JPH0798270B2 - One-sided back wave welding method - Google Patents

One-sided back wave welding method

Info

Publication number
JPH0798270B2
JPH0798270B2 JP2924887A JP2924887A JPH0798270B2 JP H0798270 B2 JPH0798270 B2 JP H0798270B2 JP 2924887 A JP2924887 A JP 2924887A JP 2924887 A JP2924887 A JP 2924887A JP H0798270 B2 JPH0798270 B2 JP H0798270B2
Authority
JP
Japan
Prior art keywords
welding
speed
wire
current value
sided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2924887A
Other languages
Japanese (ja)
Other versions
JPS63199073A (en
Inventor
裕久 藤山
木村  茂雄
憲 木村
俊雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2924887A priority Critical patent/JPH0798270B2/en
Publication of JPS63199073A publication Critical patent/JPS63199073A/en
Publication of JPH0798270B2 publication Critical patent/JPH0798270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は開先裏面に裏当材を当て表面から溶接を行う片
面溶接方法に関するものである。
TECHNICAL FIELD The present invention relates to a single-sided welding method in which a backing material is applied to the groove back surface and welding is performed from the front surface.

(従来の技術) 母材表面から溶接を行ない、裏波を形成させる片面溶接
は、母材を反転できない現地での溶接あるいは大形鋼板
の板継溶接に広く利用されている。
(Prior Art) Single-sided welding, in which welding is performed from the surface of a base material to form a back wave, is widely used for on-site welding in which the base material cannot be inverted or for plate welding of large steel plates.

この片面溶接では、開先ギヤツプが溶接長全長にわたつ
て均一な場合は比較的容易に良好な裏波ビードを形成す
ることが出来るが、開先ギヤツプが均一でない場合には
溶接作業者が開先ギヤツプに応じた溶接条件(溶接速
度、溶接電圧、溶接電流など)を調整しながら溶接しな
いと良好な裏波ビードは形成できない。特に溶接部を直
接監視できない潜弧溶接法や、アークの吹きつけ力の小
さい細径ワイヤを用いたガスシールドアーク溶接法では
極めて困難となる。
With this one-sided welding, a good back bead can be formed relatively easily if the grooved gear is uniform over the entire length of the welding length, but if the grooved gear is not uniform, the welding operator can open it. A good backside bead cannot be formed unless welding is performed while adjusting the welding conditions (welding speed, welding voltage, welding current, etc.) according to the tip gear cup. In particular, it is extremely difficult to use a latent arc welding method in which the welded portion cannot be directly monitored or a gas shielded arc welding method using a thin wire having a small arc blowing force.

この問題点を解決しようとする技術として、特開昭61−
56775号公報にて銅当板の上にフラツクスを散布した裏
当材を用いて溶接し、母材と銅当板間の電位差を検出し
て裏波ビードを制御する方法が提案された。しかしなが
ら上記方法は銅当板の上にフラツクスを散布した裏当
材、即ち母材と導電体の間に電気抵抗の大きい絶縁体を
介在させた裏当材を使用した溶接にのみ適用されるもの
であつて、その利用範囲が狭い。また上記の問題に対し
て出願人は、オシレート幅中央位置での溶接電流を検出
して、実験によつて予め設定したしきい値と比較し、検
出した電流値がしきい値より大であれば溶接速度大で溶
接し、しきい値より小であれば溶接速度小で溶接する方
法を特願昭61−224171号にて提案した。ここで溶接速度
は、予想される速度より大きい速度と小さい速度の2段
階を予め設定しておき、このいずれかより設定する。溶
接速度を2段階としたのは、装置を簡素化するためであ
り、無段階で制御するようり経済的に目的を達成でき
る。このように、オシレート幅中央において毎回溶接電
流を検出し、その都度、溶接速度を切り換えてワイヤ突
出し長さが一定に保持されるよう制御し溶接するのであ
るが、溶接条件を母材、溶材の変化によつて設定条件を
変えた場合、それに合わせて溶接基準設定の調整をその
都度必要とし、また第2図に示すごとく溶接電流値の振
動が、EXTの長い場合と短い場合と異るため、固定式フ
イルターを設けて、振動分のみを除去する方法を提案し
たが、固定式フイルターによる時定数により、応答が遅
れる傾向がある。
As a technique for solving this problem, Japanese Patent Application Laid-Open No. 61-
Japanese Patent Laid-Open No. 56775 proposes a method of controlling a back-bead by detecting a potential difference between a base metal and a copper strip by welding using a back strip with a flux dispersed on a copper strip. However, the above method is applicable only to welding using a backing material in which flux is spread on a copper plate, that is, a backing material in which an insulator having a high electric resistance is interposed between a base material and a conductor. And its usage range is narrow. To address the above problem, the applicant detects the welding current at the center position of the oscillating width and compares it with a threshold value set experimentally, and if the detected current value is greater than the threshold value, For example, Japanese Patent Application No. 61-224171 proposed a method of welding at a high welding speed and, if it is less than the threshold value, at a low welding speed. Here, the welding speed is set in advance in two stages of a speed higher than the expected speed and a speed lower than the expected speed, and is set from either of these. The reason why the welding speed is set in two stages is to simplify the apparatus, and the purpose can be economically achieved by controlling the welding steplessly. In this way, the welding current is detected every time in the center of the oscillating width, and the welding speed is switched every time the welding is performed by controlling the welding so that the wire protrusion length is kept constant. When the setting condition is changed due to the change, it is necessary to adjust the welding standard setting each time, and the vibration of the welding current value is different between when the EXT is long and when it is short, as shown in Fig. 2. , A method of removing only the vibration component by providing a fixed filter was proposed, but the response tends to be delayed due to the time constant of the fixed filter.

