0016】これらの実験例1〜8から明らかなよう
に、周辺部分18aの厚さaを中央部分18bの厚さc
よりも大きく設定することにより、偏向面16a〜16
dは回転時において変形量が小さく、面精度が良好なフ
ラットな面を維持する。
As is clear from these Experimental Examples 1 to 8, the thickness a of the peripheral portion 18a is changed to the thickness c of the central portion 18b.
The deflection surfaces 16a to 16a
d has a small amount of deformation during rotation and maintains a flat surface with good surface accuracy.

【0017】(第2実施例、図13〜図19参照)本第
2実施例においては、図13に示す回転偏向器30を使
用する。この回転偏向器30は前記回転偏向器15と同
様に合成樹脂材料からなり、外周面に偏向面31a〜3
1dを有する正四角体をなし、中心孔32を有してい
る。さらに、回転偏向器30は対角線方向に幅dの溝部
33a,33aが形成され、溝部33a,33aの厚さ
eはその他の部分33b、即ち、偏向面近傍部分の厚さ
fよりも小さく設定されている。
(Second Embodiment, see FIGS. 13 to 19) In the second embodiment, the rotary deflector 30 shown in FIG. 13 is used. Like the rotary deflector 15, the rotary deflector 30 is made of a synthetic resin material and has deflection surfaces 31a to 3a on its outer peripheral surface.
It has a regular square shape having 1d and has a central hole 32. Further, the rotary deflector 30 is formed with grooves 33a, 33a having a width d in a diagonal direction, and the thickness e of the grooves 33a, 33a is set to be smaller than the other portion 33b, that is, the thickness f in the vicinity of the deflecting surface. ing.

【0018】この回転偏向器30は、図1、図2に示し
たモータ5の回転軸8に中心孔32を嵌合して取付けら
れ、前述の取付け具20で中心孔32の近傍を押圧、固
定される。ここで、回転偏向器30の溝幅d及び厚さ
e,fに対する回転時における偏向面31a〜31dの
変形量を実験例9〜14として示す。本第2実施例にお
いては、幅d及び厚さeを以下の表2に示す6種類に設
定し、回転時における偏向面の変形量を求めた。
The rotary deflector 30 is mounted by fitting the center hole 32 into the rotary shaft 8 of the motor 5 shown in FIGS. 1 and 2, and pressing the vicinity of the center hole 32 with the above-mentioned mounting tool 20, Fixed. Here, the deformation amounts of the deflection surfaces 31a to 31d during rotation with respect to the groove width d and the thicknesses e and f of the rotary deflector 30 are shown as Experimental Examples 9 to 14. In the second example, the width d and the thickness e were set to the six types shown in Table 2 below, and the amount of deformation of the deflecting surface during rotation was determined.

【0019】[0019]

【表2】 [Table 2]

【0020】実験例9〜14でモデルとされた回転偏向
器は軸面間距離が15mm、中心孔32の直径が5mm
の正四角体であり、ヤング率が210kgf/mm2
ポアソン比が0.35、比重が1.2の物性値を有し、
6685.5rpmで回転させた。図14は実験例9、
図15は実験例10、図16は実験例11、図17は実
験例12、図18は実験例13、図19は実験例14に
おけるx方向変形量をそれぞれ曲線141,151,1
61,171,181,191で示す。
In the rotary deflector modeled in Experimental Examples 9 to 14, the axial distance is 15 mm, and the diameter of the central hole 32 is 5 mm.
Is a regular tetragon and has a Young's modulus of 210 kgf / mm 2 ,
Poisson's ratio is 0.35 and specific gravity is 1.2,
It was rotated at 6685.5 rpm. FIG. 14 shows Experimental Example 9,
15 is an experiment example 10, FIG. 16 is an experiment example 11, FIG. 17 is an experiment example 12, FIG. 18 is an experiment example 13, and FIG. 19 is an x direction deformation amount in the experiment example 14, respectively, curves 141, 151, 1
61, 171, 181, 191 are shown.

【0021】これらの実験例9〜14から明らかなよう
に、溝部33aの厚さeを偏向面近傍部分33bの厚さ
fよりも小さく設定することにより、偏向面31a〜3
1dは回転時において変形量が小さく、面精度が良好な
フラットな面を維持する。
As is clear from these Experimental Examples 9 to 14, by setting the thickness e of the groove portion 33a smaller than the thickness f of the portion 33b near the deflecting surface, the deflecting surfaces 31a to 3a.
1d has a small amount of deformation during rotation and maintains a flat surface with good surface accuracy.

【0022】(第3実施例、図20〜図23)本第3実
施例においては、図20に示す回転偏向器35を使用す
る。この回転偏向器35は外周面に偏向面36a〜36
dを有する正四角体をなし、中心孔37を有している。
さらに、対角線部分38aと偏向面近傍部分38bとで
以下に説明するように材料を異ならしめている。
(Third Embodiment, FIGS. 20 to 23) In the third embodiment, the rotary deflector 35 shown in FIG. 20 is used. The rotary deflector 35 has deflection surfaces 36a to 36 on its outer peripheral surface.
It is a regular tetragon having d and has a central hole 37.
Further, the diagonal portion 38a and the deflecting surface vicinity portion 38b are made of different materials as described below.

【0023】この回転偏向器35も、図1、図2に示し
たモータ5の回転軸8に中心孔37を嵌合して取り付け
られ、前記取付け具20で中心孔37の近傍を押圧、固
定される。ここで、対角線部分38aと偏向面近傍部分
38bとに使用された材料の物性値を実験例15,1
6,17として説明する。
This rotary deflector 35 is also attached by fitting the center hole 37 into the rotary shaft 8 of the motor 5 shown in FIGS. 1 and 2, and pressing and fixing the vicinity of the center hole 37 with the fixture 20. To be done. Here, the physical property values of the materials used for the diagonal line portion 38a and the deflection surface vicinity portion 38b are shown in Experimental Examples 15 and 1.
6, 17 will be described.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】これらの実験例15,16,17でモデル
とされた回転偏向器は軸面間距離が15mm、厚さが
3.75mmの正四角体であり、6685.5rpmで
回転させた。表3に示した実験例15は、対角線部分3
8aに用いられる樹脂材料のヤング率を900kgf/
mm2と大きくした場合であり、x方向変形量は図21
の曲線211で示すように小さく、面精度は良好であ
る。
The rotary deflectors modeled in these Experimental Examples 15, 16 and 17 were regular tetragons having an axial distance of 15 mm and a thickness of 3.75 mm, and were rotated at 6685.5 rpm. In Experimental Example 15 shown in Table 3, the diagonal line portion 3
The Young's modulus of the resin material used for 8a is 900 kgf /
In the case of a large value of mm 2 , the deformation amount in the x direction is shown in FIG.
As shown by the curve 211 of No. 2, it is small and the surface accuracy is good.

【0028】表4に示した実験例16は、対角線部分3
8aに用いられる樹脂材料の比重を0.8と小さくした
場合であり、x方向変形量は図22の曲線221で示す
ように小さく、面精度は良好である。表5に示した実験
例17は、対角線部分38aとしてポリカーボネイトに
ガラスフリットを重量比で50%混入した材料を用いた
場合であり、x方向変形量は図23の曲線231で示す
ように小さく、面精度は良好である。
In Experimental Example 16 shown in Table 4, the diagonal line portion 3
This is a case where the specific gravity of the resin material used for 8a is reduced to 0.8, the x-direction deformation amount is small as shown by the curve 221 in FIG. 22, and the surface accuracy is good. Experimental Example 17 shown in Table 5 is a case where a material in which 50% by weight of glass frit is mixed in polycarbonate is used as the diagonal line portion 38a, and the x-direction deformation amount is small as shown by a curve 231 in FIG. The surface accuracy is good.

【0029】ちなみに、各実験例15,16,17にお
いて、偏向面近傍部分38bの材料はポリカーボネイト
である。一般的に、樹脂材料からなる回転偏向器では、
回転時において、4面以下では各偏向面が凹形状に変形
し、6面以上では凸形状に変形する傾向にある。あるポ
イントでの変形量はそのポイントに作用する遠心力と反
力によって決定される。また、材料のポアソン比も関係
してくる。従って、回転時の変形量を小さくするには、
遠心力を減小させる(比重を小さくする)、反力を大き
くする(ヤング率を大きくする)、材料のポアソン比を
コントロールする、ことが考えられる。
Incidentally, in each of Experimental Examples 15, 16 and 17, the material of the portion 38b near the deflecting surface is polycarbonate. Generally, in a rotary deflector made of resin material,
At the time of rotation, each deflecting surface tends to be deformed into a concave shape when the surface is 4 or less, and is convex when the surface is 6 or more. The amount of deformation at a certain point is determined by the centrifugal force and reaction force acting on that point. The Poisson's ratio of the material is also relevant. Therefore, to reduce the amount of deformation during rotation,
It is possible to reduce the centrifugal force (decrease the specific gravity), increase the reaction force (increase the Young's modulus), and control the Poisson's ratio of the material.

【0030】実験例15は、4面であれば一般に偏向面
が凹形状に変形することに鑑みて、対角線部分38aの
反力(ヤング率)を大きくすることで変形量を抑えるよ
うにした。このことは4面以下の回転偏向器に適用でき
る。同様に、実験例16は対角線部分38aの遠心力
(比重)を小さくすることで変形量を抑えるようにし
た。このことは4面以下の回転偏向器に適用できる。実
験例17も反力を大きくすることで変形量を抑えるもの
で、遠心力は若干大きくなっているが、反力を大きくす
る効果の方が大きく現れている。
In Experimental Example 15, in consideration of the fact that the deflecting surface generally deforms into a concave shape if there are four surfaces, the amount of deformation is suppressed by increasing the reaction force (Young's modulus) of the diagonal line portion 38a. This can be applied to a rotary deflector having four surfaces or less. Similarly, in Experimental Example 16, the amount of deformation was suppressed by reducing the centrifugal force (specific gravity) of the diagonal line portion 38a. This can be applied to a rotary deflector having four surfaces or less. In Experimental Example 17 as well, the amount of deformation is suppressed by increasing the reaction force, and the centrifugal force is slightly increased, but the effect of increasing the reaction force is more pronounced.

【0031】一方、回転偏向器が6面以上であれば一般
に偏向面が凸形状に変形するため、前述とは逆の物性値
を選択する必要がある。即ち、偏向面近傍部分38bの
反力(ヤング率)を大きくするか、遠心力(比重)を小
さくする。
On the other hand, if the number of rotary deflectors is six or more, the deflecting surface is generally deformed into a convex shape, so it is necessary to select the physical property values opposite to the above. That is, the reaction force (Young's modulus) of the portion 38b near the deflection surface is increased or the centrifugal force (specific gravity) is decreased.

【0032】(第4実施例、図24〜図26参照)本第
4実施例においては、図24に示す回転偏向器40を使
用する。この回転偏向器40は外周面に偏向面41a〜
41dを有する正四角体をなし、中心孔42を有してい
る。さらに、偏向面41a〜41dを含む周辺部分43
aと中央部分43bとで以下に説明するように材料を異
ならしめている。
(Fourth Embodiment, See FIGS. 24 to 26) In the fourth embodiment, the rotary deflector 40 shown in FIG. 24 is used. The rotary deflector 40 has deflection surfaces 41a ...
It is a regular tetragon having 41d and has a central hole 42. Further, the peripheral portion 43 including the deflection surfaces 41a to 41d
As described below, the materials of the a and the central portion 43b are made different.

【0033】この回転偏向器40も、図1、図2に示し
たモータ5の回転軸8に中心孔42を嵌合して取り付け
られ、前記取付け具20で中心孔42の近傍を押圧、固
定される。ここで、周辺部分43aと中央部分43bと
に使用された材料の物性値を実験例18,19として説
明する。
This rotary deflector 40 is also attached by fitting the central hole 42 into the rotary shaft 8 of the motor 5 shown in FIGS. 1 and 2, and pressing and fixing the vicinity of the central hole 42 with the fitting 20. To be done. Here, the physical property values of the materials used for the peripheral portion 43a and the central portion 43b will be described as Experimental Examples 18 and 19.

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【表7】 [Table 7]

【0036】これらの実験例18,19でモデルとされ
た回転偏向器は軸面間距離が15mm、厚さが3.75
mm、周辺部分の幅gが2mmの正四角体であり、66
85.5rpmで回転させた。表6に示した実験例18
は、周辺部分43aに用いられる樹脂材料のヤング率を
600kgf/mm2と大きくした場合であり、x方向
変形量は図25の曲線251で示すように小さく、面精
度が良好である。
The rotary deflectors modeled in these Experimental Examples 18 and 19 have an axial distance of 15 mm and a thickness of 3.75.
mm, the width g of the peripheral portion is 2 mm, and is a regular tetragon.
It was rotated at 85.5 rpm. Experimental Example 18 shown in Table 6
Shows the case where the Young's modulus of the resin material used for the peripheral portion 43a is increased to 600 kgf / mm 2 , the x-direction deformation amount is small as shown by the curve 251 in FIG. 25, and the surface accuracy is good.

【0037】表7に示した実験例19は、周辺部分43
aとしてポリカーボネイトにガラスフリットを重量比で
30%混入した材料を用いた場合であり、x方向変形量
は図26の曲線261で示すように小さく、面精度が良
好である。本第4実施例においては、周辺部分43aの
反力(ヤング率)を大きく設定することにより、回転時
における偏向面のフラット化を達成した。
In Experimental Example 19 shown in Table 7, the peripheral portion 43
When a material in which 30% by weight of glass frit is mixed in polycarbonate is used as a, the deformation amount in the x direction is small as shown by the curve 261 in FIG. 26, and the surface accuracy is good. In the fourth embodiment, the flattening of the deflection surface during rotation is achieved by setting the reaction force (Young's modulus) of the peripheral portion 43a large.