(発明が解決しようとする問題点) 上述の如く従来技術では片面溶接の自動化は困難であ
り、また自動化されたものでも、その適用範囲は限定さ
れたり、また溶接条件の変更にともない設定値を再調整
しなくてはならない問題点があつた。
(Problems to be Solved by the Invention) As described above, it is difficult to automate single-sided welding in the conventional technology, and even if it is automated, its applicable range is limited, and the set value is changed according to the change of welding conditions. There was a problem that had to be readjusted.

(問題点を解決するための手段) 本発明は上記問題点を解決するためになされたものであ
つて、その要旨は、開先裏面に裏当材を当て、溶接ワイ
ヤを表面から供給して溶接を行う下向突合せ溶接姿勢の
片面溶接方法において、該開先幅中央における溶接電流
値を微分回路を通して検出し、該微分回路よりの検出結
果をあらかじめ設定した適正基準値と比較し、比較結果
に応じて溶接速度を制御して溶接することを特徴とする
片面裏波溶接方法である。
(Means for Solving Problems) The present invention has been made to solve the above problems, and its gist is to apply a backing material to the groove back surface and supply a welding wire from the surface. In the one-sided welding method of the downward butt welding posture for performing welding, the welding current value at the groove width center is detected through a differentiating circuit, and the detection result from the differentiating circuit is compared with a preset proper reference value, and the comparison result The single-sided backside welding method is characterized in that the welding speed is controlled in accordance with the welding.

(作用) 以下、図面に従い本発明を詳細に説明する。(Operation) Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図はワイヤオシレート式ガスシールドアーク片面溶
接方法を示す図である。
FIG. 3 is a view showing a wire oscillating type gas shield arc single-sided welding method.

V型開先を形成して突合わされた母材1および2の裏面
には耐火性を有する固型裏当材3を当て、母材2の表面
にはガイドレール4がマグネツト5および6で固定して
載置してある。7はガイドレール4に沿つてモータ(図
示せず)にて駆動され走行する溶接台車で、溶接台車7
にはオシレート装置8が搭載されている。オシレート装
置8はオシレート軸9をオシレート方向10、即ち開先幅
方向にオシレートさせ、オシレート軸9の先端に設けた
溶接トーチホルダ11で保持された溶接トーチ12を同様に
開先幅方向にオシレートまたは開先幅中央に固定させ
る。溶接ワイヤ13は溶接トーチ12を通して開先内に供給
され、第1図の直流定電圧溶接電源17から電圧が印加さ
れ、溶接が行われる。14はガスシールドノズルである。
A solid type backing material 3 having fire resistance is applied to the back surfaces of the base materials 1 and 2 which are butt-formed to form a V-shaped groove, and a guide rail 4 is fixed to the surface of the base material 2 with magnets 5 and 6. It has been placed. Reference numeral 7 denotes a welding carriage that is driven by a motor (not shown) along the guide rail 4 and travels.
Is equipped with an oscillating device 8. The oscillating device 8 oscillates the oscillating shaft 9 in the oscillating direction 10, that is, the groove width direction, and similarly oscillates or opens the welding torch 12 held by the welding torch holder 11 provided at the tip of the oscillating shaft 9 in the groove width direction. Fix it in the center of the tip width. The welding wire 13 is supplied into the groove through the welding torch 12, and a voltage is applied from the DC constant voltage welding power source 17 shown in FIG. 1 to perform welding. 14 is a gas shield nozzle.