【0038】(第5実施例、図27〜図29参照)本第
5実施例及び以下に説明する第6〜第11実施例は取付
け具及び/又は台座に設けた第2の取付け具を回転偏向
器に係合させることにより、回転時の偏向面の変形を極
力抑制するようにしたものである。なお、これらの実施
例に示されている4面又は6面の回転偏向器52,55
は樹脂材料から均質に成形したものである。
(Fifth Embodiment, see FIGS. 27 to 29) In the fifth embodiment and the sixth to eleventh embodiments described below, the attachment and / or the second attachment provided on the pedestal is rotated. By engaging with the deflector, deformation of the deflecting surface during rotation is suppressed as much as possible. It should be noted that the four-sided or six-sided rotary deflectors 52 and 55 shown in these embodiments are shown.
Is a resin material homogeneously molded.

【0039】図27〜図29において、回転偏向器52
は四つの偏向面53a〜53dを有する正四角体をな
し、台座62上に取付け具63で押圧保持されている。
台座62は図1、図2に示したモータ5のロータ7及び
回転軸8と一体的に回転可能である。回転偏向器52は
図示しない中心孔を回転軸8に嵌合させて台座62上に
載置され、取付け具63で押圧されている。取付け具6
3は金属材からなり、4隅に突片64を有し、回転軸8
の上部にビス27で固定されている。取付け具63の突
片64の先端は針状に尖っており、図28中h1点で回
転偏向器52の表面に突き刺っている。この各h1点は
回転偏向器52の各コーナーと回転中心とを結ぶ対角線
H上に設定されている。
27 to 29, the rotary deflector 52
Is a regular quadrangle having four deflection surfaces 53a to 53d, and is pressed and held by a mounting tool 63 on a pedestal 62.
The pedestal 62 can rotate integrally with the rotor 7 and the rotary shaft 8 of the motor 5 shown in FIGS. The rotary deflector 52 is mounted on a pedestal 62 with a center hole (not shown) fitted to the rotary shaft 8, and is pressed by a mounting tool 63. Fixture 6
3 is made of a metal material and has projecting pieces 64 at four corners,
It is fixed to the upper part by screws 27. The tip of the protruding piece 64 of the fixture 63 is sharp like a needle and pierces the surface of the rotary deflector 52 at a point h 1 in FIG. Each h 1 point is set on a diagonal line H connecting each corner of the rotary deflector 52 and the center of rotation.

【0040】4面の回転偏向器は回転時に各偏向面が凹
形状に変形することが知られている。この変形は回転時
の遠心力で対角線上での樹脂材料の変形(伸び)が大き
いためである。従って、この変形部分での反力を大きく
することによって偏向面の凹形状化を抑制することが可
能となる。本第5実施例では、取付け具63の突片64
によって回転偏向器52の変形の大きい部分、即ち、対
角線H上のh1点を突き刺して押圧、保持することによ
り、回転時における偏向面53a〜53dの変形を抑制
し、面精度を良好なものとした。
It is known that the four-sided rotary deflector deforms each of the deflecting surfaces into a concave shape during rotation. This deformation is due to the large deformation (elongation) of the resin material on the diagonal due to centrifugal force during rotation. Therefore, by increasing the reaction force at this deformed portion, it is possible to suppress the deflection surface from becoming concave. In the fifth embodiment, the protrusion 64 of the attachment 63 is
A portion of the rotary deflector 52 that is largely deformed, that is, a point h 1 on the diagonal line H is pierced and pressed to be held by the rotary deflector 52, thereby suppressing the deformation of the deflecting surfaces 53a to 53d during rotation and achieving good surface accuracy. And

【0041】さらに、取付け具63の突片64を回転偏
向器52の表面に突き刺すことによって、回転スタート
時に回転偏向器52とモータ5との間に“滑り”が生じ
ることを確実に防止できる。なお、本第5実施例は3面
の回転偏向器にも適用できる。また、突片64は面数の
整数倍設けられていてもよい。
Further, by sticking the protrusion 64 of the fixture 63 on the surface of the rotary deflector 52, it is possible to reliably prevent "slip" between the rotary deflector 52 and the motor 5 at the start of rotation. The fifth embodiment can also be applied to a three-sided rotary deflector. Further, the protrusion 64 may be provided in an integral multiple of the number of surfaces.

【0042】(第6実施例、図30〜図32参照)本第
6実施例は、六つの偏向面56a〜56fを有する正六
角体の回転偏向器55を使用したもので、回転偏向器5
5は台座62上に取付け具65によって押圧、保持され
る。取付け具65は六ヶ所に等間隔で配置した突片66
を有し、この突片66の先端が図31中i1点で回転偏
向器55の表面に突き刺っている。この各i1点は各偏
向面56a〜56fの中心部と回転中心とを結ぶ直線I
上に設定されている。
(Sixth Embodiment, see FIGS. 30 to 32) This sixth embodiment uses a regular hexagonal rotary deflector 55 having six deflecting surfaces 56a to 56f.
5 is pressed and held on the base 62 by a mounting tool 65. The fixtures 65 are projecting pieces 66 arranged at even intervals in six places.
The tip of the protrusion 66 pierces the surface of the rotary deflector 55 at point i 1 in FIG. Each i 1 point is a straight line I connecting the center of each deflection surface 56a to 56f and the center of rotation.
Is set on.

【0043】6面及びそれ以上の回転偏向器は回転時に
各偏向面が凸形状に変形することが知られている。この
変形は回転時の遠心力で前記直線I上での樹脂材料の変
形(伸び)が大きいためである。従って、この変形部分
の反力を大きくすることによって、偏向面の凸形状化を
抑制することが可能となる。本第6実施例では、取付け
具65の突片66によって回転偏向器55の変形の大き
い部分、即ち、直線I上のi1点を突き刺して押圧、保
持することにより、回転時における偏向面56a〜56
fの変形を抑制し、面精度を良好なものとした。なお、
本第6実施例は6面以上の正多角体の回転偏向器にも適
用できる。また、突片66は面数の整数倍設けられてい
てもよい。
It is known that in the case of a rotary deflector having six or more surfaces, each deflecting surface is deformed into a convex shape during rotation. This deformation is due to the large deformation (elongation) of the resin material on the straight line I due to the centrifugal force during rotation. Therefore, by increasing the reaction force of this deformed portion, it is possible to suppress the convex shape of the deflection surface. In the sixth embodiment, the protrusion 66 of the fixture 65 pierces and presses and holds a portion of the rotary deflector 55 that is largely deformed, that is, the point i 1 on the straight line I. ~ 56
The deformation of f was suppressed and the surface accuracy was improved. In addition,
The sixth embodiment can also be applied to a rotary deflector having a regular polygon having six or more surfaces. Further, the protrusion 66 may be provided in an integral multiple of the number of surfaces.