上記構成によつて溶接を行つた場合の裏波形成の状態を
第2図の溶接金属とガスシールドノズルとの位置関係に
対して模式的に示す。まず同図(a)においては溶接速
度、即ち溶接台車7の速度と溶接金属16との関係が適正
であつて溶接アーク15は溶接金属16に対して先行せず、
また遅れることもなく良好な裏波が形成されている。同
図(b)は開先幅が同図(a)の場合より広くなつたと
きで溶接金属16の量が不足し、余盛速度が遅くなり相対
的に適正速度より溶接台車7の速度が早くなり溶接アー
ク15は溶接金属16に対して先行し、過大な裏波が形成さ
れている。同図(b)において最悪の場合は裏当材3を
溶け落して溶接金属16が垂れ落ち、溶接不能となる危険
性もある。また同図(c)は、開先幅が同図(a)の場
合より狭くなつたときで溶接金属16の量が過剰となり余
盛速度が早くなり相対的に適正速度より台車の速度が遅
いために溶接アーク15に対して溶接金属16が先行し、充
分な裏波が形成されない。
The state of the back wave formation when welding is performed with the above configuration is schematically shown with respect to the positional relationship between the weld metal and the gas shield nozzle in FIG. First, in FIG. 1A, the welding speed, that is, the relationship between the speed of the welding carriage 7 and the weld metal 16 is proper, and the welding arc 15 does not precede the weld metal 16.
In addition, good backwater is formed without delay. In the figure (b), when the groove width is wider than in the case of the figure (a), the amount of the weld metal 16 is insufficient, the surplus speed becomes slower, and the speed of the welding carriage 7 is relatively lower than the appropriate speed. As soon as possible, the welding arc 15 leads the weld metal 16 and an excessive back wave is formed. In the worst case in FIG. 2B, there is a risk that the backing material 3 will be melted down and the weld metal 16 will hang down, making welding impossible. Further, in the same figure (c), when the groove width is narrower than in the case of the same figure (a), the amount of the weld metal 16 becomes excessive, the excess speed becomes faster, and the speed of the bogie is relatively lower than the appropriate speed. Therefore, the welding metal 16 precedes the welding arc 15 and a sufficient backside is not formed.

なお、溶接電流値の検出は、溶接ワイヤをオシレートし
ない場合溶接トーチ12は開先幅中央位置にあるのでその
値を利用しているが、溶接ワイヤをオシレートしている
場合は、中央位置にガスシールドノズルが位置したこと
をポテンシヨメータ(図示せず)にて検知し、該ガスシ
ールドノズルが中央に位置したときのみ、溶接電流値の
信号が入力するように電気回路構成(図示せず)になつ
ている。
The welding current value is used when the welding wire is not oscillating because the welding torch 12 is at the groove width center position, so that value is used.However, when the welding wire is oscillating, the gas is placed at the center position. The position of the shield nozzle is detected by a potentiometer (not shown), and an electric circuit configuration (not shown) is input so that the welding current value signal is input only when the gas shield nozzle is located at the center. It has become.

上記ポテンシヨメータの代りに、センサー類を使用する
ことも可能である。
Sensors may be used instead of the potentiometer.

ところで、第2図において裏波が良好に形成されるとき
と、そうでないときの違いについて、ワイヤの突出し長
さEXTに着目すると、過大な裏波となる場合に突出し長
さEXTが最も長く、充分な裏波が形成されない場合に突
出し長さがEXTが最も短く、良好な裏波が形成される場
合が両者の中間的なワイヤ突出し長さとなることがわか
る。溶接電源に直流定電圧溶接電源を用い、ワイヤを定
速送給して溶接を行うときには、ワイヤ突出し長さが長
いと溶接電流値は低く、ワイヤ突出し長さが短いと溶接
電流値は高くなることが、オームの法則により、あきら
かである。すなわち 、I=溶接電流値、E=溶接電圧値(定量圧)、R=
(EKT)+(アーク長)の抵抗値により、溶接電圧値
は、あらかじめ設定された定量圧値Eであり、R内の
(EXT)が変化するに準じて、溶接電流値Iが逆比例的
に変化する。
By the way, focusing on the protruding length EXT of the wire regarding the difference between when the backside wave is formed favorably and when it is not formed, when the backside wave is excessively large, the protrusion length EXT is the longest, It can be seen that the protrusion length EXT is the shortest when a sufficient backside is not formed, and the case where a good backside is formed is an intermediate wire protrusion length between the two. When using a DC constant voltage welding power source as the welding power source to feed the wire at a constant speed and perform welding, if the wire protrusion length is long, the welding current value will be low, and if the wire protrusion length is short, the welding current value will be high. That is clear by Ohm's law. Ie , I = welding current value, E = welding voltage value (constant pressure), R =
The welding voltage value is the preset constant pressure value E by the resistance value of (EKT) + (arc length), and the welding current value I is inversely proportional according to the change of (EXT) in R. Changes to.

本発明では上記の溶接電流値を検出して、その結果に従
い溶接速度を制御し、溶接アーク15を溶接金属16が先行
しないように、また逆に溶接金属16を溶接アーク15に先
行させないようにしてやれば良いことがまず判明した。
In the present invention, the above welding current value is detected, and the welding speed is controlled according to the result, so that the welding metal 15 does not precede the welding metal 16 and vice versa. First I found out that I should do it.

しかしながら、上記のように、溶接電流値を検知する
と、第2図の溶接電流値(I)に示すように、EXTが長
くなるにつれて、直流定電圧溶接電源の自己制御特性と
溶接ワイヤ13のジュール発熱の関係から、溶接電流値の
変化と変動幅が大きくなり、同図の適正電流値変動幅以
上となりこのままでは溶接速度を制御する制御回路に入
力すると、溶接速度がハンチングを起こしてしまう、本
発明はこの変動幅の大小を利用したものであり微分出力
電圧に変換して同図の微分出力電圧値(ED)の適正電圧
値を検出値として溶接台車の速度を制御して溶接したと
ころ良好な結果を得た。それについて以下に説明する。
However, when the welding current value is detected as described above, as shown in the welding current value (I) of FIG. 2, as EXT becomes longer, the self-control characteristics of the DC constant voltage welding power source and the joule of the welding wire 13 are increased. Due to the heat generation, the change and fluctuation range of the welding current value become large, and the fluctuation range of the appropriate current value in the figure becomes more than that, and if it is input to the control circuit that controls the welding speed as it is, the welding speed will cause hunting. invention was welded by controlling the speed of the welding vehicle as a detection value the proper voltage value of the differential output voltage value of the converted magnitude to those at and differential output voltage using the figures in this variation range (E D) Good results have been obtained. This will be described below.

第1図は本発明を実施するための制御ブロツクダイヤグ
ラムである。
FIG. 1 is a control block diagram for carrying out the present invention.

直流定電圧溶接電源17よりの検出力は、シヤント23を
通し、ガスシールドノズル14に接続されて溶接電流値I
が流れることにより、シヤトン23より出力電圧Eiが発生
する。このときの出力電圧Eiの波形は、第2図の溶接電
流値(I)と同等である。該出力電圧Eiを微分回路24に
よつて、第2図の微分出力電圧値EDに変換される。該変
換された微分出力電圧値EDを、適正基準回路19よりの基
準電圧値ESと比較回路18によつて比較差電圧±ΔEが得
られる。さらに比較差電圧±ΔEを増幅器20にて増幅
し、電力出力回路21によつて溶接台車モータ22を速度制
御することによつて連続的に第2図の適正電圧値を目標
として同図、溶接金属とガスシールドノズルとの位置関
係が適正にて制御し、目的通りにて溶接をするものであ
る。
The detection power from the DC constant voltage welding power source 17 is passed through the shunt 23 and connected to the gas shield nozzle 14 so that the welding current value I
The output voltage Ei is generated from the shuttle 23 by flowing the current. The waveform of the output voltage Ei at this time is equivalent to the welding current value (I) in FIG. The output voltage Ei is converted by the differentiating circuit 24 into the differential output voltage value E D shown in FIG. The converted differential output voltage value E D and the reference voltage value E S from the appropriate reference circuit 19 are compared with the comparison circuit 18 to obtain a comparison difference voltage ± ΔE. Further, the comparison difference voltage ± ΔE is amplified by the amplifier 20, and the electric power output circuit 21 controls the speed of the welding carriage motor 22 to continuously target the proper voltage value of FIG. The positional relationship between the metal and the gas shield nozzle is properly controlled, and welding is performed as intended.