【0044】(第7実施例、図33〜図35参照)本第
7実施例は、変形抑制策として前記第5実施例と同じ手
法によるもので、4面の正四角体の回転偏向器52を取
付け具67によって台座62上に押圧、保持する。取付
け具67は4隅に突片68を有し、この突片68は回転
偏向器52のコーナー部に係合する。即ち、取付け具6
7は突片68によって対角線H上のh2点で回転偏向器
52を規制することにより、各偏向面53a〜53dの
凹形状化を抑制し、面精度の低下を防止する。
(Seventh embodiment, see FIGS. 33 to 35) This seventh embodiment is based on the same method as the fifth embodiment as a deformation suppressing measure, and is a four-sided regular polygonal rotary deflector 52. Is pressed and held on the pedestal 62 by the fixture 67. The fixture 67 has protrusions 68 at the four corners, and the protrusions 68 engage with the corners of the rotary deflector 52. That is, the fixture 6
7 restricts the rotary deflector 52 at a point h 2 on the diagonal line H by the projecting piece 68, thereby suppressing the deflection shapes of the deflection surfaces 53a to 53d from becoming concave and preventing the surface accuracy from deteriorating.

【0045】(第8実施例、図36〜図38参照)本第
8実施例は、変形抑制策として前記第6実施例と同じ手
法によるもので、6面の正六角体の回転偏向器55を取
付け具72によって台座62上に押圧、保持する。取付
け具72は6隅に突片73を有し、この突片73は各偏
向面56a〜56fの中央上エッジ部に係合する。即
ち、取付け具72は突片73によって直線I上のi2
で回転偏向器55を規制することにより、各偏向面56
a〜56fの凸形状化を抑制し、面精度の低下を防止す
る。
(Eighth Embodiment, see FIGS. 36 to 38) This eighth embodiment uses the same method as the sixth embodiment as a deformation suppressing measure, and is a six-sided regular hexagonal rotary deflector 55. Is pressed and held on the pedestal 62 by the fixture 72. The fixture 72 has projecting pieces 73 at six corners, and the projecting pieces 73 engage with the central upper edge portions of the deflection surfaces 56a to 56f. That is, the fixture 72 restricts the rotary deflector 55 at the point i 2 on the straight line I by the projecting piece 73, so that each deflection surface 56
The convex shape of a to 56f is suppressed, and the reduction of the surface accuracy is prevented.

【0046】(第9実施例、図39〜図41参照)本第
9実施例は、変形抑制策として前記第5実施例と同じ手
法によるもので、4面の正四角体の回転偏向器52の表
裏面を台座62上に設けた第2の取付け具74の突片7
5と取付け具63の突片64とで挟み込んで保持する。
突片75,64は対角線H上のh1点を表裏から突き刺
して回転偏向器52を保持する。これにて、回転時にお
ける偏向面53a〜53dの凹形状化を抑制し、面精度
の低下を防止する。
(Ninth embodiment, see FIGS. 39 to 41) This ninth embodiment uses the same method as the fifth embodiment as a deformation suppressing measure, and is a four-sided regular polygonal rotary deflector 52. Of the second mounting tool 74, the front and back surfaces of which are provided on the base 62.
5 and the projecting piece 64 of the attachment 63 sandwich and hold.
The projecting pieces 75 and 64 pierce the point h 1 on the diagonal line H from the front and back to hold the rotary deflector 52. As a result, it is possible to prevent the deflection surfaces 53a to 53d from being formed into a concave shape during rotation, and prevent the surface accuracy from decreasing.

【0047】(第10実施例、図42〜図44参照)本
第10実施例は、変形抑制策として前記第6実施例と同
じ手法によるもので、6面の正六角体の回転偏向器55
の表裏面を台座62上に設けた第2の取付け具76の突
片77と取付け具65の突片66とで挟み込んで保持す
る。突片77,66は直線I上のi1点を表裏から突き
刺して回転偏向器55を保持する。これにて、回転時に
おける偏向面56a〜56fの凸形状化を抑制し、面精
度の低下を防止する。
(Tenth embodiment, see FIGS. 42 to 44) This tenth embodiment uses the same technique as the sixth embodiment as a deformation suppressing measure, and is a six-sided regular hexagonal rotary deflector 55.
The front and back surfaces of the above are sandwiched and held by the projecting piece 77 of the second mounting tool 76 and the projecting piece 66 of the mounting tool 65 provided on the pedestal 62. The protrusions 77 and 66 pierce the point i 1 on the straight line I from the front and back to hold the rotary deflector 55. This prevents the deflection surfaces 56a to 56f from having a convex shape during rotation, and prevents reduction in surface accuracy.

【0048】(第11実施例、図45〜図47参照)本
第11実施例は、変形抑制策として前記第5実施例と同
じ手法によるもので、4面の正四角体の回転偏向器52
を台座62上に設けた第2の取付け具82と前記取付け
具67とで挟み込んで保持し、回転偏向器52のコーナ
ー部に取付け具82,67の突片83,68に係合させ
た。即ち、取付け具82,67は各突片83,68によ
って対角線H上のh2点で回転偏向器52を規制するこ
とにより、各偏向面53a〜53dの凹形状化を抑制
し、面精度の低下を防止する。
(Eleventh embodiment, see FIGS. 45 to 47) This eleventh embodiment uses the same method as the fifth embodiment as a deformation suppressing measure, and is a rotation deflector 52 of a four-sided regular tetragon.
Is clamped and held by the second fixture 82 provided on the pedestal 62 and the fixture 67, and the corners of the rotary deflector 52 are engaged with the protrusions 83, 68 of the fixtures 82, 67. That is, the fixtures 82 and 67 restrict the rotary deflector 52 at the point h 2 on the diagonal line H by the protrusions 83 and 68, thereby suppressing the deflection shapes of the deflecting surfaces 53a to 53d from becoming concave, and improving the surface accuracy. Prevent decline.

【0049】(他の実施例)なお、本発明に係る光ビー
ム走査装置は、前記各種実施例に限定するものではな
く、その要旨の範囲内で種々に変更可能である。特に、
回転偏向器を上下から挟み込む図45〜図47に示した
第11実施例は正六角体の回転偏向器にも適用できる。
この場合には、図36〜図38に示したように、突片7
3と台座62に設けた図示しない係合片とによって各偏
向面の中央上下エッジ部を規制する。
(Other Embodiments) The light beam scanning device according to the present invention is not limited to the above-mentioned various embodiments, but can be variously modified within the scope of the invention. In particular,
The eleventh embodiment shown in FIGS. 45 to 47 in which the rotary deflector is sandwiched from above and below can also be applied to a regular hexagonal rotary deflector.
In this case, as shown in FIGS.
3 and an engaging piece (not shown) provided on the pedestal 62 regulate the central upper and lower edges of each deflection surface.