(実施例) 本発明法により溶接した実施例を以下に説明する。(Example) An example of welding by the method of the present invention will be described below.

溶接法はCO2ガスシールド溶接法で、母材は軟鋼、板厚1
6mmを用い開先角度40°、開先ギヤツプ3〜8mmでV開先
を形成し、開先裏面に耐火性固型裏当材を当てて溶接を
行つた。その他の溶接条件は以下の通りである。
Welding method is CO 2 gas shield welding method, base material is mild steel, plate thickness 1
A V groove was formed with a groove angle of 40 ° using a 6 mm groove groove 3-8 mm, and a refractory solid backing material was applied to the back surface of the groove for welding. Other welding conditions are as follows.

溶接ワイヤ:1.6mm径のソリツドワイヤ 適正溶接電流値:400A,溶接電圧:34V ガスシールドノズルと母材下面距離:30mm ワイヤオシレート幅:6mm、オシレート回数:50回/分 以上の溶接条件で溶接した結果、きわめて良好な裏波が
形成された。
Welding wire: 1.6 mm diameter solid wire Appropriate welding current value: 400 A, Welding voltage: 34 V Distance between gas shield nozzle and base material: 30 mm Wire oscillating width: 6 mm, oscillating frequency: 50 times / min Welding results under welding conditions , A very good backwater was formed.

なお、上記実施例ではCO2ガスシールド溶接法で裏当材
に耐火性固型裏当材を用いて溶接した例を示したが、サ
ブマージ溶接法であつても直流定電圧溶接電源を用い、
ワイヤを定速送給して行う溶接であれば本発明方法の適
用はできるし、裏当材が鋼板であつても差しつかえな
い。またMAG溶接法、MIG溶接法であつても同様である。
In the above examples, the CO 2 gas shield welding method showed an example of welding using a refractory solid type backing material for the backing material, but even in the submerged welding method using a DC constant voltage welding power source,
The method of the present invention can be applied to the welding as long as the welding is performed by feeding the wire at a constant speed, and the backing material may be a steel plate. The same applies to the MAG welding method and the MIG welding method.

(発明の効果) 以上説明した如く、本発明によれば開先精度が悪い部材
の片面溶接が容易に行え、溶接者が溶接中に条件を再調
整するなどの手間が省略できるため、自動溶接の効果を
一段と高めることができる。
(Effects of the Invention) As described above, according to the present invention, one-sided welding of a member having a poor groove precision can be easily performed, and a welder can save time and effort such as readjustment of conditions during welding. The effect of can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の制御ブロツクダイヤグラム、第2図は
溶接金属とガスシールドノズル位置における溶接電流値
と微分出力電圧値と裏ビードの関係模式図、第3図はワ
イヤオシレート式ガスシールド片面溶接方法の説明図で
ある。 1,2…母材、3…裏当材、4…ガイドレール、5,6…マグ
ネツト、7…溶接台車、8…オシレート装置、9…オシ
レート軸、10…オシレート方向、11…溶接トーチホル
ダ、12…溶接トーチ、13…溶接ワイヤ、14…ガスシール
ドノズル、15…溶接アーク、16…溶接金属、17…直流定
電圧溶接電源、18…比較回路、19…適正基準回路、20…
増幅器、21…電力出力回路、22…溶接台車モータ、23…
シヤント、24…微分回路、25…ワイヤリール。
FIG. 1 is a control block diagram of the present invention, FIG. 2 is a schematic diagram of the relationship between welding current value, differential output voltage value and back bead at weld metal and gas shield nozzle position, and FIG. 3 is wire oscillating type gas shield single-sided welding. It is explanatory drawing of a method. 1, 2 ... Base material, 3 ... Backing material, 4 ... Guide rail, 5, 6 ... Magnet, 7 ... Welding carriage, 8 ... Oscillating device, 9 ... Oscillating shaft, 10 ... Oscillating direction, 11 ... Welding torch holder, 12 … Welding torch, 13… Welding wire, 14… Gas shield nozzle, 15… Welding arc, 16… Welding metal, 17… DC constant voltage welding power supply, 18… Comparison circuit, 19… Proper reference circuit, 20…
Amplifier, 21 ... Power output circuit, 22 ... Welding carriage motor, 23 ...
Cyanto, 24 ... Differentiating circuit, 25 ... Wire reel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 俊雄 神奈川県相模原市淵野辺5−10−1 新日 本製鐵株式会社第二技術研究所内 (56)参考文献 特開 昭53−33949(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Aoki 5-10-1, Fuchinobe, Sagamihara-shi, Kanagawa Inside Nihon Nippon Steel Co., Ltd. Technical Research Institute (56) Reference JP-A-53-33949 (JP, 53-33949) A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開先裏面に裏当材を当て、溶接ワイヤを表
面から供給して溶接を行う下向突合せ溶接姿勢の片面溶
接方法において、該開先幅中央における溶接電流値を微
分回路を通して検出し、該微分回路よりの検出結果をあ
らかじめ設定した適正基準値と比較し、比較結果に応じ
て溶接速度を制御して溶接することを特徴とする片面裏
波溶接方法。
1. A single-sided welding method in which a backing material is applied to the rear surface of the groove and a welding wire is supplied from the front surface to perform welding in a downward butt welding posture, in which the welding current value at the center of the groove width is passed through a differential circuit. A single-sided backside welding method, which comprises detecting, comparing the detection result from the differentiating circuit with a preset proper reference value, and controlling the welding speed according to the comparison result to perform welding.
JP2924887A 1987-02-10 1987-02-10 One-sided back wave welding method Expired - Lifetime JPH0798270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2924887A JPH0798270B2 (en) 1987-02-10 1987-02-10 One-sided back wave welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2924887A JPH0798270B2 (en) 1987-02-10 1987-02-10 One-sided back wave welding method

Publications (2)

Publication Number Publication Date
JPS63199073A JPS63199073A (en) 1988-08-17
JPH0798270B2 true JPH0798270B2 (en) 1995-10-25

Family

ID=12270957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2924887A Expired - Lifetime JPH0798270B2 (en) 1987-02-10 1987-02-10 One-sided back wave welding method

Country Status (1)

Country Link
JP (1) JPH0798270B2 (en)

Also Published As

Publication number Publication date
JPS63199073A (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US3860778A (en) Melt welding by high frequency electrical current
KR970005922B1 (en) Pulsed arc welding apparatus having a consumable electrode wire
US3483354A (en) Method for depositing metal with a tig arc
US3989921A (en) Method and apparatus for non-consumable electrode type automatic arc welding
US3549856A (en) Gas metal arc welding from one side
US4095085A (en) High efficiency arc welding process and apparatus
JPS5812109B2 (en) How do you know what to do with your child?
JP3582811B2 (en) Vertical Electro Gas Welding Equipment
US2654015A (en) Method and apparatus for arc welding using a plurality of electrodes
JPH0615447A (en) Manufacture of welded tube
US4507541A (en) Measuring proximity of metal to an arc welding torch
JPH08187579A (en) Method of electrogas arc welding and its device
JPS58215278A (en) Metal arc welding method and its device
US3582608A (en) Method of arc welding thick members by reciprocation of a welding wire electrode
JPH05200548A (en) Nonconsumable arc welding method and equipment
JPH0798270B2 (en) One-sided back wave welding method
JP2991854B2 (en) Single side welding method
JPS60255276A (en) Consumable electrode type arc welding method
JP3867164B2 (en) Welding method
JPH11226734A (en) Method and equipment for mig welding or mag welding
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JPS6119342B2 (en)
US3710066A (en) Method of electric-arc welding of tubular products with magnetic control of the arc
JPS6380970A (en) One side welding method
GB1579700A (en) Method of arc welding of metal members from one side only