【0050】さらに、回転偏向器の表裏部分に形状的な
又は物性的な非対称性を持たせて回転時における偏向面
の変形を小さくすることも考えられる。例えば、4面の
回転偏向器において各コーナー部分の下側を一定量切除
して形状的な非対称性を持たせた。あるいは、物性的な
非対称性を持たせる方策としては、回転偏向器の表裏面
で部分的にヤング率、比重及び/又はポアソン比を異な
らせるようにしてもよい。
Further, it is conceivable that the front and back portions of the rotary deflector are provided with asymmetrical shapes or physical properties to reduce the deformation of the deflecting surface during rotation. For example, in a four-sided rotary deflector, a certain amount of the lower side of each corner portion is cut off to give a geometric asymmetry. Alternatively, as a measure for providing physical asymmetry, the Young's modulus, specific gravity and / or Poisson's ratio may be partially different on the front and back surfaces of the rotary deflector.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例である光ビーム走査装置の分解斜視
図。
FIG. 1 is an exploded perspective view of a light beam scanning device according to a first embodiment.

【図2】第1実施例である光ビーム走査装置の断面図。FIG. 2 is a sectional view of the light beam scanning device according to the first embodiment.

【図3】第1実施例で使用されている回転偏向器の斜視
図。
FIG. 3 is a perspective view of a rotary deflector used in the first embodiment.

【図4】第1実施例で使用されている取付け具を示し、
(A)は平面図、(B)は正面図。
FIG. 4 shows the fixture used in the first embodiment,
(A) is a plan view and (B) is a front view.

【図5】実験例1における変形量を示すグラフ。FIG. 5 is a graph showing the amount of deformation in Experimental Example 1.

【図6】実験例2における変形量を示すグラフ。FIG. 6 is a graph showing the amount of deformation in Experimental Example 2.

【図7】実験例3における変形量を示すグラフ。FIG. 7 is a graph showing the amount of deformation in Experimental Example 3.

【図8】実験例4における変形量を示すグラフ。FIG. 8 is a graph showing the amount of deformation in Experimental Example 4.

【図9】実験例5における変形量を示すグラフ。FIG. 9 is a graph showing the amount of deformation in Experimental Example 5.

【図10】実験例6における変形量を示すグラフ。FIG. 10 is a graph showing the amount of deformation in Experimental Example 6.

【図11】実験例7における変形量を示すグラフ。FIG. 11 is a graph showing the amount of deformation in Experimental Example 7.

【図12】実験例8における変形量を示すグラフ。FIG. 12 is a graph showing the amount of deformation in Experimental Example 8.

【図13】第2実施例で使用されている回転偏向器の斜
視図。
FIG. 13 is a perspective view of a rotary deflector used in the second embodiment.

【図14】実験例9における変形量を示すグラフ。FIG. 14 is a graph showing the amount of deformation in Experimental Example 9.

【図15】実験例10における変形量を示すグラフ。FIG. 15 is a graph showing the amount of deformation in Experimental Example 10.

【図16】実験例11における変形量を示すグラフ。16 is a graph showing the amount of deformation in Experimental Example 11. FIG.

【図17】実験例12における変形量を示すグラフ。FIG. 17 is a graph showing the amount of deformation in Experimental Example 12.

【図18】実験例13における変形量を示すグラフ。FIG. 18 is a graph showing the amount of deformation in Experimental Example 13.

【図19】実験例14における変形量を示すグラフ。FIG. 19 is a graph showing the amount of deformation in Experimental Example 14.

【図20】第3実施例で使用されている回転偏向器の平
面図。
FIG. 20 is a plan view of a rotary deflector used in the third embodiment.

【図21】実験例15における変形量を示すグラフ。FIG. 21 is a graph showing the amount of deformation in Experimental Example 15.

【図22】実験例16における変形量を示すグラフ。22 is a graph showing the amount of deformation in Experimental Example 16.

【図23】実験例17における変形量を示すグラフ。23 is a graph showing the amount of deformation in Experimental Example 17.

【図24】第4実施例で使用されている回転偏向器の平
面図。
FIG. 24 is a plan view of a rotary deflector used in the fourth embodiment.

【図25】実験例18における変形量を示すグラフ。FIG. 25 is a graph showing the amount of deformation in Experimental Example 18.

【図26】実験例19における変形量を示すグラフ。26 is a graph showing the amount of deformation in Experimental Example 19.

【図27】第5実施例である光ビーム走査装置の斜視
図。
FIG. 27 is a perspective view of a light beam scanning device according to a fifth embodiment.

【図28】第5実施例である光ビーム走査装置の平面
図。
FIG. 28 is a plan view of a light beam scanning device according to a fifth embodiment.

【図29】第5実施例である光ビーム走査装置の正面
図。
FIG. 29 is a front view of a light beam scanning device according to a fifth embodiment.

【図30】第6実施例である光ビーム走査装置の斜視
図。
FIG. 30 is a perspective view of a light beam scanning device according to a sixth embodiment.

【図31】第6実施例である光ビーム走査装置の平面
図。
FIG. 31 is a plan view of a light beam scanning device according to a sixth embodiment.

【図32】第6実施例である光ビーム走査装置の正面
図。
FIG. 32 is a front view of a light beam scanning device according to a sixth embodiment.

【図33】第7実施例である光ビーム走査装置の斜視
図。
FIG. 33 is a perspective view of a light beam scanning device according to a seventh embodiment.

【図34】第7実施例である光ビーム走査装置の平面
図。
FIG. 34 is a plan view of a light beam scanning device according to a seventh embodiment.

【図35】第7実施例である光ビーム走査装置の正面
図。
FIG. 35 is a front view of a light beam scanning device according to a seventh embodiment.

【図36】第8実施例である光ビーム走査装置の斜視
図。
FIG. 36 is a perspective view of a light beam scanning device according to an eighth embodiment.

【図37】第8実施例である光ビーム走査装置の平面
図。
FIG. 37 is a plan view of a light beam scanning device according to an eighth embodiment.

【図38】第8実施例である光ビーム走査装置の正面
図。
FIG. 38 is a front view of the light beam scanning device of the eighth embodiment.

【図39】第9実施例である光ビーム走査装置の斜視
図。
FIG. 39 is a perspective view of a light beam scanning device of the ninth embodiment.

【図40】第9実施例である光ビーム走査装置の平面
図。
FIG. 40 is a plan view of a light beam scanning device according to a ninth embodiment.

【図41】第9実施例である光ビーム走査装置の正面
図。
FIG. 41 is a front view of a light beam scanning device of the ninth embodiment.

【図42】第10実施例である光ビーム走査装置の斜視
図。
FIG. 42 is a perspective view of a light beam scanning device of the tenth embodiment.

【図43】第10実施例である光ビーム走査装置の平面
図。
FIG. 43 is a plan view of a light beam scanning device which is a tenth embodiment.

【図44】第10実施例である光ビーム走査装置の正面
図。
FIG. 44 is a front view of a light beam scanning device according to a tenth embodiment.

【図45】第11実施例である光ビーム走査装置の斜視
図。
FIG. 45 is a perspective view of a light beam scanning device of the eleventh embodiment.

【図46】第11実施例である光ビーム走査装置の平面
図。
FIG. 46 is a plan view of a light beam scanning device of the eleventh embodiment.

【図47】第11実施例である光ビーム走査装置の正面
図。
FIG. 47 is a front view of a light beam scanning device of the eleventh embodiment.

【符号の説明】[Explanation of symbols]

15,30,35,40,52,55…回転偏向器 5…モータ 8…回転軸 10,62…台座 20,63,65,67,72,74,76,82…取
付け具 64,66,68,73,75,77,83…突片
15, 30, 35, 40, 52, 55 ... Rotating deflector 5 ... Motor 8 ... Rotating shaft 10, 62 ... Pedestal 20, 63, 65, 67, 72, 74, 76, 82 ... Fixing tool 64, 66, 68 , 73, 75, 77, 83 ... Projection pieces

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芝田 悦子 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタカメラ株式会社 内 (72)発明者 山本 雅典 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタカメラ株式会社 内 (72)発明者 浜田 健史 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタカメラ株式会社 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuko Shibata 2-3-13 Azuchi-cho, Chuo-ku, Osaka-shi, Osaka, Osaka International Building Minolta Camera Co., Ltd. (72) Inventor Masanori Yamamoto Azuchi, Chuo-ku, Osaka-shi, Osaka 2-13-3 Machi, Osaka International Building Minolta Camera Co., Ltd. (72) Inventor, Kenji Hamada 2-3-13 Azuchi-cho, Chuo-ku, Osaka City, Osaka Prefecture International Building Minolta Camera Co., Ltd.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 回転偏向器の定速回転によって光ビーム
を偏向し、受光面上を走査する光ビーム走査装置におい
て、 前記回転偏向器は、樹脂材料を主成分としてなり、外周
面に複数の偏向面を有する正多角体をなし、偏向面近傍
の厚さが回転中心近傍の厚さよりも大きく、 前記回転偏向器はモータの回転軸に台座を介して回転軸
と一体的に取り付けられている、 ことを特徴とする光ビーム走査装置。
1. A light beam scanning device for deflecting a light beam by a constant speed rotation of a rotary deflector to scan on a light receiving surface, wherein the rotary deflector comprises a resin material as a main component and has a plurality of outer peripheral surfaces. A regular polygon having a deflecting surface is formed, the thickness in the vicinity of the deflecting surface is larger than the thickness in the vicinity of the center of rotation, and the rotary deflector is integrally attached to the rotary shaft of a motor via a pedestal. A light beam scanning device characterized by the above.
【請求項2】 回転偏向器の定速回転によって光ビーム
を偏向し、受光面上を走査する光ビーム走査装置におい
て、 前記回転偏向器は、樹脂材料を主成分としてなり、外周
面に複数の偏向面を有する正多角体をなし、対角線方向
の厚さが偏向面方向の厚さよりも小さく、 前記回転偏向器はモータの回転軸に台座を介して回転軸
と一体的に取り付けられている、 ことを特徴とする光ビーム走査装置。
2. A light beam scanning device for deflecting a light beam by a constant speed rotation of a rotary deflector and scanning the light receiving surface, wherein the rotary deflector comprises a resin material as a main component and has a plurality of outer peripheral surfaces. Forming a regular polygon having a deflecting surface, the thickness in the diagonal direction is smaller than the thickness in the deflecting surface direction, and the rotary deflector is integrally attached to the rotary shaft of the motor via a pedestal, A light beam scanning device characterized by the above.
【請求項3】 回転偏向器の定速回転によって光ビーム
を偏向し、受光面上を走査する光ビーム走査装置におい
て、 前記回転偏向器は、樹脂材料を主成分としてなり、外周
面に複数の偏向面を有する正多角体をなし、偏向面近傍
とその他の部分とで物性値が異なり、 前記回転偏向器はモータの回転軸に台座を介して回転軸
と一体的に取り付けられている、 ことを特徴とする光ビーム走査装置。
3. A light beam scanning device which deflects a light beam by a constant speed rotation of a rotary deflector and scans on a light receiving surface, wherein the rotary deflector is composed of a resin material as a main component and has a plurality of outer peripheral surfaces. A regular polygon having a deflecting surface, the physical properties of which differ in the vicinity of the deflecting surface and other portions, and the rotary deflector is integrally attached to the rotary shaft of the motor via a pedestal, And a light beam scanning device.
【請求項4】 前記回転偏向器が4面以下の正多角体で
あり、対角線方向の第1材料と、偏向面方向の第2材料
とからなり、 第1材料のヤング率が第2材料のヤング率よりも大きい
こと、 を特徴とする請求項3記載の光ビーム走査装置。
4. The rotary deflector is a regular polygon having four or less faces, and is composed of a first material in a diagonal direction and a second material in a deflecting surface direction, and the Young's modulus of the first material is that of the second material. The light beam scanning device according to claim 3, wherein the light beam scanning device has a Young's modulus larger than the Young's modulus.
【請求項5】 前記回転偏向器が6面以上の正多角体で
あり、対角線方向の第1材料と、偏向面方向の第2材料
とからなり、 第2材料のヤング率が第1材料のヤング率よりも大きい
こと、 を特徴とする請求項3記載の光ビーム走査装置。
5. The rotary deflector is a regular polygon having six or more faces, and is composed of a first material in a diagonal direction and a second material in a deflecting surface direction, and the Young's modulus of the second material is that of the first material. The light beam scanning device according to claim 3, wherein the light beam scanning device has a Young's modulus larger than the Young's modulus.
【請求項6】 前記回転偏向器が4面以下の正多角体で
あり、対角線方向の第1材料と、偏向面方向の第2材料
とからなり、 第1材料の比重が第2材料の比重よりも小さいこと、 を特徴とする請求項3記載の光ビーム走査装置。
6. The rotary deflector is a regular polygon having four or less faces, and is composed of a first material in a diagonal direction and a second material in a deflecting surface direction, and the specific gravity of the first material is the specific gravity of the second material. The light beam scanning device according to claim 3, wherein the light beam scanning device is smaller than
【請求項7】 前記回転偏向器が6面以上の正多角体で
あり、対角線方向の第1材料と、偏向面方向の第2材料
とからなり、 第2材料の比重が第1材料の比重よりも小さいこと、 を特徴とする請求項3記載の光ビーム走査装置。
7. The rotary deflector is a regular polygon having 6 or more faces, and is composed of a first material in a diagonal direction and a second material in a deflecting surface direction, and a specific gravity of the second material is a specific gravity of the first material. The light beam scanning device according to claim 3, wherein the light beam scanning device is smaller than
【請求項8】 前記回転偏向器が、偏向面を含む周辺部
分を構成する第1材料と、中央部分を構成する第2材料
とからなり、 第1材料のヤング率が第2材料のヤング率よりも大きい
こと、 を特徴とする請求項3記載の光ビーム走査装置。
8. The rotary deflector comprises a first material forming a peripheral portion including a deflecting surface and a second material forming a central portion, and Young's modulus of the first material is Young's modulus of the second material. The light beam scanning device according to claim 3, wherein the light beam scanning device is larger than the above.
【請求項9】 樹脂材料を主成分としてなり、外周面に
複数の偏向面を有する正多角体をなす回転偏向器と、 前記回転偏向器を回転させるための回転軸を有するモー
タと、 前記モータの回転軸と一体的に回転可能に設置した台座
と、 前記台座上に搭載された前記回転偏向器を台座上に固定
するための取付け部材とを備え、 前記取付け部材は偏向面の面数と同数又は整数倍の突片
を有し、この突片が前記回転偏向器に突き刺さることに
よって、回転偏向器を前記台座上に押圧すると共に、回
転時の各偏向面の変形を抑制すること、 を特徴とする光ビーム走査装置。
9. A rotary deflector comprising a resin material as a main component and forming a regular polygonal body having a plurality of deflection surfaces on its outer peripheral surface, a motor having a rotary shaft for rotating the rotary deflector, and the motor. And a mounting member for fixing the rotary deflector mounted on the pedestal on the pedestal, wherein the mounting member has a number of deflection surfaces and Having the same or an integer multiple of the projecting pieces, the projecting pieces pierce the rotary deflector to press the rotary deflector onto the pedestal and suppress deformation of each deflecting surface during rotation. Characteristic light beam scanning device.
【請求項10】 前記回転偏向器が4面以下の正多角体
であり、前記取付け部材の各突片の押圧位置が少なくと
も回転偏向器の各コーナーと回転中心とを結ぶ対角線上
に設定されていることを特徴とする請求項9記載の光ビ
ーム走査装置。
10. The rotary deflector is a regular polygon having four or less faces, and the pressing position of each protrusion of the mounting member is set at least on a diagonal line connecting each corner of the rotary deflector and the rotation center. 10. The light beam scanning device according to claim 9, wherein:
【請求項11】 前記回転偏向器が6面以上の正多角体
であり、前記取付け部材の各突片の押圧位置が少なくと
も回転偏向器の各偏向面の中央部と回転中心とを結ぶ直
線上に設定されていることを特徴とする請求項9記載の
光ビーム走査装置。
11. The rotary deflector is a regular polygon having six or more surfaces, and the pressing position of each protrusion of the mounting member is at least on a straight line connecting the central portion of each deflecting surface of the rotary deflector and the rotation center. 10. The light beam scanning device according to claim 9, wherein
【請求項12】 樹脂材料を主成分としてなり、外周面
に複数の偏向面を有する正多角体をなす回転偏向器と、 前記回転偏向器を回転させるための回転軸を有するモー
タと、 前記モータの回転軸と一体的に回転可能に設置した台座
と、 前記台座上に搭載された前記回転偏向器を台座上に固定
するための取付け部材とを備え、 前記取付け部材は偏向面の面数と同数又は整数倍の突片
を有し、この突片が前記回転偏向器の外周エッジ部に係
合することによって、回転偏向器を前記台座上に押圧す
ると共に、回転時の各偏向面の変形を抑制すること、 を特徴とする光ビーム走査装置。
12. A rotary deflector which is composed of a resin material as a main component and which is a regular polygon having a plurality of deflection surfaces on its outer peripheral surface, a motor having a rotary shaft for rotating the rotary deflector, and the motor. And a mounting member for fixing the rotary deflector mounted on the pedestal on the pedestal, wherein the mounting member has a number of deflection surfaces and The same number or an integral multiple of protrusions are provided, and the protrusions engage with the outer peripheral edge of the rotary deflector to press the rotary deflector onto the pedestal and to deform each deflection surface during rotation. A light beam scanning device characterized by:
【請求項13】 前記回転偏向器が4面以下の正多角体
であり、前記取付け部材の各突片の係合位置が少なくと
も回転偏向器の各コーナー部に設定されていることを特
徴とする請求項12記載の光ビーム走査装置。
13. The rotary deflector is a regular polygon having four or less faces, and the engagement position of each protrusion of the mounting member is set at least at each corner of the rotary deflector. The light beam scanning device according to claim 12.
【請求項14】 前記回転偏向器が6面以上の正多角体
であり、前記取付け部材の各突片の係合位置が少なくと
も回転偏向器の各偏向面の中央エッジ部に設定されてい
ることを特徴とする請求項12記載の光ビーム走査装
置。
14. The rotary deflector is a regular polygon having six or more surfaces, and the engagement position of each protrusion of the mounting member is set at least at the central edge portion of each deflecting surface of the rotary deflector. The light beam scanning device according to claim 12.
【請求項15】 樹脂材料を主成分としてなり、外周面
に複数の偏向面を有する正多角体をなす回転偏向器と、 前記回転偏向器を回転させるための回転軸を有するモー
タと、 前記モータの回転軸と一体的に回転可能に設置した台座
と、 前記台座上に搭載された前記回転偏向器を台座上に固定
するための取付け部材とを備え、 前記台座と取付け部材は偏向面の面数と同数又は整数倍
の突片を有し、この突片が前記回転偏向器の表裏面に突
き刺さることによって、回転偏向器を保持すると共に、
回転時の各偏向面の変形を抑制すること、 を特徴とする光ビーム走査装置。
15. A rotary deflector which is made of a resin material as a main component and has a regular polygonal shape having a plurality of deflection surfaces on its outer peripheral surface, a motor having a rotary shaft for rotating the rotary deflector, and the motor. And a mounting member for fixing the rotary deflector mounted on the pedestal onto the pedestal, the pedestal and the mounting member being surfaces of deflection surfaces. The number of projections is the same as or an integer multiple of the number, and the projections pierce the front and back surfaces of the rotary deflector to hold the rotary deflector,
A light beam scanning device characterized by suppressing deformation of each deflecting surface during rotation.
【請求項16】 前記回転偏向器が4面以下の正多角体
であり、前記台座及び前記取付け部材の各突片の押圧位
置が少なくとも回転偏向器の各コーナーと回転中心とを
結ぶ対角線上に設定されていることを特徴とする請求項
15記載の光ビーム走査装置。
16. The rotary deflector is a regular polygon having four or less faces, and the pressing positions of the protrusions of the pedestal and the mounting member are at least on a diagonal line connecting each corner of the rotary deflector and the rotation center. The light beam scanning device according to claim 15, wherein the light beam scanning device is set.
【請求項17】 前記回転偏向器が6面以上の正多角体
であり、前記台座及び前記取付け部材の各突片の押圧位
置が少なくとも回転偏向器の各偏向面の中央部と回転中
心とを結ぶ直線上に設定されていることを特徴とする請
求項15記載の光ビーム走査装置。
17. The rotary deflector is a regular polygon having six or more surfaces, and the pressing positions of the protrusions of the pedestal and the mounting member are at least the central portion and the center of rotation of each deflecting surface of the rotary deflector. The light beam scanning device according to claim 15, wherein the light beam scanning device is set on a connecting straight line.
【請求項18】 樹脂材料を主成分としてなり、外周面
に複数の偏向面を有する正多角体をなす回転偏向器と、 前記回転偏向器を回転させるための回転軸を有するモー
タと、 前記モータの回転軸と一体的に回転可能に設置した台座
と、 前記台座上に搭載された前記回転偏向器を台座上に固定
するための取付け部材とを備え、 前記台座と取付け部材は偏向面の面数と同数又は整数倍
の突片を有し、この突片が前記回転偏向器の外周エッジ
部に係合することによって、回転偏向器を保持すると共
に、回転時の各偏向面の変形を抑制すること、 を特徴とする光ビーム走査装置。
18. A rotary deflector which is made of a resin material as a main component and has a regular polygonal shape having a plurality of deflection surfaces on its outer peripheral surface, a motor having a rotary shaft for rotating the rotary deflector, and the motor. And a mounting member for fixing the rotary deflector mounted on the pedestal on the pedestal, the pedestal and the mounting member being surfaces of deflection surfaces. The number of projections is the same as or an integer multiple of the number, and the projections engage the outer peripheral edge of the rotary deflector to hold the rotary deflector and suppress deformation of each deflecting surface during rotation. A light beam scanning device characterized by:
【請求項19】 前記回転偏向器が4面以下の正多角体
であり、前記台座及び前記取付け部材の各突片の係合位
置が少なくとも回転偏向器の各コーナー部に設定されて
いることを特徴とする請求項18記載の光ビーム走査装
置。
19. The rotary deflector is a regular polygon having four or less faces, and the engagement positions of the protrusions of the pedestal and the mounting member are set at least at the corners of the rotary deflector. 19. The light beam scanning device according to claim 18, which is characterized in that.
【請求項20】 前記回転偏向器が6面以上の正多角体
であり、前記台座及び前記取付け部材の各突片の係合位
置が少なくとも回転偏向器の各偏向面の中央エッジ部に
設定されていることを特徴とする請求項18記載の光ビ
ーム走査装置。
20. The rotary deflector is a regular polygon having 6 or more surfaces, and the engagement positions of the protrusions of the pedestal and the mounting member are set at least at the central edge portion of each deflecting surface of the rotary deflector. 19. The light beam scanning device according to claim 18, wherein:
JP24232393A 1993-09-29 1993-09-29 Light beam scanning device Pending JPH0798437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24232393A JPH0798437A (en) 1993-09-29 1993-09-29 Light beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24232393A JPH0798437A (en) 1993-09-29 1993-09-29 Light beam scanning device

Publications (1)

Publication Number Publication Date
JPH0798437A true JPH0798437A (en) 1995-04-11

Family

ID=17087503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24232393A Pending JPH0798437A (en) 1993-09-29 1993-09-29 Light beam scanning device

Country Status (1)

Country Link
JP (1) JPH0798437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031618A1 (en) * 1998-11-20 2000-06-02 Fujitsu Limited Optical scanning type touch panel
JP2007171841A (en) * 2005-12-26 2007-07-05 Ricoh Co Ltd Optical deflector, optical scanner and image forming apparatus
US7331730B2 (en) 2002-11-18 2008-02-19 Pentel Kabushiki Kaisha Retractable writing material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031618A1 (en) * 1998-11-20 2000-06-02 Fujitsu Limited Optical scanning type touch panel
US6664952B2 (en) 1998-11-20 2003-12-16 Fujitsu Limited Optical scanning-type touch panel
EP1837740A2 (en) * 1998-11-20 2007-09-26 Fujitsu Limited Optical scanning-type touch panel
EP1837740A3 (en) * 1998-11-20 2008-07-02 Fujitsu Limited Optical scanning-type touch panel
US7331730B2 (en) 2002-11-18 2008-02-19 Pentel Kabushiki Kaisha Retractable writing material
JP2007171841A (en) * 2005-12-26 2007-07-05 Ricoh Co Ltd Optical deflector, optical scanner and image forming apparatus
US8416483B2 (en) 2005-12-26 2013-04-09 Ricoh Company, Ltd. Optical deflector, optical scanning apparatus, and image forming apparatus
US8743445B2 (en) 2005-12-26 2014-06-03 Ricoh Company, Ltd. Optical deflector, optical scanning apparatus, and image forming apparatus
US8896898B2 (en) 2005-12-26 2014-11-25 Ricoh Company, Ltd. Optical deflector, optical scanning apparatus, and image forming apparatus
US9116457B2 (en) 2005-12-26 2015-08-25 Ricoh Company, Ltd. Optical deflector, optical scanning apparatus, and image forming apparatus
US9470999B2 (en) 2005-12-26 2016-10-18 Ricoh Company, Ltd. Optical deflector, optical scanning apparatus, and image forming apparatus

Similar Documents

Publication Publication Date Title
JPH0798437A (en) Light beam scanning device
US6243188B1 (en) Light beam scanning system
JPH08206910A (en) Cutting insert and its holder
JPH0510532Y2 (en)
JPS62164017A (en) Polygon mirror rotating device for optical scanning
JP2002169115A (en) Structure for fixing light source unit
JPH05297311A (en) Polygon mirror
US5650870A (en) Rotary polygon mirror
JPH10228735A (en) Guide bar attaching structure of head carriage for magnetic disk drive
JP2960558B2 (en) Optical deflection element and method of manufacturing the same
JP2004066400A (en) Rotary saw
CN214923417U (en) Pressure self-adaptive optical disc scanning structure
JP2591569Y2 (en) Resistor fin bearing structure
JP2600139Y2 (en) Fastener
JP3409214B2 (en) Polygon mirror scanner device
US5293266A (en) Optical beam scanning apparatus
CN219418394U (en) Display device
JPH08179234A (en) Rotary polygon mirror for light beam scanner and driving device therefor
JP3347813B2 (en) Round blade tool
JPS62204224A (en) Fitting disk for polygon mirror
JP2001315022A (en) Cutting insert, insert holder, and cutting tool provided therewith
JPH04253011A (en) Holding structure of scanning lens
JPH04109721U (en) polygon mirror
JP3061234B2 (en) Disk unit
JPH0868414A (en) Spring nut